mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
3709 lines
87 KiB
C
3709 lines
87 KiB
C
/* Copyright (C) 1995,1996 Free Software Foundation, Inc.
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2, or (at your option)
|
||
* any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this software; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||
* Boston, MA 02111-1307 USA
|
||
*
|
||
* As a special exception, the Free Software Foundation gives permission
|
||
* for additional uses of the text contained in its release of GUILE.
|
||
*
|
||
* The exception is that, if you link the GUILE library with other files
|
||
* to produce an executable, this does not by itself cause the
|
||
* resulting executable to be covered by the GNU General Public License.
|
||
* Your use of that executable is in no way restricted on account of
|
||
* linking the GUILE library code into it.
|
||
*
|
||
* This exception does not however invalidate any other reasons why
|
||
* the executable file might be covered by the GNU General Public License.
|
||
*
|
||
* This exception applies only to the code released by the
|
||
* Free Software Foundation under the name GUILE. If you copy
|
||
* code from other Free Software Foundation releases into a copy of
|
||
* GUILE, as the General Public License permits, the exception does
|
||
* not apply to the code that you add in this way. To avoid misleading
|
||
* anyone as to the status of such modified files, you must delete
|
||
* this exception notice from them.
|
||
*
|
||
* If you write modifications of your own for GUILE, it is your choice
|
||
* whether to permit this exception to apply to your modifications.
|
||
* If you do not wish that, delete this exception notice. */
|
||
|
||
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include "_scm.h"
|
||
#include "genio.h"
|
||
#include "unif.h"
|
||
|
||
#include "numbers.h"
|
||
|
||
#define DIGITS '0':case '1':case '2':case '3':case '4':\
|
||
case '5':case '6':case '7':case '8':case '9'
|
||
|
||
|
||
/* IS_INF tests its floating point number for infiniteness
|
||
*/
|
||
#ifndef IS_INF
|
||
# define IS_INF(x) ((x)==(x)/2)
|
||
#endif
|
||
|
||
/* MAXEXP is the maximum double precision expontent
|
||
* FLTMAX is less than or scm_equal the largest single precision float
|
||
*/
|
||
|
||
#ifdef SCM_FLOATS
|
||
# ifdef STDC_HEADERS
|
||
# ifndef GO32
|
||
# include <float.h>
|
||
# endif /* ndef GO32 */
|
||
# endif /* def STDC_HEADERS */
|
||
# ifdef DBL_MAX_10_EXP
|
||
# define MAXEXP DBL_MAX_10_EXP
|
||
# else
|
||
# define MAXEXP 308 /* IEEE doubles */
|
||
# endif /* def DBL_MAX_10_EXP */
|
||
# ifdef FLT_MAX
|
||
# define FLTMAX FLT_MAX
|
||
# else
|
||
# define FLTMAX 1e+23
|
||
# endif /* def FLT_MAX */
|
||
#endif /* def SCM_FLOATS */
|
||
|
||
|
||
|
||
SCM_PROC(s_exact_p, "exact?", 1, 0, 0, scm_exact_p);
|
||
|
||
SCM
|
||
scm_exact_p(x)
|
||
SCM x;
|
||
{
|
||
if SCM_INUMP(x) return SCM_BOOL_T;
|
||
#ifdef SCM_BIGDIG
|
||
if (SCM_NIMP(x) && SCM_BIGP(x)) return SCM_BOOL_T;
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
SCM_PROC(s_odd_p, "odd?", 1, 0, 0, scm_odd_p);
|
||
|
||
SCM
|
||
scm_odd_p(n)
|
||
SCM n;
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(n) {
|
||
SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_odd_p);
|
||
return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_odd_p);
|
||
#endif
|
||
return (4 & (int)n) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
SCM_PROC(s_even_p, "even?", 1, 0, 0, scm_even_p);
|
||
|
||
SCM
|
||
scm_even_p(n)
|
||
SCM n;
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(n) {
|
||
SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_even_p);
|
||
return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_F : SCM_BOOL_T;
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_even_p);
|
||
#endif
|
||
return (4 & (int)n) ? SCM_BOOL_F : SCM_BOOL_T;
|
||
}
|
||
|
||
SCM_PROC(s_abs, "abs", 1, 0, 0, scm_abs);
|
||
|
||
SCM
|
||
scm_abs(x)
|
||
SCM x;
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_abs);
|
||
if (SCM_TYP16(x)==scm_tc16_bigpos) return x;
|
||
return scm_copybig(x, 0);
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_abs);
|
||
#endif
|
||
if (SCM_INUM(x) >= 0) return x;
|
||
x = -SCM_INUM(x);
|
||
if (!SCM_POSFIXABLE(x))
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(x);
|
||
#else
|
||
scm_num_overflow (s_abs);
|
||
#endif
|
||
return SCM_MAKINUM(x);
|
||
}
|
||
|
||
SCM_PROC(s_quotient, "quotient", 2, 0, 0, scm_quotient);
|
||
|
||
SCM
|
||
scm_quotient(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
register long z;
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
long w;
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_quotient);
|
||
if SCM_NINUMP(y) {
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return scm_divbigbig(SCM_BDIGITS(x),
|
||
SCM_NUMDIGS(x),
|
||
SCM_BDIGITS(y),
|
||
SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y),
|
||
2);
|
||
}
|
||
z = SCM_INUM(y);
|
||
SCM_ASRTGO(z, ov);
|
||
if (1==z) return x;
|
||
if (z < 0) z = -z;
|
||
if (z < SCM_BIGRAD) {
|
||
w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0));
|
||
scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z);
|
||
return scm_normbig(w);
|
||
}
|
||
#ifndef SCM_DIGSTOOBIG
|
||
w = scm_pseudolong(z);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&w, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 2);
|
||
#else
|
||
{ SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(z, zdigs);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 2);
|
||
}
|
||
#endif
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_quotient);
|
||
# endif
|
||
return SCM_INUM0;
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_quotient);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_quotient);
|
||
#endif
|
||
if ((z = SCM_INUM(y))==0)
|
||
ov: scm_num_overflow (s_quotient);
|
||
z = SCM_INUM(x)/z;
|
||
#ifdef BADIVSGNS
|
||
{
|
||
#if (__TURBOC__==1)
|
||
long t = ((y<0) ? -SCM_INUM(x) : SCM_INUM(x))%SCM_INUM(y);
|
||
#else
|
||
long t = SCM_INUM(x)%SCM_INUM(y);
|
||
#endif
|
||
if (t==0) ;
|
||
else if (t < 0)
|
||
if (x < 0) ;
|
||
else z--;
|
||
else if (x < 0) z++;
|
||
}
|
||
#endif
|
||
if (!SCM_FIXABLE(z))
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(z);
|
||
#else
|
||
scm_num_overflow (s_quotient);
|
||
#endif
|
||
return SCM_MAKINUM(z);
|
||
}
|
||
|
||
SCM_PROC(s_remainder, "remainder", 2, 0, 0, scm_remainder);
|
||
|
||
SCM
|
||
scm_remainder(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
register long z;
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_remainder);
|
||
if SCM_NINUMP(y) {
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x), 0);
|
||
}
|
||
if (!(z = SCM_INUM(y))) goto ov;
|
||
return scm_divbigint(x, z, SCM_BIGSIGN(x), 0);
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_remainder);
|
||
# endif
|
||
return x;
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_remainder);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_remainder);
|
||
#endif
|
||
if (!(z = SCM_INUM(y)))
|
||
ov: scm_num_overflow (s_remainder);
|
||
#if (__TURBOC__==1)
|
||
if (z < 0) z = -z;
|
||
#endif
|
||
z = SCM_INUM(x)%z;
|
||
#ifdef BADIVSGNS
|
||
if (!z) ;
|
||
else if (z < 0)
|
||
if (x < 0) ;
|
||
else z += SCM_INUM(y);
|
||
else if (x < 0) z -= SCM_INUM(y);
|
||
#endif
|
||
return SCM_MAKINUM(z);
|
||
}
|
||
|
||
SCM_PROC(s_modulo, "modulo", 2, 0, 0, scm_modulo);
|
||
|
||
SCM
|
||
scm_modulo(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
register long yy, z;
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_modulo);
|
||
if SCM_NINUMP(y) {
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(y), (SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)) ? 1 : 0);
|
||
}
|
||
if (!(z = SCM_INUM(y))) goto ov;
|
||
return scm_divbigint(x, z, y < 0, (SCM_BIGSIGN(x) ? (y > 0) : (y < 0)) ? 1 : 0);
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_modulo);
|
||
# endif
|
||
return (SCM_BIGSIGN(y) ? (x>0) : (x<0)) ? scm_sum(x, y) : x;
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_modulo);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_modulo);
|
||
#endif
|
||
if (!(yy = SCM_INUM(y)))
|
||
ov: scm_num_overflow (s_modulo);
|
||
#if (__TURBOC__==1)
|
||
z = SCM_INUM(x);
|
||
z = ((yy<0) ? -z : z)%yy;
|
||
#else
|
||
z = SCM_INUM(x)%yy;
|
||
#endif
|
||
return SCM_MAKINUM(((yy<0) ? (z>0) : (z<0)) ? z+yy : z);
|
||
}
|
||
|
||
SCM_PROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd);
|
||
|
||
SCM
|
||
scm_gcd(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
register long u, v, k, t;
|
||
if SCM_UNBNDP(y) return SCM_UNBNDP(x) ? SCM_INUM0 : x;
|
||
tailrec:
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
big_gcd:
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_gcd);
|
||
if SCM_BIGSIGN(x) x = scm_copybig(x, 0);
|
||
newy:
|
||
if SCM_NINUMP(y) {
|
||
SCM_ASSERT(SCM_NIMP(y) && SCM_BIGP(y), y, SCM_ARG2, s_gcd);
|
||
if SCM_BIGSIGN(y) y = scm_copybig(y, 0);
|
||
switch (scm_bigcomp(x, y)) {
|
||
case -1:
|
||
swaprec: t = scm_remainder(x, y); x = y; y = t; goto tailrec;
|
||
case 0: return x;
|
||
case 1: y = scm_remainder(y, x); goto newy;
|
||
}
|
||
/* instead of the switch, we could just return scm_gcd(y, scm_modulo(x, y)); */
|
||
}
|
||
if (SCM_INUM0==y) return x; goto swaprec;
|
||
}
|
||
if SCM_NINUMP(y) { t=x; x=y; y=t; goto big_gcd;}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_gcd);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_gcd);
|
||
#endif
|
||
u = SCM_INUM(x);
|
||
if (u<0) u = -u;
|
||
v = SCM_INUM(y);
|
||
if (v<0) v = -v;
|
||
else if (0==v) goto getout;
|
||
if (0==u) {u = v; goto getout;}
|
||
for (k = 1;!(1 & ((int)u|(int)v));k <<= 1, u >>= 1, v >>= 1);
|
||
if (1 & (int)u) t = -v;
|
||
else {
|
||
t = u;
|
||
b3:
|
||
t = SCM_SRS(t, 1);
|
||
}
|
||
if (!(1 & (int)t)) goto b3;
|
||
if (t>0) u = t;
|
||
else v = -t;
|
||
if ((t = u-v)) goto b3;
|
||
u = u*k;
|
||
getout:
|
||
if (!SCM_POSFIXABLE(u))
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(u);
|
||
#else
|
||
scm_num_overflow (s_gcd);
|
||
#endif
|
||
return SCM_MAKINUM(u);
|
||
}
|
||
|
||
SCM_PROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm);
|
||
|
||
SCM
|
||
scm_lcm(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM d;
|
||
if SCM_UNBNDP(n2) {
|
||
n2 = SCM_MAKINUM(1L);
|
||
if SCM_UNBNDP(n1) return n2;
|
||
}
|
||
d = scm_gcd(n1, n2);
|
||
if (SCM_INUM0==d) return d;
|
||
return scm_abs(scm_product(n1, scm_quotient(n2, d)));
|
||
}
|
||
|
||
#ifndef SCM_BIGDIG
|
||
# ifndef SCM_FLOATS
|
||
# define scm_long2num SCM_MAKINUM
|
||
# endif
|
||
#endif
|
||
|
||
#ifndef scm_long2num
|
||
SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand);
|
||
|
||
SCM
|
||
scm_logand(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logand)
|
||
& scm_num2long(n2, (char *)SCM_ARG2, s_logand));
|
||
}
|
||
|
||
SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior);
|
||
|
||
SCM
|
||
scm_logior(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logior)
|
||
| scm_num2long(n2, (char *)SCM_ARG2, s_logior));
|
||
}
|
||
|
||
SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor);
|
||
|
||
SCM
|
||
scm_logxor(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logxor)
|
||
^ scm_num2long(n2, (char *)SCM_ARG2, s_logxor));
|
||
}
|
||
|
||
SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest);
|
||
|
||
SCM
|
||
scm_logtest(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
return ((scm_num2long (n1, (char *)SCM_ARG1, s_logtest)
|
||
& scm_num2long (n2, (char *)SCM_ARG2, s_logtest))
|
||
? SCM_BOOL_T : SCM_BOOL_F);
|
||
}
|
||
|
||
|
||
SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p);
|
||
|
||
SCM
|
||
scm_logbit_p(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
return (((1 << scm_num2long (n1, (char *)SCM_ARG1, s_logtest))
|
||
& scm_num2long (n2, (char *)SCM_ARG2, s_logtest))
|
||
? SCM_BOOL_T : SCM_BOOL_F);
|
||
}
|
||
|
||
#else
|
||
|
||
SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand);
|
||
|
||
SCM
|
||
scm_logand(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logand);
|
||
SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logand);
|
||
return SCM_MAKINUM(SCM_INUM(n1) & SCM_INUM(n2));
|
||
}
|
||
|
||
SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior);
|
||
|
||
SCM
|
||
scm_logior(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logior);
|
||
SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logior);
|
||
return SCM_MAKINUM(SCM_INUM(n1) | SCM_INUM(n2));
|
||
}
|
||
|
||
SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor);
|
||
|
||
SCM
|
||
scm_logxor(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logxor);
|
||
SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logxor);
|
||
return SCM_MAKINUM(SCM_INUM(n1) ^ SCM_INUM(n2));
|
||
}
|
||
|
||
SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest);
|
||
|
||
SCM
|
||
scm_logtest(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logtest);
|
||
SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logtest);
|
||
return (SCM_INUM(n1) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p);
|
||
|
||
SCM
|
||
scm_logbit_p(n1, n2)
|
||
SCM n1;
|
||
SCM n2;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n1) && SCM_INUM(n1) >= 0, n1, SCM_ARG1, s_logbit_p);
|
||
SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logbit_p);
|
||
return ((1 << SCM_INUM(n1)) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#endif
|
||
|
||
SCM_PROC(s_lognot, "lognot", 1, 0, 0, scm_lognot);
|
||
|
||
SCM
|
||
scm_lognot(n)
|
||
SCM n;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_lognot);
|
||
return scm_difference(SCM_MAKINUM(-1L), n);
|
||
}
|
||
|
||
SCM_PROC(s_integer_expt, "integer-expt", 2, 0, 0, scm_integer_expt);
|
||
|
||
SCM
|
||
scm_integer_expt(z1, z2)
|
||
SCM z1;
|
||
SCM z2;
|
||
{
|
||
SCM acc = SCM_MAKINUM(1L);
|
||
#ifdef SCM_BIGDIG
|
||
if (SCM_INUM0==z1 || acc==z1) return z1;
|
||
else if (SCM_MAKINUM(-1L)==z1) return SCM_BOOL_F==scm_even_p(z2)?z1:acc;
|
||
#endif
|
||
SCM_ASSERT(SCM_INUMP(z2), z2, SCM_ARG2, s_integer_expt);
|
||
z2 = SCM_INUM(z2);
|
||
if (z2 < 0) {
|
||
z2 = -z2;
|
||
z1 = scm_divide(z1, SCM_UNDEFINED);
|
||
}
|
||
while(1) {
|
||
if (0==z2) return acc;
|
||
if (1==z2) return scm_product(acc, z1);
|
||
if (z2 & 1) acc = scm_product(acc, z1);
|
||
z1 = scm_product(z1, z1);
|
||
z2 >>= 1;
|
||
}
|
||
}
|
||
|
||
SCM_PROC(s_ash, "ash", 2, 0, 0, scm_ash);
|
||
|
||
SCM
|
||
scm_ash(n, cnt)
|
||
SCM n;
|
||
SCM cnt;
|
||
{
|
||
SCM res = SCM_INUM(n);
|
||
SCM_ASSERT(SCM_INUMP(cnt), cnt, SCM_ARG2, s_ash);
|
||
#ifdef SCM_BIGDIG
|
||
if(cnt < 0) {
|
||
res = scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(-SCM_INUM(cnt)));
|
||
if (SCM_NFALSEP(scm_negative_p(n)))
|
||
return scm_sum(SCM_MAKINUM(-1L), scm_quotient(scm_sum(SCM_MAKINUM(1L), n), res));
|
||
else return scm_quotient(n, res);
|
||
}
|
||
else return scm_product(n, scm_integer_expt(SCM_MAKINUM(2), cnt));
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_ash);
|
||
cnt = SCM_INUM(cnt);
|
||
if (cnt < 0) return SCM_MAKINUM(SCM_SRS(res, -cnt));
|
||
res = SCM_MAKINUM(res<<cnt);
|
||
if (SCM_INUM(res)>>cnt != SCM_INUM(n))
|
||
scm_num_overflow (s_ash);
|
||
return res;
|
||
#endif
|
||
}
|
||
|
||
SCM_PROC(s_bit_extract, "bit-extract", 3, 0, 0, scm_bit_extract);
|
||
|
||
SCM
|
||
scm_bit_extract(n, start, end)
|
||
SCM n;
|
||
SCM start;
|
||
SCM end;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(start), start, SCM_ARG2, s_bit_extract);
|
||
SCM_ASSERT(SCM_INUMP(end), end, SCM_ARG3, s_bit_extract);
|
||
start = SCM_INUM(start); end = SCM_INUM(end);
|
||
SCM_ASSERT(end >= start, SCM_MAKINUM(end), SCM_OUTOFRANGE, s_bit_extract);
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(n)
|
||
return
|
||
scm_logand(scm_difference(scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(end - start)),
|
||
SCM_MAKINUM(1L)),
|
||
scm_ash(n, SCM_MAKINUM(-start)));
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_bit_extract);
|
||
#endif
|
||
return SCM_MAKINUM((SCM_INUM(n)>>start) & ((1L<<(end-start))-1));
|
||
}
|
||
|
||
char scm_logtab[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4};
|
||
SCM_PROC(s_logcount, "logcount", 1, 0, 0, scm_logcount);
|
||
|
||
SCM
|
||
scm_logcount(n)
|
||
SCM n;
|
||
{
|
||
register unsigned long c = 0;
|
||
register long nn;
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(n) {
|
||
scm_sizet i; SCM_BIGDIG *ds, d;
|
||
SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_logcount);
|
||
if SCM_BIGSIGN(n) return scm_logcount(scm_difference(SCM_MAKINUM(-1L), n));
|
||
ds = SCM_BDIGITS(n);
|
||
for(i = SCM_NUMDIGS(n); i--; )
|
||
for(d = ds[i]; d; d >>= 4) c += scm_logtab[15 & d];
|
||
return SCM_MAKINUM(c);
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_logcount);
|
||
#endif
|
||
if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn;
|
||
for(; nn; nn >>= 4) c += scm_logtab[15 & nn];
|
||
return SCM_MAKINUM(c);
|
||
}
|
||
|
||
char scm_ilentab[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4};
|
||
SCM_PROC(s_integer_length, "integer-length", 1, 0, 0, scm_integer_length);
|
||
|
||
SCM
|
||
scm_integer_length(n)
|
||
SCM n;
|
||
{
|
||
register unsigned long c = 0;
|
||
register long nn;
|
||
unsigned int l = 4;
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(n) {
|
||
SCM_BIGDIG *ds, d;
|
||
SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_integer_length);
|
||
if SCM_BIGSIGN(n) return scm_integer_length(scm_difference(SCM_MAKINUM(-1L), n));
|
||
ds = SCM_BDIGITS(n);
|
||
d = ds[c = SCM_NUMDIGS(n)-1];
|
||
for(c *= SCM_BITSPERDIG; d; d >>= 4) {c += 4; l = scm_ilentab[15 & d];}
|
||
return SCM_MAKINUM(c - 4 + l);
|
||
}
|
||
#else
|
||
SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_integer_length);
|
||
#endif
|
||
if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn;
|
||
for(;nn; nn >>= 4) {c += 4; l = scm_ilentab[15 & nn];}
|
||
return SCM_MAKINUM(c - 4 + l);
|
||
}
|
||
|
||
|
||
#ifdef SCM_BIGDIG
|
||
char s_bignum[] = "bignum";
|
||
|
||
SCM
|
||
scm_mkbig(nlen, sign)
|
||
scm_sizet nlen;
|
||
int sign;
|
||
{
|
||
SCM v = nlen;
|
||
if (((v << 16) >> 16) != nlen)
|
||
scm_wta(SCM_MAKINUM(nlen), (char *)SCM_NALLOC, s_bignum);
|
||
SCM_NEWCELL(v);
|
||
SCM_DEFER_INTS;
|
||
SCM_SETCHARS(v, scm_must_malloc((long)(nlen*sizeof(SCM_BIGDIG)), s_bignum));
|
||
SCM_SETNUMDIGS(v, nlen, sign?scm_tc16_bigneg:scm_tc16_bigpos);
|
||
SCM_ALLOW_INTS;
|
||
return v;
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_big2inum(b, l)
|
||
SCM b;
|
||
scm_sizet l;
|
||
{
|
||
unsigned long num = 0;
|
||
SCM_BIGDIG *tmp = SCM_BDIGITS(b);
|
||
while (l--) num = SCM_BIGUP(num) + tmp[l];
|
||
if (SCM_TYP16(b)==scm_tc16_bigpos) {
|
||
if SCM_POSFIXABLE(num) return SCM_MAKINUM(num);
|
||
}
|
||
else if SCM_UNEGFIXABLE(num) return SCM_MAKINUM(-num);
|
||
return b;
|
||
}
|
||
|
||
|
||
char s_adjbig[] = "scm_adjbig";
|
||
|
||
SCM
|
||
scm_adjbig(b, nlen)
|
||
SCM b;
|
||
scm_sizet nlen;
|
||
{
|
||
long nsiz = nlen;
|
||
if (((nsiz << 16) >> 16) != nlen) scm_wta(SCM_MAKINUM(nsiz), (char *)SCM_NALLOC, s_adjbig);
|
||
SCM_DEFER_INTS;
|
||
SCM_SETCHARS(b, (SCM_BIGDIG *)scm_must_realloc((char *)SCM_CHARS(b),
|
||
(long)(SCM_NUMDIGS(b)*sizeof(SCM_BIGDIG)),
|
||
(long)(nsiz*sizeof(SCM_BIGDIG)), s_adjbig));
|
||
SCM_SETNUMDIGS(b, nsiz, SCM_TYP16(b));
|
||
SCM_ALLOW_INTS;
|
||
return b;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_normbig(b)
|
||
SCM b;
|
||
{
|
||
#ifndef _UNICOS
|
||
scm_sizet nlen = SCM_NUMDIGS(b);
|
||
#else
|
||
int nlen = SCM_NUMDIGS(b); /* unsigned nlen breaks on Cray when nlen => 0 */
|
||
#endif
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(b);
|
||
while (nlen-- && !zds[nlen]); nlen++;
|
||
if (nlen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM))
|
||
if SCM_INUMP(b = scm_big2inum(b, (scm_sizet)nlen)) return b;
|
||
if (SCM_NUMDIGS(b)==nlen) return b;
|
||
return scm_adjbig(b, (scm_sizet)nlen);
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_copybig(b, sign)
|
||
SCM b;
|
||
int sign;
|
||
{
|
||
scm_sizet i = SCM_NUMDIGS(b);
|
||
SCM ans = scm_mkbig(i, sign);
|
||
SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans);
|
||
while (i--) dst[i] = src[i];
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_long2big(n)
|
||
long n;
|
||
{
|
||
scm_sizet i = 0;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans = scm_mkbig(SCM_DIGSPERLONG, n<0);
|
||
digits = SCM_BDIGITS(ans);
|
||
if (n < 0) n = -n;
|
||
while (i < SCM_DIGSPERLONG) {
|
||
digits[i++] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN((unsigned long)n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
#ifdef LONGLONGS
|
||
|
||
SCM
|
||
scm_long_long2big(n)
|
||
long_long n;
|
||
{
|
||
scm_sizet i;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
int n_digits;
|
||
|
||
{
|
||
long tn;
|
||
tn = (long) n;
|
||
if ((long long)tn == n)
|
||
return scm_long2big (tn);
|
||
}
|
||
|
||
{
|
||
long_long tn;
|
||
|
||
for (tn = n, n_digits = 0;
|
||
tn;
|
||
++n_digits, tn = SCM_BIGDN ((ulong_long)tn))
|
||
;
|
||
}
|
||
|
||
i = 0;
|
||
ans = scm_mkbig(n_digits, n<0);
|
||
digits = SCM_BDIGITS(ans);
|
||
if (n < 0)
|
||
n = -n;
|
||
while (i < n_digits) {
|
||
digits[i++] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN((ulong_long)n);
|
||
}
|
||
return ans;
|
||
}
|
||
#endif
|
||
|
||
|
||
SCM
|
||
scm_2ulong2big(np)
|
||
unsigned long * np;
|
||
{
|
||
unsigned long n;
|
||
scm_sizet i;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
|
||
ans = scm_mkbig(2 * SCM_DIGSPERLONG, 0);
|
||
digits = SCM_BDIGITS(ans);
|
||
|
||
n = np[0];
|
||
for (i = 0; i < SCM_DIGSPERLONG; ++i)
|
||
{
|
||
digits[i] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN((unsigned long)n);
|
||
}
|
||
n = np[1];
|
||
for (i = 0; i < SCM_DIGSPERLONG; ++i)
|
||
{
|
||
digits[i + SCM_DIGSPERLONG] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN((unsigned long)n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_ulong2big(n)
|
||
unsigned long n;
|
||
{
|
||
scm_sizet i = 0;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans = scm_mkbig(SCM_DIGSPERLONG, 0);
|
||
digits = SCM_BDIGITS(ans);
|
||
while (i < SCM_DIGSPERLONG) {
|
||
digits[i++] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN(n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
int
|
||
scm_bigcomp(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
int xsign = SCM_BIGSIGN(x);
|
||
int ysign = SCM_BIGSIGN(y);
|
||
scm_sizet xlen, ylen;
|
||
if (ysign < xsign) return 1;
|
||
if (ysign > xsign) return -1;
|
||
if ((ylen = SCM_NUMDIGS(y)) > (xlen = SCM_NUMDIGS(x))) return (xsign) ? -1 : 1;
|
||
if (ylen < xlen) return (xsign) ? 1 : -1;
|
||
while(xlen-- && (SCM_BDIGITS(y)[xlen]==SCM_BDIGITS(x)[xlen]));
|
||
if (-1==xlen) return 0;
|
||
return (SCM_BDIGITS(y)[xlen] > SCM_BDIGITS(x)[xlen]) ?
|
||
(xsign ? -1 : 1) : (xsign ? 1 : -1);
|
||
}
|
||
|
||
#ifndef SCM_DIGSTOOBIG
|
||
|
||
|
||
long
|
||
scm_pseudolong(x)
|
||
long x;
|
||
{
|
||
union {
|
||
long l;
|
||
SCM_BIGDIG bd[SCM_DIGSPERLONG];
|
||
} p;
|
||
scm_sizet i = 0;
|
||
if (x < 0) x = -x;
|
||
while (i < SCM_DIGSPERLONG) {p.bd[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);}
|
||
/* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */
|
||
return p.l;
|
||
}
|
||
|
||
#else
|
||
|
||
|
||
void
|
||
scm_longdigs(x, digs)
|
||
long x;
|
||
SCM_BIGDIG digs[];
|
||
{
|
||
scm_sizet i = 0;
|
||
if (x < 0) x = -x;
|
||
while (i < SCM_DIGSPERLONG) {digs[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);}
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
SCM
|
||
scm_addbig(x, nx, xsgn, bigy, sgny)
|
||
SCM_BIGDIG *x;
|
||
scm_sizet nx;
|
||
int xsgn;
|
||
SCM bigy;
|
||
int sgny;
|
||
{
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn and sgny scm_equal either 0 or 0x0100 */
|
||
long num = 0;
|
||
scm_sizet i = 0, ny = SCM_NUMDIGS(bigy);
|
||
SCM z = scm_copybig(bigy, SCM_BIGSIGN(bigy) ^ sgny);
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(z);
|
||
if (xsgn ^ SCM_BIGSIGN(z)) {
|
||
do {
|
||
num += (long) zds[i] - x[i];
|
||
if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] = SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
if (num && nx==ny) {
|
||
num = 1; i = 0;
|
||
SCM_SETCAR (z, SCM_CAR (z) ^ 0x0100);
|
||
do {
|
||
num += (SCM_BIGRAD-1) - zds[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
} while (i < ny);
|
||
}
|
||
else while (i < ny) {
|
||
num += zds[i];
|
||
if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i++] = SCM_BIGLO(num); num = 0;}
|
||
}
|
||
} else {
|
||
do {
|
||
num += (long) zds[i] + x[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
} while (i < nx);
|
||
if (!num) return z;
|
||
while (i < ny) {
|
||
num += zds[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
if (!num) return z;
|
||
}
|
||
if (num) {z = scm_adjbig(z, ny+1); SCM_BDIGITS(z)[ny] = num; return z;}
|
||
}
|
||
return scm_normbig(z);
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_mulbig(x, nx, y, ny, sgn)
|
||
SCM_BIGDIG *x;
|
||
scm_sizet nx;
|
||
SCM_BIGDIG *y;
|
||
scm_sizet ny;
|
||
int sgn;
|
||
{
|
||
scm_sizet i = 0, j = nx + ny;
|
||
unsigned long n = 0;
|
||
SCM z = scm_mkbig(j, sgn);
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(z);
|
||
while (j--) zds[j] = 0;
|
||
do {
|
||
j = 0;
|
||
if (x[i]) {
|
||
do {
|
||
n += zds[i + j] + ((unsigned long) x[i] * y[j]);
|
||
zds[i + j++] = SCM_BIGLO(n);
|
||
n = SCM_BIGDN(n);
|
||
} while (j < ny);
|
||
if (n) {zds[i + j] = n; n = 0;}
|
||
}
|
||
} while (++i < nx);
|
||
return scm_normbig(z);
|
||
}
|
||
|
||
|
||
/* Sun's compiler complains about the fact that this function has an
|
||
ANSI prototype in numbers.h, but a K&R declaration here, and the
|
||
two specify different promotions for the third argument. I'm going
|
||
to turn this into an ANSI declaration, and see if anyone complains
|
||
about it not being K&R. */
|
||
|
||
unsigned int
|
||
scm_divbigdig(SCM_BIGDIG *ds,
|
||
scm_sizet h,
|
||
SCM_BIGDIG div)
|
||
{
|
||
register unsigned long t2 = 0;
|
||
while(h--) {
|
||
t2 = SCM_BIGUP(t2) + ds[h];
|
||
ds[h] = t2 / div;
|
||
t2 %= div;
|
||
}
|
||
return t2;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_divbigint(x, z, sgn, mode)
|
||
SCM x;
|
||
long z;
|
||
int sgn;
|
||
int mode;
|
||
{
|
||
if (z < 0) z = -z;
|
||
if (z < SCM_BIGRAD) {
|
||
register unsigned long t2 = 0;
|
||
register SCM_BIGDIG *ds = SCM_BDIGITS(x);
|
||
scm_sizet nd = SCM_NUMDIGS(x);
|
||
while(nd--) t2 = (SCM_BIGUP(t2) + ds[nd]) % z;
|
||
if (mode && t2) t2 = z - t2;
|
||
return SCM_MAKINUM(sgn ? -t2 : t2);
|
||
}
|
||
{
|
||
#ifndef SCM_DIGSTOOBIG
|
||
unsigned long t2 = scm_pseudolong(z);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&t2,
|
||
SCM_DIGSPERLONG, sgn, mode);
|
||
#else
|
||
SCM_BIGDIG t2[SCM_DIGSPERLONG];
|
||
scm_longdigs(z, t2);
|
||
return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), t2, SCM_DIGSPERLONG, sgn, mode);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_divbigbig(x, nx, y, ny, sgn, modes)
|
||
SCM_BIGDIG *x;
|
||
scm_sizet nx;
|
||
SCM_BIGDIG *y;
|
||
scm_sizet ny;
|
||
int sgn;
|
||
int modes;
|
||
{
|
||
/* modes description
|
||
0 remainder
|
||
1 scm_modulo
|
||
2 quotient
|
||
3 quotient but returns 0 if division is not exact. */
|
||
scm_sizet i = 0, j = 0;
|
||
long num = 0;
|
||
unsigned long t2 = 0;
|
||
SCM z, newy;
|
||
SCM_BIGDIG d = 0, qhat, *zds, *yds;
|
||
/* algorithm requires nx >= ny */
|
||
if (nx < ny)
|
||
switch (modes) {
|
||
case 0: /* remainder -- just return x */
|
||
z = scm_mkbig(nx, sgn); zds = SCM_BDIGITS(z);
|
||
do {zds[i] = x[i];} while (++i < nx);
|
||
return z;
|
||
case 1: /* scm_modulo -- return y-x */
|
||
z = scm_mkbig(ny, sgn); zds = SCM_BDIGITS(z);
|
||
do {
|
||
num += (long) y[i] - x[i];
|
||
if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] = num; num = 0;}
|
||
} while (++i < nx);
|
||
while (i < ny) {
|
||
num += y[i];
|
||
if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i++] = num; num = 0;}
|
||
}
|
||
goto doadj;
|
||
case 2: return SCM_INUM0; /* quotient is zero */
|
||
case 3: return 0; /* the division is not exact */
|
||
}
|
||
|
||
z = scm_mkbig(nx==ny ? nx+2 : nx+1, sgn); zds = SCM_BDIGITS(z);
|
||
if (nx==ny) zds[nx+1] = 0;
|
||
while(!y[ny-1]) ny--; /* in case y came in as a psuedolong */
|
||
if (y[ny-1] < (SCM_BIGRAD>>1)) { /* normalize operands */
|
||
d = SCM_BIGRAD/(y[ny-1]+1);
|
||
newy = scm_mkbig(ny, 0); yds = SCM_BDIGITS(newy);
|
||
while(j < ny)
|
||
{t2 += (unsigned long) y[j]*d; yds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);}
|
||
y = yds; j = 0; t2 = 0;
|
||
while(j < nx)
|
||
{t2 += (unsigned long) x[j]*d; zds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);}
|
||
zds[j] = t2;
|
||
}
|
||
else {zds[j = nx] = 0; while (j--) zds[j] = x[j];}
|
||
j = nx==ny ? nx+1 : nx; /* dividend needs more digits than divisor */
|
||
do { /* loop over digits of quotient */
|
||
if (zds[j]==y[ny-1]) qhat = SCM_BIGRAD-1;
|
||
else qhat = (SCM_BIGUP(zds[j]) + zds[j-1])/y[ny-1];
|
||
if (!qhat) continue;
|
||
i = 0; num = 0; t2 = 0;
|
||
do { /* multiply and subtract */
|
||
t2 += (unsigned long) y[i] * qhat;
|
||
num += zds[j - ny + i] - SCM_BIGLO(t2);
|
||
if (num < 0) {zds[j - ny + i] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[j - ny + i] = num; num = 0;}
|
||
t2 = SCM_BIGDN(t2);
|
||
} while (++i < ny);
|
||
num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */
|
||
while (num) { /* "add back" required */
|
||
i = 0; num = 0; qhat--;
|
||
do {
|
||
num += (long) zds[j - ny + i] + y[i];
|
||
zds[j - ny + i] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
} while (++i < ny);
|
||
num--;
|
||
}
|
||
if (modes & 2) zds[j] = qhat;
|
||
} while (--j >= ny);
|
||
switch (modes) {
|
||
case 3: /* check that remainder==0 */
|
||
for(j = ny;j && !zds[j-1];--j) ; if (j) return 0;
|
||
case 2: /* move quotient down in z */
|
||
j = (nx==ny ? nx+2 : nx+1) - ny;
|
||
for (i = 0;i < j;i++) zds[i] = zds[i+ny];
|
||
ny = i;
|
||
break;
|
||
case 1: /* subtract for scm_modulo */
|
||
i = 0; num = 0; j = 0;
|
||
do {num += y[i] - zds[i];
|
||
j = j | zds[i];
|
||
if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] = num; num = 0;}
|
||
} while (++i < ny);
|
||
if (!j) return SCM_INUM0;
|
||
case 0: /* just normalize remainder */
|
||
if (d) scm_divbigdig(zds, ny, d);
|
||
}
|
||
doadj:
|
||
for(j = ny;j && !zds[j-1];--j) ;
|
||
if (j * SCM_BITSPERDIG <= sizeof(SCM)*SCM_CHAR_BIT)
|
||
if SCM_INUMP(z = scm_big2inum(z, j)) return z;
|
||
return scm_adjbig(z, j);
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
|
||
|
||
/*** NUMBERS -> STRINGS ***/
|
||
#ifdef SCM_FLOATS
|
||
int scm_dblprec;
|
||
static double fx[] = {0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
|
||
5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
|
||
5e-11,5e-12,5e-13,5e-14,5e-15,
|
||
5e-16,5e-17,5e-18,5e-19,5e-20};
|
||
|
||
|
||
|
||
|
||
static scm_sizet idbl2str SCM_P ((double f, char *a));
|
||
|
||
static scm_sizet
|
||
idbl2str(f, a)
|
||
double f;
|
||
char *a;
|
||
{
|
||
int efmt, dpt, d, i, wp = scm_dblprec;
|
||
scm_sizet ch = 0;
|
||
int exp = 0;
|
||
|
||
if (f == 0.0) goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;}*/
|
||
if (f < 0.0) {f = -f;a[ch++]='-';}
|
||
else if (f > 0.0) ;
|
||
else goto funny;
|
||
if (IS_INF(f))
|
||
{
|
||
if (ch == 0) a[ch++]='+';
|
||
funny: a[ch++]='#'; a[ch++]='.'; a[ch++]='#'; return ch;
|
||
}
|
||
# ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
|
||
make-uniform-vector, from causing infinite loops. */
|
||
while (f < 1.0) {f *= 10.0; if (exp-- < DBL_MIN_10_EXP) goto funny;}
|
||
while (f > 10.0) {f *= 0.10; if (exp++ > DBL_MAX_10_EXP) goto funny;}
|
||
# else
|
||
while (f < 1.0) {f *= 10.0; exp--;}
|
||
while (f > 10.0) {f /= 10.0; exp++;}
|
||
# endif
|
||
if (f+fx[wp] >= 10.0) {f = 1.0; exp++;}
|
||
zero:
|
||
# ifdef ENGNOT
|
||
dpt = (exp+9999)%3;
|
||
exp -= dpt++;
|
||
efmt = 1;
|
||
# else
|
||
efmt = (exp < -3) || (exp > wp+2);
|
||
if (!efmt)
|
||
if (exp < 0) {
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
dpt = exp;
|
||
while (++dpt) a[ch++] = '0';
|
||
} else
|
||
dpt = exp+1;
|
||
else
|
||
dpt = 1;
|
||
# endif
|
||
|
||
do {
|
||
d = f;
|
||
f -= d;
|
||
a[ch++] = d+'0';
|
||
if (f < fx[wp]) break;
|
||
if (f+fx[wp] >= 1.0) {
|
||
a[ch-1]++;
|
||
break;
|
||
}
|
||
f *= 10.0;
|
||
if (!(--dpt)) a[ch++] = '.';
|
||
} while (wp--);
|
||
|
||
if (dpt > 0)
|
||
# ifndef ENGNOT
|
||
if ((dpt > 4) && (exp > 6)) {
|
||
d = (a[0]=='-'?2:1);
|
||
for (i = ch++; i > d; i--)
|
||
a[i] = a[i-1];
|
||
a[d] = '.';
|
||
efmt = 1;
|
||
} else
|
||
# endif
|
||
{
|
||
while (--dpt) a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
}
|
||
if (a[ch-1]=='.') a[ch++]='0'; /* trailing zero */
|
||
if (efmt && exp) {
|
||
a[ch++] = 'e';
|
||
if (exp < 0) {
|
||
exp = -exp;
|
||
a[ch++] = '-';
|
||
}
|
||
for (i = 10; i <= exp; i *= 10);
|
||
for (i /= 10; i; i /= 10) {
|
||
a[ch++] = exp/i + '0';
|
||
exp %= i;
|
||
}
|
||
}
|
||
return ch;
|
||
}
|
||
|
||
|
||
static scm_sizet iflo2str SCM_P ((SCM flt, char *str));
|
||
|
||
static scm_sizet
|
||
iflo2str(flt, str)
|
||
SCM flt;
|
||
char *str;
|
||
{
|
||
scm_sizet i;
|
||
# ifdef SCM_SINGLES
|
||
if SCM_SINGP(flt) i = idbl2str(SCM_FLO(flt), str);
|
||
else
|
||
# endif
|
||
i = idbl2str(SCM_REAL(flt), str);
|
||
if SCM_CPLXP(flt) {
|
||
if(0 <= SCM_IMAG(flt)) /* jeh */
|
||
str[i++] = '+'; /* jeh */
|
||
i += idbl2str(SCM_IMAG(flt), &str[i]);
|
||
str[i++] = 'i';
|
||
}
|
||
return i;
|
||
}
|
||
#endif /* SCM_FLOATS */
|
||
|
||
|
||
scm_sizet
|
||
scm_iint2str(num, rad, p)
|
||
long num;
|
||
int rad;
|
||
char *p;
|
||
{
|
||
scm_sizet j;
|
||
register int i = 1, d;
|
||
register long n = num;
|
||
if (n < 0) {n = -n; i++;}
|
||
for (n /= rad;n > 0;n /= rad) i++;
|
||
j = i;
|
||
n = num;
|
||
if (n < 0) {n = -n; *p++ = '-'; i--;}
|
||
while (i--) {
|
||
d = n % rad;
|
||
n /= rad;
|
||
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
|
||
}
|
||
return j;
|
||
}
|
||
|
||
|
||
#ifdef SCM_BIGDIG
|
||
|
||
static SCM big2str SCM_P ((SCM b, register unsigned int radix));
|
||
|
||
static SCM
|
||
big2str(b, radix)
|
||
SCM b;
|
||
register unsigned int radix;
|
||
{
|
||
SCM t = scm_copybig(b, 0); /* sign of temp doesn't matter */
|
||
register SCM_BIGDIG *ds = SCM_BDIGITS(t);
|
||
scm_sizet i = SCM_NUMDIGS(t);
|
||
scm_sizet j = radix==16 ? (SCM_BITSPERDIG*i)/4+2
|
||
: radix >= 10 ? (SCM_BITSPERDIG*i*241L)/800+2
|
||
: (SCM_BITSPERDIG*i)+2;
|
||
scm_sizet k = 0;
|
||
scm_sizet radct = 0;
|
||
scm_sizet ch; /* jeh */
|
||
SCM_BIGDIG radpow = 1, radmod = 0;
|
||
SCM ss = scm_makstr((long)j, 0);
|
||
char *s = SCM_CHARS(ss), c;
|
||
while ((long) radpow * radix < SCM_BIGRAD) {
|
||
radpow *= radix;
|
||
radct++;
|
||
}
|
||
s[0] = scm_tc16_bigneg==SCM_TYP16(b) ? '-' : '+';
|
||
while ((i || radmod) && j) {
|
||
if (k == 0) {
|
||
radmod = (SCM_BIGDIG)scm_divbigdig(ds, i, radpow);
|
||
k = radct;
|
||
if (!ds[i-1]) i--;
|
||
}
|
||
c = radmod % radix; radmod /= radix; k--;
|
||
s[--j] = c < 10 ? c + '0' : c + 'a' - 10;
|
||
}
|
||
ch = s[0] == '-' ? 1 : 0; /* jeh */
|
||
if (ch < j) { /* jeh */
|
||
for(i = j;j < SCM_LENGTH(ss);j++) s[ch+j-i] = s[j]; /* jeh */
|
||
scm_vector_set_length_x(ss, (SCM)SCM_MAKINUM(ch+SCM_LENGTH(ss)-i)); /* jeh */
|
||
}
|
||
return ss;
|
||
}
|
||
#endif
|
||
|
||
|
||
SCM_PROC(s_number_to_string, "number->string", 1, 1, 0, scm_number_to_string);
|
||
|
||
SCM
|
||
scm_number_to_string(x, radix)
|
||
SCM x;
|
||
SCM radix;
|
||
{
|
||
if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L);
|
||
else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_number_to_string);
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
char num_buf[SCM_FLOBUFLEN];
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) return big2str(x, (unsigned int)SCM_INUM(radix));
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_number_to_string);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_number_to_string);
|
||
# endif
|
||
return scm_makfromstr(num_buf, iflo2str(x, num_buf), 0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_number_to_string);
|
||
return big2str(x, (unsigned int)SCM_INUM(radix));
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_number_to_string);
|
||
# endif
|
||
#endif
|
||
{
|
||
char num_buf[SCM_INTBUFLEN];
|
||
return scm_makfromstr(num_buf,
|
||
scm_iint2str(SCM_INUM(x), (int)SCM_INUM(radix), num_buf), 0);
|
||
}
|
||
}
|
||
|
||
|
||
/* These print routines are stubbed here so that scm_repl.c doesn't need
|
||
SCM_FLOATS or SCM_BIGDIGs conditionals */
|
||
|
||
int
|
||
scm_floprint(sexp, port, pstate)
|
||
SCM sexp;
|
||
SCM port;
|
||
scm_print_state *pstate;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
char num_buf[SCM_FLOBUFLEN];
|
||
scm_gen_write (scm_regular_string, num_buf, iflo2str(sexp, num_buf), port);
|
||
#else
|
||
scm_ipruk("float", sexp, port);
|
||
#endif
|
||
return !0;
|
||
}
|
||
|
||
|
||
|
||
int
|
||
scm_bigprint(exp, port, pstate)
|
||
SCM exp;
|
||
SCM port;
|
||
scm_print_state *pstate;
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
exp = big2str(exp, (unsigned int)10);
|
||
scm_gen_write (scm_regular_string, SCM_CHARS(exp), (scm_sizet)SCM_LENGTH(exp), port);
|
||
#else
|
||
scm_ipruk("bignum", exp, port);
|
||
#endif
|
||
return !0;
|
||
}
|
||
/*** END nums->strs ***/
|
||
|
||
/*** STRINGS -> NUMBERS ***/
|
||
|
||
static SCM scm_small_istr2int SCM_P ((char *str, long len, long radix));
|
||
|
||
static SCM
|
||
scm_small_istr2int(str, len, radix)
|
||
char *str;
|
||
long len;
|
||
long radix;
|
||
{
|
||
register long n = 0, ln;
|
||
register int c;
|
||
register int i = 0;
|
||
int lead_neg = 0;
|
||
if (0 >= len) return SCM_BOOL_F; /* zero scm_length */
|
||
switch (*str) { /* leading sign */
|
||
case '-': lead_neg = 1;
|
||
case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
}
|
||
|
||
do {
|
||
switch (c = str[i++]) {
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accumulate;
|
||
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
|
||
c = c-'A'+10;
|
||
goto accumulate;
|
||
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
||
c = c-'a'+10;
|
||
accumulate:
|
||
if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */
|
||
ln = n;
|
||
n = n * radix - c;
|
||
/* Negation is a workaround for HP700 cc bug */
|
||
if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM)) goto ovfl;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F; /* not a digit */
|
||
}
|
||
} while (i < len);
|
||
if (!lead_neg) if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM) goto ovfl;
|
||
return SCM_MAKINUM(n);
|
||
ovfl: /* overflow scheme integer */
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_istr2int(str, len, radix)
|
||
char *str;
|
||
long len;
|
||
long radix;
|
||
{
|
||
scm_sizet j;
|
||
register scm_sizet k, blen = 1;
|
||
scm_sizet i = 0;
|
||
int c;
|
||
SCM res;
|
||
register SCM_BIGDIG *ds;
|
||
register unsigned long t2;
|
||
|
||
if (0 >= len) return SCM_BOOL_F; /* zero scm_length */
|
||
|
||
/* Short numbers we parse directly into an int, to avoid the overhead
|
||
of creating a bignum. */
|
||
if (len < 6)
|
||
return scm_small_istr2int (str, len, radix);
|
||
|
||
if (16==radix) j = 1+(4*len*sizeof(char))/(SCM_BITSPERDIG);
|
||
else if (10 <= radix)
|
||
j = 1+(84*len*sizeof(char))/(SCM_BITSPERDIG*25);
|
||
else j = 1+(len*sizeof(char))/(SCM_BITSPERDIG);
|
||
switch (str[0]) { /* leading sign */
|
||
case '-':
|
||
case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
}
|
||
res = scm_mkbig(j, '-'==str[0]);
|
||
ds = SCM_BDIGITS(res);
|
||
for (k = j;k--;) ds[k] = 0;
|
||
do {
|
||
switch (c = str[i++]) {
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accumulate;
|
||
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
|
||
c = c-'A'+10;
|
||
goto accumulate;
|
||
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
||
c = c-'a'+10;
|
||
accumulate:
|
||
if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */
|
||
k = 0;
|
||
t2 = c;
|
||
moretodo:
|
||
while(k < blen) {
|
||
/* printf("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]);*/
|
||
t2 += ds[k]*radix;
|
||
ds[k++] = SCM_BIGLO(t2);
|
||
t2 = SCM_BIGDN(t2);
|
||
}
|
||
if (blen > j)
|
||
scm_num_overflow ("bignum");
|
||
if (t2) {blen++; goto moretodo;}
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F; /* not a digit */
|
||
}
|
||
} while (i < len);
|
||
if (blen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM))
|
||
if SCM_INUMP(res = scm_big2inum(res, blen)) return res;
|
||
if (j==blen) return res;
|
||
return scm_adjbig(res, blen);
|
||
}
|
||
|
||
#ifdef SCM_FLOATS
|
||
|
||
SCM
|
||
scm_istr2flo(str, len, radix)
|
||
char *str;
|
||
long len;
|
||
long radix;
|
||
{
|
||
register int c, i = 0;
|
||
double lead_sgn;
|
||
double res = 0.0, tmp = 0.0;
|
||
int flg = 0;
|
||
int point = 0;
|
||
SCM second;
|
||
|
||
if (i >= len) return SCM_BOOL_F; /* zero scm_length */
|
||
|
||
switch (*str) { /* leading sign */
|
||
case '-': lead_sgn = -1.0; i++; break;
|
||
case '+': lead_sgn = 1.0; i++; break;
|
||
default : lead_sgn = 0.0;
|
||
}
|
||
if (i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
|
||
if (str[i]=='i' || str[i]=='I') { /* handle `+i' and `-i' */
|
||
if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */
|
||
if (++i < len) return SCM_BOOL_F; /* `i' not last character */
|
||
return scm_makdbl(0.0, lead_sgn);
|
||
}
|
||
do { /* check initial digits */
|
||
switch (c = str[i]) {
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accum1;
|
||
case 'D': case 'E': case 'F':
|
||
if (radix==10) goto out1; /* must be exponent */
|
||
case 'A': case 'B': case 'C':
|
||
c = c-'A'+10;
|
||
goto accum1;
|
||
case 'd': case 'e': case 'f':
|
||
if (radix==10) goto out1;
|
||
case 'a': case 'b': case 'c':
|
||
c = c-'a'+10;
|
||
accum1:
|
||
if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */
|
||
res = res * radix + c;
|
||
flg = 1; /* res is valid */
|
||
break;
|
||
default:
|
||
goto out1;
|
||
}
|
||
} while (++i < len);
|
||
out1:
|
||
|
||
/* if true, then we did see a digit above, and res is valid */
|
||
if (i==len) goto done;
|
||
|
||
/* By here, must have seen a digit,
|
||
or must have next char be a `.' with radix==10 */
|
||
if (!flg)
|
||
if (!(str[i]=='.' && radix==10))
|
||
return SCM_BOOL_F;
|
||
|
||
while (str[i]=='#') { /* optional sharps */
|
||
res *= radix;
|
||
if (++i==len) goto done;
|
||
}
|
||
|
||
if (str[i]=='/') {
|
||
while (++i < len) {
|
||
switch (c = str[i]) {
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accum2;
|
||
case 'A': case 'B': case 'C': case 'D': case 'E': case 'F':
|
||
c = c-'A'+10;
|
||
goto accum2;
|
||
case 'a': case 'b': case 'c': case 'd': case 'e': case 'f':
|
||
c = c-'a'+10;
|
||
accum2:
|
||
if (c >= radix) return SCM_BOOL_F;
|
||
tmp = tmp * radix + c;
|
||
break;
|
||
default:
|
||
goto out2;
|
||
}
|
||
}
|
||
out2:
|
||
if (tmp==0.0) return SCM_BOOL_F; /* `slash zero' not allowed */
|
||
if (i < len)
|
||
while (str[i]=='#') { /* optional sharps */
|
||
tmp *= radix;
|
||
if (++i==len) break;
|
||
}
|
||
res /= tmp;
|
||
goto done;
|
||
}
|
||
|
||
if (str[i]=='.') { /* decimal point notation */
|
||
if (radix != 10) return SCM_BOOL_F; /* must be radix 10 */
|
||
while (++i < len) {
|
||
switch (c = str[i]) {
|
||
case DIGITS:
|
||
point--;
|
||
res = res*10.0 + c-'0';
|
||
flg = 1;
|
||
break;
|
||
default:
|
||
goto out3;
|
||
}
|
||
}
|
||
out3:
|
||
if (!flg) return SCM_BOOL_F; /* no digits before or after decimal point */
|
||
if (i==len) goto adjust;
|
||
while (str[i]=='#') { /* ignore remaining sharps */
|
||
if (++i==len) goto adjust;
|
||
}
|
||
}
|
||
|
||
switch (str[i]) { /* exponent */
|
||
case 'd': case 'D':
|
||
case 'e': case 'E':
|
||
case 'f': case 'F':
|
||
case 'l': case 'L':
|
||
case 's': case 'S': {
|
||
int expsgn = 1, expon = 0;
|
||
if (radix != 10) return SCM_BOOL_F; /* only in radix 10 */
|
||
if (++i==len) return SCM_BOOL_F; /* bad exponent */
|
||
switch (str[i]) {
|
||
case '-': expsgn=(-1);
|
||
case '+': if (++i==len) return SCM_BOOL_F; /* bad exponent */
|
||
}
|
||
if (str[i] < '0' || str[i] > '9') return SCM_BOOL_F; /* bad exponent */
|
||
do {
|
||
switch (c = str[i]) {
|
||
case DIGITS:
|
||
expon = expon*10 + c-'0';
|
||
if (expon > MAXEXP) return SCM_BOOL_F; /* exponent too large */
|
||
break;
|
||
default:
|
||
goto out4;
|
||
}
|
||
} while (++i < len);
|
||
out4:
|
||
point += expsgn*expon;
|
||
}
|
||
}
|
||
|
||
adjust:
|
||
if (point >= 0)
|
||
while (point--) res *= 10.0;
|
||
else
|
||
# ifdef _UNICOS
|
||
while (point++) res *= 0.1;
|
||
# else
|
||
while (point++) res /= 10.0;
|
||
# endif
|
||
|
||
done:
|
||
/* at this point, we have a legitimate floating point result */
|
||
if (lead_sgn==-1.0) res = -res;
|
||
if (i==len) return scm_makdbl(res, 0.0);
|
||
|
||
if (str[i]=='i' || str[i]=='I') { /* pure imaginary number */
|
||
if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */
|
||
if (++i < len) return SCM_BOOL_F; /* `i' not last character */
|
||
return scm_makdbl(0.0, res);
|
||
}
|
||
|
||
switch (str[i++]) {
|
||
case '-': lead_sgn = -1.0; break;
|
||
case '+': lead_sgn = 1.0; break;
|
||
case '@': { /* polar input for complex number */
|
||
/* get a `real' for scm_angle */
|
||
second = scm_istr2flo(&str[i], (long)(len-i), radix);
|
||
if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `real' */
|
||
if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `real' */
|
||
tmp = SCM_REALPART(second);
|
||
return scm_makdbl(res*cos(tmp), res*sin(tmp));
|
||
}
|
||
default: return SCM_BOOL_F;
|
||
}
|
||
|
||
/* at this point, last char must be `i' */
|
||
if (str[len-1] != 'i' && str[len-1] != 'I') return SCM_BOOL_F;
|
||
/* handles `x+i' and `x-i' */
|
||
if (i==(len-1)) return scm_makdbl(res, lead_sgn);
|
||
/* get a `ureal' for complex part */
|
||
second = scm_istr2flo(&str[i], (long)((len-i)-1), radix);
|
||
if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `ureal' */
|
||
if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `ureal' */
|
||
tmp = SCM_REALPART(second);
|
||
if (tmp < 0.0) return SCM_BOOL_F; /* not `ureal' */
|
||
return scm_makdbl(res, (lead_sgn*tmp));
|
||
}
|
||
#endif /* SCM_FLOATS */
|
||
|
||
|
||
|
||
SCM
|
||
scm_istring2number(str, len, radix)
|
||
char *str;
|
||
long len;
|
||
long radix;
|
||
{
|
||
int i = 0;
|
||
char ex = 0;
|
||
char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */
|
||
SCM res;
|
||
if (len==1)
|
||
if (*str=='+' || *str=='-') /* Catches lone `+' and `-' for speed */
|
||
return SCM_BOOL_F;
|
||
|
||
while ((len-i) >= 2 && str[i]=='#' && ++i)
|
||
switch (str[i++]) {
|
||
case 'b': case 'B': if (rx_p++) return SCM_BOOL_F; radix = 2; break;
|
||
case 'o': case 'O': if (rx_p++) return SCM_BOOL_F; radix = 8; break;
|
||
case 'd': case 'D': if (rx_p++) return SCM_BOOL_F; radix = 10; break;
|
||
case 'x': case 'X': if (rx_p++) return SCM_BOOL_F; radix = 16; break;
|
||
case 'i': case 'I': if (ex_p++) return SCM_BOOL_F; ex = 2; break;
|
||
case 'e': case 'E': if (ex_p++) return SCM_BOOL_F; ex = 1; break;
|
||
default: return SCM_BOOL_F;
|
||
}
|
||
|
||
switch (ex) {
|
||
case 1:
|
||
return scm_istr2int(&str[i], len-i, radix);
|
||
case 0:
|
||
res = scm_istr2int(&str[i], len-i, radix);
|
||
if SCM_NFALSEP(res) return res;
|
||
#ifdef SCM_FLOATS
|
||
case 2: return scm_istr2flo(&str[i], len-i, radix);
|
||
#endif
|
||
}
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
SCM_PROC(s_string_to_number, "string->number", 1, 1, 0, scm_string_to_number);
|
||
|
||
SCM
|
||
scm_string_to_number(str, radix)
|
||
SCM str;
|
||
SCM radix;
|
||
{
|
||
SCM answer;
|
||
if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L);
|
||
else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_string_to_number);
|
||
SCM_ASSERT(SCM_NIMP(str) && SCM_ROSTRINGP(str), str, SCM_ARG1, s_string_to_number);
|
||
answer = scm_istring2number(SCM_ROCHARS(str), SCM_ROLENGTH(str), SCM_INUM(radix));
|
||
return scm_return_first (answer, str);
|
||
}
|
||
/*** END strs->nums ***/
|
||
|
||
#ifdef SCM_FLOATS
|
||
|
||
SCM
|
||
scm_makdbl (x, y)
|
||
double x;
|
||
double y;
|
||
{
|
||
SCM z;
|
||
if ((y==0.0) && (x==0.0)) return scm_flo0;
|
||
SCM_NEWCELL(z);
|
||
SCM_DEFER_INTS;
|
||
if (y==0.0) {
|
||
# ifdef SCM_SINGLES
|
||
float fx = x;
|
||
# ifndef SCM_SINGLESONLY
|
||
if ((-FLTMAX < x) && (x < FLTMAX) && (fx==x))
|
||
# endif
|
||
{
|
||
SCM_SETCAR (z, scm_tc_flo);
|
||
SCM_FLO(z) = x;
|
||
SCM_ALLOW_INTS;
|
||
return z;
|
||
}
|
||
# endif/* def SCM_SINGLES */
|
||
SCM_SETCDR (z, (SCM)scm_must_malloc(1L*sizeof(double), "real"));
|
||
SCM_SETCAR (z, scm_tc_dblr);
|
||
}
|
||
else {
|
||
SCM_SETCDR (z, (SCM)scm_must_malloc(2L*sizeof(double), "complex"));
|
||
SCM_SETCAR (z, scm_tc_dblc);
|
||
SCM_IMAG(z) = y;
|
||
}
|
||
SCM_REAL(z) = x;
|
||
SCM_ALLOW_INTS;
|
||
return z;
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
SCM
|
||
scm_bigequal(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
if (0==scm_bigcomp(x, y)) return SCM_BOOL_T;
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_floequal(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F;
|
||
if (!(SCM_CPLXP(x) && (SCM_IMAG(x) != SCM_IMAG(y)))) return SCM_BOOL_T;
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC(s_number_p, "number?", 1, 0, 0, scm_number_p);
|
||
SCM_PROC(s_complex_p, "complex?", 1, 0, 0, scm_number_p);
|
||
|
||
SCM
|
||
scm_number_p(x)
|
||
SCM x;
|
||
{
|
||
if SCM_INUMP(x) return SCM_BOOL_T;
|
||
#ifdef SCM_FLOATS
|
||
if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T;
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T;
|
||
# endif
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
#ifdef SCM_FLOATS
|
||
SCM_PROC(s_real_p, "real?", 1, 0, 0, scm_real_p);
|
||
SCM_PROC(s_rational_p, "rational?", 1, 0, 0, scm_real_p);
|
||
|
||
SCM
|
||
scm_real_p(x)
|
||
SCM x;
|
||
{
|
||
if (SCM_INUMP(x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_IMP(x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_REALP(x))
|
||
return SCM_BOOL_T;
|
||
# ifdef SCM_BIGDIG
|
||
if (SCM_BIGP(x))
|
||
return SCM_BOOL_T;
|
||
# endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_int_p, "integer?", 1, 0, 0, scm_integer_p);
|
||
|
||
SCM
|
||
scm_integer_p(x)
|
||
SCM x;
|
||
{
|
||
double r;
|
||
if SCM_INUMP(x) return SCM_BOOL_T;
|
||
if SCM_IMP(x) return SCM_BOOL_F;
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_BIGP(x) return SCM_BOOL_T;
|
||
# endif
|
||
if (!SCM_INEXP(x)) return SCM_BOOL_F;
|
||
if (SCM_CPLXP(x)) return SCM_BOOL_F;
|
||
r = SCM_REALPART(x);
|
||
if (r==floor(r)) return SCM_BOOL_T;
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
#endif /* SCM_FLOATS */
|
||
|
||
SCM_PROC(s_inexact_p, "inexact?", 1, 0, 0, scm_inexact_p);
|
||
|
||
SCM
|
||
scm_inexact_p(x)
|
||
SCM x;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if (SCM_NIMP(x) && SCM_INEXP(x)) return SCM_BOOL_T;
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p);
|
||
|
||
SCM
|
||
scm_num_eq_p (x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
SCM t;
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_eq_p);
|
||
# endif
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) return SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
bigreal:
|
||
return (SCM_REALP(y) && (scm_big2dbl(x)==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_eq_p);
|
||
# endif
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto realint;}
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady);
|
||
# endif
|
||
if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F;
|
||
if SCM_CPLXP(x)
|
||
return (SCM_CPLXP(y) && (SCM_IMAG(x)==SCM_IMAG(y))) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
return SCM_CPLXP(y) ? SCM_BOOL_F : SCM_BOOL_T;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return SCM_BOOL_F;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p);
|
||
# endif
|
||
# endif
|
||
realint:
|
||
return (SCM_REALP(y) && (((double)SCM_INUM(x))==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_eq_p);
|
||
if SCM_INUMP(y) return SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p);
|
||
# endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_eq_p);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_eq_p);
|
||
# endif
|
||
#endif
|
||
return ((long)x==(long)y) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p);
|
||
|
||
SCM
|
||
scm_less_p(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_less_p);
|
||
# endif
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (1==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
return (scm_big2dbl(x) < SCM_REALPART(y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
SCM_ASRTGO(SCM_REALP(x), badx);
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_less_p);
|
||
# endif
|
||
if (SCM_INUMP(y))
|
||
return (SCM_REALPART(x) < ((double)SCM_INUM(y))) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (SCM_REALPART(x) < scm_big2dbl(y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady);
|
||
# endif
|
||
return (SCM_REALPART(x) < SCM_REALPART(y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return SCM_BIGSIGN(y) ? SCM_BOOL_F : SCM_BOOL_T;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_less_p);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_less_p);
|
||
# endif
|
||
# endif
|
||
return (((double)SCM_INUM(x)) < SCM_REALPART(y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_less_p);
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return (1==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_less_p);
|
||
# endif
|
||
return SCM_BIGSIGN(y) ? SCM_BOOL_F : SCM_BOOL_T;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_less_p);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_less_p);
|
||
# endif
|
||
#endif
|
||
return ((long)x < (long)y) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
SCM_PROC1 (s_gr_p, ">", scm_tc7_rpsubr, scm_gr_p);
|
||
|
||
SCM
|
||
scm_gr_p(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
return scm_less_p(y, x);
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC1 (s_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p);
|
||
|
||
SCM
|
||
scm_leq_p(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
return SCM_BOOL_NOT(scm_less_p(y, x));
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC1 (s_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p);
|
||
|
||
SCM
|
||
scm_geq_p(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
return SCM_BOOL_NOT(scm_less_p(x, y));
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_zero_p, "zero?", 1, 0, 0, scm_zero_p);
|
||
|
||
SCM
|
||
scm_zero_p(z)
|
||
SCM z;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(z) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) return SCM_BOOL_F;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(z)))
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_zero_p);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_zero_p);
|
||
# endif
|
||
return (z==scm_flo0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(z) {
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_BIGP(z), z, SCM_ARG1, s_zero_p);
|
||
return SCM_BOOL_F;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(z), z, SCM_ARG1, s_zero_p);
|
||
# endif
|
||
#endif
|
||
return (z==SCM_INUM0) ? SCM_BOOL_T: SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_positive_p, "positive?", 1, 0, 0, scm_positive_p);
|
||
|
||
SCM
|
||
scm_positive_p(x)
|
||
SCM x;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_positive_p);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_positive_p);
|
||
# endif
|
||
return (SCM_REALPART(x) > 0.0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_positive_p);
|
||
return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_positive_p);
|
||
# endif
|
||
#endif
|
||
return (x > SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_negative_p, "negative?", 1, 0, 0, scm_negative_p);
|
||
|
||
SCM
|
||
scm_negative_p(x)
|
||
SCM x;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_F : SCM_BOOL_T;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_negative_p);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_negative_p);
|
||
# endif
|
||
return (SCM_REALPART(x) < 0.0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_negative_p);
|
||
return (SCM_TYP16(x)==scm_tc16_bigneg) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_negative_p);
|
||
# endif
|
||
#endif
|
||
return (x < SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
SCM_PROC1 (s_max, "max", scm_tc7_asubr, scm_max);
|
||
|
||
SCM
|
||
scm_max(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
double z;
|
||
#endif
|
||
if SCM_UNBNDP(y) {
|
||
#ifndef RECKLESS
|
||
if (!(SCM_NUMBERP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_max);
|
||
#endif
|
||
return x;
|
||
}
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x;
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (1==scm_bigcomp(x, y)) ? y : x;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
z = scm_big2dbl(x);
|
||
return (z < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_REALP(x), badx);
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_max);
|
||
# endif
|
||
if (SCM_INUMP(y))
|
||
return (SCM_REALPART(x) < (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if (SCM_BIGP(y))
|
||
return (SCM_REALPART(x) < (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady);
|
||
# endif
|
||
return (SCM_REALPART(x) < SCM_REALPART(y)) ? y : x;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return SCM_BIGSIGN(y) ? x : y;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_max);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_max);
|
||
# endif
|
||
# endif
|
||
return ((z = SCM_INUM(x)) < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_max);
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x;
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return (1==scm_bigcomp(x, y)) ? y : x;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_max);
|
||
# endif
|
||
return SCM_BIGSIGN(y) ? x : y;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_max);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_max);
|
||
# endif
|
||
#endif
|
||
return ((long)x < (long)y) ? y : x;
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_min, "min", scm_tc7_asubr, scm_min);
|
||
|
||
SCM
|
||
scm_min(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
double z;
|
||
#endif
|
||
if SCM_UNBNDP(y) {
|
||
#ifndef RECKLESS
|
||
if (!(SCM_NUMBERP(x)))
|
||
badx:scm_wta(x, (char *)SCM_ARG1, s_min);
|
||
#endif
|
||
return x;
|
||
}
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y;
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (-1==scm_bigcomp(x, y)) ? y : x;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
z = scm_big2dbl(x);
|
||
return (z > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_REALP(x), badx);
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_min);
|
||
# endif
|
||
if SCM_INUMP(y) return (SCM_REALPART(x) > (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return (SCM_REALPART(x) > (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x;
|
||
SCM_ASRTGO(SCM_REALP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady);
|
||
# endif
|
||
return (SCM_REALPART(x) > SCM_REALPART(y)) ? y : x;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return SCM_BIGSIGN(y) ? y : x;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_min);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_REALP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_min);
|
||
# endif
|
||
# endif
|
||
return ((z = SCM_INUM(x)) > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_min);
|
||
if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y;
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return (-1==scm_bigcomp(x, y)) ? y : x;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_min);
|
||
# endif
|
||
return SCM_BIGSIGN(y) ? y : x;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_min);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_min);
|
||
# endif
|
||
#endif
|
||
return ((long)x > (long)y) ? y : x;
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_sum, "+", scm_tc7_asubr, scm_sum);
|
||
|
||
SCM
|
||
scm_sum(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
if SCM_UNBNDP(y) {
|
||
if SCM_UNBNDP(x) return SCM_INUM0;
|
||
#ifndef RECKLESS
|
||
if (!(SCM_NUMBERP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_sum);
|
||
#endif
|
||
return x;
|
||
}
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
SCM t;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;}
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {
|
||
if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;}
|
||
return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0);
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
bigreal: return scm_makdbl(scm_big2dbl(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx);
|
||
# endif
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;}
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;}
|
||
# ifndef RECKLESS
|
||
else if (!(SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_sum);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_sum);
|
||
# endif
|
||
# endif
|
||
{ double i = 0.0;
|
||
if SCM_CPLXP(x) i = SCM_IMAG(x);
|
||
if SCM_CPLXP(y) i += SCM_IMAG(y);
|
||
return scm_makdbl(SCM_REALPART(x)+SCM_REALPART(y), i); }
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y)
|
||
intbig: {
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
|
||
# endif
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady);
|
||
# endif
|
||
intreal: return scm_makdbl(SCM_INUM(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM t;
|
||
SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx);
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;}
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;}
|
||
return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0);
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_sum);
|
||
# endif
|
||
intbig: {
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
|
||
# endif
|
||
}
|
||
}
|
||
# else
|
||
SCM_ASRTGO(SCM_INUMP(x), badx);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_sum);
|
||
# endif
|
||
#endif
|
||
x = SCM_INUM(x)+SCM_INUM(y);
|
||
if SCM_FIXABLE(x) return SCM_MAKINUM(x);
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(x);
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl((double)x, 0.0);
|
||
# else
|
||
scm_num_overflow (s_sum);
|
||
return SCM_UNSPECIFIED;
|
||
# endif
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_difference, "-", scm_tc7_asubr, scm_difference);
|
||
|
||
SCM
|
||
scm_difference(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_difference);
|
||
# endif
|
||
if SCM_UNBNDP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_BIGP(x) {
|
||
x = scm_copybig(x, !SCM_BIGSIGN(x));
|
||
return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ?
|
||
scm_big2inum(x, SCM_NUMDIGS(x)) : x;
|
||
}
|
||
# endif
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
return scm_makdbl(-SCM_REALPART(x), SCM_CPLXP(x)?-SCM_IMAG(x):0.0);
|
||
}
|
||
if SCM_INUMP(y) return scm_sum(x, SCM_MAKINUM(-SCM_INUM(y)));
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(x) {
|
||
if SCM_BIGP(y) return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ?
|
||
scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) :
|
||
scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0);
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
return scm_makdbl(scm_big2dbl(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
if SCM_BIGP(y) return scm_makdbl(SCM_REALPART(x)-scm_big2dbl(y), SCM_CPLXP(x)?SCM_IMAG(x):0.0);
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady);
|
||
# endif
|
||
if SCM_CPLXP(x)
|
||
if SCM_CPLXP(y)
|
||
return scm_makdbl(SCM_REAL(x)-SCM_REAL(y), SCM_IMAG(x)-SCM_IMAG(y));
|
||
else
|
||
return scm_makdbl(SCM_REAL(x)-SCM_REALPART(y), SCM_IMAG(x));
|
||
return scm_makdbl(SCM_REALPART(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0);
|
||
}
|
||
if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100);
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100);
|
||
# endif
|
||
}
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_difference);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_difference);
|
||
# endif
|
||
# endif
|
||
return scm_makdbl(SCM_INUM(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_difference);
|
||
if SCM_UNBNDP(y) {
|
||
x = scm_copybig(x, !SCM_BIGSIGN(x));
|
||
return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ?
|
||
scm_big2inum(x, SCM_NUMDIGS(x)) : x;
|
||
}
|
||
if SCM_INUMP(y) {
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(y));
|
||
return scm_addbig(&z, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0);
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_addbig(zdigs, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0);
|
||
# endif
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ?
|
||
scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) :
|
||
scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0);
|
||
}
|
||
if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_difference);
|
||
# endif
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100);
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100);
|
||
# endif
|
||
}
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_difference);
|
||
if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;}
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_difference);
|
||
# endif
|
||
#endif
|
||
x = SCM_INUM(x)-SCM_INUM(y);
|
||
checkx:
|
||
if SCM_FIXABLE(x) return SCM_MAKINUM(x);
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(x);
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl((double)x, 0.0);
|
||
# else
|
||
scm_num_overflow (s_difference);
|
||
return SCM_UNSPECIFIED;
|
||
# endif
|
||
#endif
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_product, "*", scm_tc7_asubr, scm_product);
|
||
|
||
SCM
|
||
scm_product(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
if SCM_UNBNDP(y) {
|
||
if SCM_UNBNDP(x) return SCM_MAKINUM(1L);
|
||
#ifndef RECKLESS
|
||
if (!(SCM_NUMBERP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_product);
|
||
#endif
|
||
return x;
|
||
}
|
||
#ifdef SCM_FLOATS
|
||
if SCM_NINUMP(x) {
|
||
SCM t;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(x), badx);
|
||
if SCM_BIGP(x) {
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;}
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y));
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
bigreal: {
|
||
double bg = scm_big2dbl(x);
|
||
return scm_makdbl(bg*SCM_REALPART(y), SCM_CPLXP(y)?bg*SCM_IMAG(y):0.0); }
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx);
|
||
# endif
|
||
if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;}
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;}
|
||
# ifndef RECKLESS
|
||
else if (!(SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_product);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_product);
|
||
# endif
|
||
# endif
|
||
if SCM_CPLXP(x)
|
||
if SCM_CPLXP(y)
|
||
return scm_makdbl(SCM_REAL(x)*SCM_REAL(y)-SCM_IMAG(x)*SCM_IMAG(y),
|
||
SCM_REAL(x)*SCM_IMAG(y)+SCM_IMAG(x)*SCM_REAL(y));
|
||
else
|
||
return scm_makdbl(SCM_REAL(x)*SCM_REALPART(y), SCM_IMAG(x)*SCM_REALPART(y));
|
||
return scm_makdbl(SCM_REALPART(x)*SCM_REALPART(y),
|
||
SCM_CPLXP(y)?SCM_REALPART(x)*SCM_IMAG(y):0.0);
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {
|
||
intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y;
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_mulbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(y) ? (x>0) : (x<0));
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(y) ? (x>0) : (x<0));
|
||
# endif
|
||
}
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady);
|
||
# endif
|
||
intreal: return scm_makdbl(SCM_INUM(x)*SCM_REALPART(y), SCM_CPLXP(y)?SCM_INUM(x)*SCM_IMAG(y):0.0);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx);
|
||
if SCM_INUMP(y) {SCM t = x; x = y; y = t; goto intbig;}
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y));
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_product);
|
||
# endif
|
||
intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y;
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong(SCM_INUM(x));
|
||
return scm_mulbig(&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(y) ? (x>0) : (x<0));
|
||
# else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(SCM_INUM(x), zdigs);
|
||
return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(y) ? (x>0) : (x<0));
|
||
# endif
|
||
}
|
||
}
|
||
# else
|
||
SCM_ASRTGO(SCM_INUMP(x), badx);
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_product);
|
||
# endif
|
||
#endif
|
||
{
|
||
long i, j, k;
|
||
i = SCM_INUM(x);
|
||
if (0==i) return x;
|
||
j = SCM_INUM(y);
|
||
k = i * j;
|
||
y = SCM_MAKINUM(k);
|
||
if (k != SCM_INUM(y) || k/i != j)
|
||
#ifdef SCM_BIGDIG
|
||
{ int sgn = (i < 0) ^ (j < 0);
|
||
# ifndef SCM_DIGSTOOBIG
|
||
i = scm_pseudolong(i);
|
||
j = scm_pseudolong(j);
|
||
return scm_mulbig((SCM_BIGDIG *)&i, SCM_DIGSPERLONG,
|
||
(SCM_BIGDIG *)&j, SCM_DIGSPERLONG, sgn);
|
||
# else /* SCM_DIGSTOOBIG */
|
||
SCM_BIGDIG idigs[SCM_DIGSPERLONG];
|
||
SCM_BIGDIG jdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(i, idigs);
|
||
scm_longdigs(j, jdigs);
|
||
return scm_mulbig(idigs, SCM_DIGSPERLONG, jdigs, SCM_DIGSPERLONG, sgn);
|
||
# endif
|
||
}
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl(((double)i)*((double)j), 0.0);
|
||
# else
|
||
scm_num_overflow (s_product);
|
||
# endif
|
||
#endif
|
||
return y;
|
||
}
|
||
}
|
||
|
||
|
||
|
||
double
|
||
scm_num2dbl (a, why)
|
||
SCM a;
|
||
char * why;
|
||
{
|
||
if (SCM_INUMP (a))
|
||
return (double) SCM_INUM (a);
|
||
#ifdef SCM_FLOATS
|
||
SCM_ASSERT (SCM_NIMP (a), a, "wrong type argument", why);
|
||
if (SCM_REALP (a))
|
||
return (SCM_REALPART (a));
|
||
#endif
|
||
#ifdef SCM_BIGDIG
|
||
return scm_big2dbl (a);
|
||
#endif
|
||
SCM_ASSERT (0, a, "wrong type argument", why);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
|
||
SCM_PROC1 (s_divide, "/", scm_tc7_asubr, scm_divide);
|
||
|
||
SCM
|
||
scm_divide(x, y)
|
||
SCM x;
|
||
SCM y;
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
double d, r, i, a;
|
||
if SCM_NINUMP(x) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(x)))
|
||
badx: scm_wta(x, (char *)SCM_ARG1, s_divide);
|
||
# endif
|
||
if SCM_UNBNDP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_BIGP(x) return scm_makdbl(1.0/scm_big2dbl(x), 0.0);
|
||
# endif
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
if SCM_REALP(x) return scm_makdbl(1.0/SCM_REALPART(x), 0.0);
|
||
r = SCM_REAL(x); i = SCM_IMAG(x); d = r*r+i*i;
|
||
return scm_makdbl(r/d, -i/d);
|
||
}
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_BIGP(x) {
|
||
SCM z;
|
||
if SCM_INUMP(y) {
|
||
z = SCM_INUM(y);
|
||
#ifndef RECKLESS
|
||
if (!z)
|
||
scm_num_overflow (s_divide);
|
||
#endif
|
||
if (1==z) return x;
|
||
if (z < 0) z = -z;
|
||
if (z < SCM_BIGRAD) {
|
||
SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0));
|
||
return scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z) ?
|
||
scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0) : scm_normbig(w);
|
||
}
|
||
# ifndef SCM_DIGSTOOBIG
|
||
z = scm_pseudolong(z);
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&z, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);
|
||
# else
|
||
{ SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(z, zdigs);
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);}
|
||
# endif
|
||
return z ? z : scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3);
|
||
return z ? z : scm_makdbl(scm_big2dbl(x)/scm_big2dbl(y), 0.0);
|
||
}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
if SCM_REALP(y) return scm_makdbl(scm_big2dbl(x)/SCM_REALPART(y), 0.0);
|
||
a = scm_big2dbl(x);
|
||
goto complex_div;
|
||
}
|
||
# endif
|
||
SCM_ASRTGO(SCM_INEXP(x), badx);
|
||
if SCM_INUMP(y) {d = SCM_INUM(y); goto basic_div;}
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) {d = scm_big2dbl(y); goto basic_div;}
|
||
SCM_ASRTGO(SCM_INEXP(y), bady);
|
||
# else
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady);
|
||
# endif
|
||
if SCM_REALP(y) {
|
||
d = SCM_REALPART(y);
|
||
basic_div: return scm_makdbl(SCM_REALPART(x)/d, SCM_CPLXP(x)?SCM_IMAG(x)/d:0.0);
|
||
}
|
||
a = SCM_REALPART(x);
|
||
if SCM_REALP(x) goto complex_div;
|
||
r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i;
|
||
return scm_makdbl((a*r+SCM_IMAG(x)*i)/d, (SCM_IMAG(x)*r-a*i)/d);
|
||
}
|
||
if SCM_UNBNDP(y) {
|
||
if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x;
|
||
return scm_makdbl(1.0/((double)SCM_INUM(x)), 0.0);
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(y), bady);
|
||
if SCM_BIGP(y) return scm_makdbl(SCM_INUM(x)/scm_big2dbl(y), 0.0);
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_divide);
|
||
# endif
|
||
# else
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_INEXP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_divide);
|
||
# endif
|
||
# endif
|
||
if (SCM_REALP(y))
|
||
return scm_makdbl(SCM_INUM(x)/SCM_REALPART(y), 0.0);
|
||
a = SCM_INUM(x);
|
||
complex_div:
|
||
r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i;
|
||
return scm_makdbl((a*r)/d, (-a*i)/d);
|
||
}
|
||
#else
|
||
# ifdef SCM_BIGDIG
|
||
if SCM_NINUMP(x) {
|
||
SCM z;
|
||
SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_divide);
|
||
if SCM_UNBNDP(y) goto ov;
|
||
if SCM_INUMP(y) {
|
||
z = SCM_INUM(y);
|
||
if (!z) goto ov;
|
||
if (1==z) return x;
|
||
if (z < 0) z = -z;
|
||
if (z < SCM_BIGRAD) {
|
||
SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0));
|
||
if (scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z)) goto ov;
|
||
return w;
|
||
}
|
||
# ifndef SCM_DIGSTOOBIG
|
||
z = scm_pseudolong(z);
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), &z, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);
|
||
# else
|
||
{ SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs(z, zdigs);
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);}
|
||
# endif
|
||
} else {
|
||
SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady);
|
||
z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y),
|
||
SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3);
|
||
}
|
||
if (!z) goto ov;
|
||
return z;
|
||
}
|
||
if SCM_UNBNDP(y) {
|
||
if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x;
|
||
goto ov;
|
||
}
|
||
if SCM_NINUMP(y) {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_NIMP(y) && SCM_BIGP(y)))
|
||
bady: scm_wta(y, (char *)SCM_ARG2, s_divide);
|
||
# endif
|
||
goto ov;
|
||
}
|
||
# else
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_divide);
|
||
if SCM_UNBNDP(y) {
|
||
if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x;
|
||
goto ov;
|
||
}
|
||
SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_divide);
|
||
# endif
|
||
#endif
|
||
{
|
||
long z = SCM_INUM(y);
|
||
if ((0==z) || SCM_INUM(x)%z) goto ov;
|
||
z = SCM_INUM(x)/z;
|
||
if SCM_FIXABLE(z) return SCM_MAKINUM(z);
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(z);
|
||
#endif
|
||
#ifdef SCM_FLOATS
|
||
ov: return scm_makdbl(((double)SCM_INUM(x))/((double)SCM_INUM(y)), 0.0);
|
||
#else
|
||
ov: scm_num_overflow (s_divide);
|
||
return SCM_UNSPECIFIED;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
#ifdef SCM_FLOATS
|
||
SCM_PROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh);
|
||
|
||
double
|
||
scm_asinh(x)
|
||
double x;
|
||
{
|
||
return log(x+sqrt(x*x+1));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh);
|
||
|
||
double
|
||
scm_acosh(x)
|
||
double x;
|
||
{
|
||
return log(x+sqrt(x*x-1));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh);
|
||
|
||
double
|
||
scm_atanh(x)
|
||
double x;
|
||
{
|
||
return 0.5*log((1+x)/(1-x));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate);
|
||
|
||
double
|
||
scm_truncate(x)
|
||
double x;
|
||
{
|
||
if (x < 0.0) return -floor(-x);
|
||
return floor(x);
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round);
|
||
|
||
double
|
||
scm_round(x)
|
||
double x;
|
||
{
|
||
double plus_half = x + 0.5;
|
||
double result = floor(plus_half);
|
||
/* Adjust so that the scm_round is towards even. */
|
||
return (plus_half == result && plus_half / 2 != floor(plus_half / 2))
|
||
? result - 1 : result;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact);
|
||
|
||
double
|
||
scm_exact_to_inexact(z)
|
||
double z;
|
||
{
|
||
return z;
|
||
}
|
||
|
||
|
||
SCM_PROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor);
|
||
SCM_PROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil);
|
||
SCM_PROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)())sqrt);
|
||
SCM_PROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)())fabs);
|
||
SCM_PROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)())exp);
|
||
SCM_PROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)())log);
|
||
SCM_PROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)())sin);
|
||
SCM_PROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)())cos);
|
||
SCM_PROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)())tan);
|
||
SCM_PROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)())asin);
|
||
SCM_PROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)())acos);
|
||
SCM_PROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)())atan);
|
||
SCM_PROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)())sinh);
|
||
SCM_PROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)())cosh);
|
||
SCM_PROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)())tanh);
|
||
|
||
struct dpair {double x, y;};
|
||
|
||
static void scm_two_doubles SCM_P ((SCM z1, SCM z2, char *sstring, struct dpair *xy));
|
||
|
||
static void
|
||
scm_two_doubles(z1, z2, sstring, xy)
|
||
SCM z1, z2;
|
||
char *sstring;
|
||
struct dpair *xy;
|
||
{
|
||
if SCM_INUMP(z1) xy->x = SCM_INUM(z1);
|
||
else {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z1), badz1);
|
||
if SCM_BIGP(z1) xy->x = scm_big2dbl(z1);
|
||
else {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(z1)))
|
||
badz1: scm_wta(z1, (char *)SCM_ARG1, sstring);
|
||
# endif
|
||
xy->x = SCM_REALPART(z1);}
|
||
# else
|
||
{SCM_ASSERT(SCM_NIMP(z1) && SCM_REALP(z1), z1, SCM_ARG1, sstring);
|
||
xy->x = SCM_REALPART(z1);}
|
||
# endif
|
||
}
|
||
if SCM_INUMP(z2) xy->y = SCM_INUM(z2);
|
||
else {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z2), badz2);
|
||
if SCM_BIGP(z2) xy->y = scm_big2dbl(z2);
|
||
else {
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(z2)))
|
||
badz2: scm_wta(z2, (char *)SCM_ARG2, sstring);
|
||
# endif
|
||
xy->y = SCM_REALPART(z2);}
|
||
# else
|
||
{SCM_ASSERT(SCM_NIMP(z2) && SCM_REALP(z2), z2, SCM_ARG2, sstring);
|
||
xy->y = SCM_REALPART(z2);}
|
||
# endif
|
||
}
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC(s_sys_expt, "$expt", 2, 0, 0, scm_sys_expt);
|
||
|
||
SCM
|
||
scm_sys_expt(z1, z2)
|
||
SCM z1;
|
||
SCM z2;
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles(z1, z2, s_sys_expt, &xy);
|
||
return scm_makdbl(pow(xy.x, xy.y), 0.0);
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_sys_atan2, "$atan2", 2, 0, 0, scm_sys_atan2);
|
||
|
||
SCM
|
||
scm_sys_atan2(z1, z2)
|
||
SCM z1;
|
||
SCM z2;
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles(z1, z2, s_sys_atan2, &xy);
|
||
return scm_makdbl(atan2(xy.x, xy.y), 0.0);
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_make_rectangular, "make-rectangular", 2, 0, 0, scm_make_rectangular);
|
||
|
||
SCM
|
||
scm_make_rectangular(z1, z2)
|
||
SCM z1;
|
||
SCM z2;
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles(z1, z2, s_make_rectangular, &xy);
|
||
return scm_makdbl(xy.x, xy.y);
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_make_polar, "make-polar", 2, 0, 0, scm_make_polar);
|
||
|
||
SCM
|
||
scm_make_polar(z1, z2)
|
||
SCM z1;
|
||
SCM z2;
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles(z1, z2, s_make_polar, &xy);
|
||
return scm_makdbl(xy.x*cos(xy.y), xy.x*sin(xy.y));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC(s_real_part, "real-part", 1, 0, 0, scm_real_part);
|
||
|
||
SCM
|
||
scm_real_part(z)
|
||
SCM z;
|
||
{
|
||
if SCM_NINUMP(z) {
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) return z;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(z)))
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_real_part);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_real_part);
|
||
# endif
|
||
if SCM_CPLXP(z) return scm_makdbl(SCM_REAL(z), 0.0);
|
||
}
|
||
return z;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_imag_part, "imag-part", 1, 0, 0, scm_imag_part);
|
||
|
||
SCM
|
||
scm_imag_part(z)
|
||
SCM z;
|
||
{
|
||
if SCM_INUMP(z) return SCM_INUM0;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) return SCM_INUM0;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(z)))
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_imag_part);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_imag_part);
|
||
# endif
|
||
if SCM_CPLXP(z) return scm_makdbl(SCM_IMAG(z), 0.0);
|
||
return scm_flo0;
|
||
}
|
||
|
||
|
||
|
||
SCM_PROC(s_magnitude, "magnitude", 1, 0, 0, scm_magnitude);
|
||
|
||
SCM
|
||
scm_magnitude(z)
|
||
SCM z;
|
||
{
|
||
if SCM_INUMP(z) return scm_abs(z);
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) return scm_abs(z);
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(z)))
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_magnitude);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_magnitude);
|
||
# endif
|
||
if SCM_CPLXP(z)
|
||
{
|
||
double i = SCM_IMAG(z), r = SCM_REAL(z);
|
||
return scm_makdbl(sqrt(i*i+r*r), 0.0);
|
||
}
|
||
return scm_makdbl(fabs(SCM_REALPART(z)), 0.0);
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_PROC(s_angle, "angle", 1, 0, 0, scm_angle);
|
||
|
||
SCM
|
||
scm_angle(z)
|
||
SCM z;
|
||
{
|
||
double x, y = 0.0;
|
||
if SCM_INUMP(z) {x = (z>=SCM_INUM0) ? 1.0 : -1.0; goto do_angle;}
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) {x = (SCM_TYP16(z)==scm_tc16_bigpos) ? 1.0 : -1.0; goto do_angle;}
|
||
# ifndef RECKLESS
|
||
if (!(SCM_INEXP(z))) {
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_angle);}
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_angle);
|
||
# endif
|
||
if (SCM_REALP(z))
|
||
{
|
||
x = SCM_REALPART(z);
|
||
goto do_angle;
|
||
}
|
||
x = SCM_REAL(z); y = SCM_IMAG(z);
|
||
do_angle:
|
||
return scm_makdbl(atan2(y, x), 0.0);
|
||
}
|
||
|
||
|
||
SCM_PROC(s_inexact_to_exact, "inexact->exact", 1, 0, 0, scm_inexact_to_exact);
|
||
|
||
SCM
|
||
scm_inexact_to_exact(z)
|
||
SCM z;
|
||
{
|
||
if SCM_INUMP(z) return z;
|
||
# ifdef SCM_BIGDIG
|
||
SCM_ASRTGO(SCM_NIMP(z), badz);
|
||
if SCM_BIGP(z) return z;
|
||
# ifndef RECKLESS
|
||
if (!(SCM_REALP(z)))
|
||
badz: scm_wta(z, (char *)SCM_ARG1, s_inexact_to_exact);
|
||
# endif
|
||
# else
|
||
SCM_ASSERT(SCM_NIMP(z) && SCM_REALP(z), z, SCM_ARG1, s_inexact_to_exact);
|
||
# endif
|
||
# ifdef SCM_BIGDIG
|
||
{
|
||
double u = floor(SCM_REALPART(z)+0.5);
|
||
if ((u <= SCM_MOST_POSITIVE_FIXNUM) && (-u <= -SCM_MOST_NEGATIVE_FIXNUM)) {
|
||
/* Negation is a workaround for HP700 cc bug */
|
||
SCM ans = SCM_MAKINUM((long)u);
|
||
if (SCM_INUM(ans)==(long)u) return ans;
|
||
}
|
||
SCM_ASRTGO(!IS_INF(u), badz); /* problem? */
|
||
return scm_dbl2big(u);
|
||
}
|
||
# else
|
||
return SCM_MAKINUM((long)floor(SCM_REALPART(z)+0.5));
|
||
# endif
|
||
}
|
||
|
||
|
||
|
||
#else /* ~SCM_FLOATS */
|
||
SCM_PROC(s_trunc, "truncate", 1, 0, 0, scm_trunc);
|
||
|
||
SCM
|
||
scm_trunc(x)
|
||
SCM x;
|
||
{
|
||
SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_truncate);
|
||
return x;
|
||
}
|
||
|
||
|
||
|
||
#endif /* SCM_FLOATS */
|
||
|
||
#ifdef SCM_BIGDIG
|
||
# ifdef SCM_FLOATS
|
||
/* d must be integer */
|
||
|
||
SCM
|
||
scm_dbl2big(d)
|
||
double d;
|
||
{
|
||
scm_sizet i = 0;
|
||
long c;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
double u = (d < 0)?-d:d;
|
||
while (0 != floor(u)) {u /= SCM_BIGRAD;i++;}
|
||
ans = scm_mkbig(i, d < 0);
|
||
digits = SCM_BDIGITS(ans);
|
||
while (i--) {
|
||
u *= SCM_BIGRAD;
|
||
c = floor(u);
|
||
u -= c;
|
||
digits[i] = c;
|
||
}
|
||
#ifndef RECKLESS
|
||
if (u != 0)
|
||
scm_num_overflow ("dbl2big");
|
||
#endif
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
|
||
double
|
||
scm_big2dbl(b)
|
||
SCM b;
|
||
{
|
||
double ans = 0.0;
|
||
scm_sizet i = SCM_NUMDIGS(b);
|
||
SCM_BIGDIG *digits = SCM_BDIGITS(b);
|
||
while (i--) ans = digits[i] + SCM_BIGRAD*ans;
|
||
if (scm_tc16_bigneg==SCM_TYP16(b)) return -ans;
|
||
return ans;
|
||
}
|
||
# endif
|
||
#endif
|
||
|
||
|
||
SCM
|
||
scm_long2num(sl)
|
||
long sl;
|
||
{
|
||
if (!SCM_FIXABLE(sl)) {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big(sl);
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl((double) sl, 0.0);
|
||
# else
|
||
return SCM_BOOL_F;
|
||
# endif
|
||
#endif
|
||
}
|
||
return SCM_MAKINUM(sl);
|
||
}
|
||
|
||
|
||
#ifdef LONGLONGS
|
||
|
||
SCM
|
||
scm_long_long2num(sl)
|
||
long_long sl;
|
||
{
|
||
if (!SCM_FIXABLE(sl)) {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long_long2big(sl);
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl((double) sl, 0.0);
|
||
# else
|
||
return SCM_BOOL_F;
|
||
# endif
|
||
#endif
|
||
}
|
||
return SCM_MAKINUM(sl);
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
SCM
|
||
scm_ulong2num(sl)
|
||
unsigned long sl;
|
||
{
|
||
if (!SCM_POSFIXABLE(sl)) {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_ulong2big(sl);
|
||
#else
|
||
# ifdef SCM_FLOATS
|
||
return scm_makdbl((double) sl, 0.0);
|
||
# else
|
||
return SCM_BOOL_F;
|
||
# endif
|
||
#endif
|
||
}
|
||
return SCM_MAKINUM(sl);
|
||
}
|
||
|
||
|
||
long
|
||
scm_num2long(num, pos, s_caller)
|
||
SCM num;
|
||
char *pos;
|
||
char *s_caller;
|
||
{
|
||
long res;
|
||
if (SCM_INUMP(num))
|
||
{
|
||
res = SCM_INUM(num);
|
||
return res;
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(num), errout);
|
||
#ifdef SCM_FLOATS
|
||
if (SCM_REALP(num))
|
||
{
|
||
double u = SCM_REALPART(num);
|
||
res = u;
|
||
if ((double)res == u)
|
||
{
|
||
return res;
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef SCM_BIGDIG
|
||
if (SCM_BIGP(num)) {
|
||
long oldres;
|
||
scm_sizet l;
|
||
res = 0;
|
||
oldres = 0;
|
||
for(l = SCM_NUMDIGS(num);l--;)
|
||
{
|
||
res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l];
|
||
if (res < oldres)
|
||
goto errout;
|
||
oldres = res;
|
||
}
|
||
if (SCM_TYP16 (num) == scm_tc16_bigpos)
|
||
return res;
|
||
else
|
||
return -res;
|
||
}
|
||
#endif
|
||
errout: scm_wta(num, pos, s_caller);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
|
||
|
||
|
||
|
||
long
|
||
num2long(num, pos, s_caller)
|
||
SCM num;
|
||
char *pos;
|
||
char *s_caller;
|
||
{
|
||
long res;
|
||
if SCM_INUMP(num) {
|
||
res = SCM_INUM((long)num);
|
||
return res;
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(num), errout);
|
||
#ifdef SCM_FLOATS
|
||
if SCM_REALP(num) {
|
||
double u = SCM_REALPART(num);
|
||
if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u)
|
||
&& (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) {
|
||
res = u;
|
||
return res;
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_BIGP(num) {
|
||
scm_sizet l = SCM_NUMDIGS(num);
|
||
SCM_ASRTGO(SCM_DIGSPERLONG >= l, errout);
|
||
res = 0;
|
||
for(;l--;) res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l];
|
||
return res;
|
||
}
|
||
#endif
|
||
errout: scm_wta(num, pos, s_caller);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
|
||
#ifdef LONGLONGS
|
||
|
||
long_long
|
||
scm_num2long_long(num, pos, s_caller)
|
||
SCM num;
|
||
char *pos;
|
||
char *s_caller;
|
||
{
|
||
long_long res;
|
||
if SCM_INUMP(num) {
|
||
res = SCM_INUM((long_long)num);
|
||
return res;
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(num), errout);
|
||
#ifdef SCM_FLOATS
|
||
if SCM_REALP(num) {
|
||
double u = SCM_REALPART(num);
|
||
if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u)
|
||
&& (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) {
|
||
res = u;
|
||
return res;
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef SCM_BIGDIG
|
||
if SCM_BIGP(num) {
|
||
scm_sizet l = SCM_NUMDIGS(num);
|
||
SCM_ASRTGO(SCM_DIGSPERLONGLONG >= l, errout);
|
||
res = 0;
|
||
for(;l--;) res = SCM_LONGLONGBIGUP(res) + SCM_BDIGITS(num)[l];
|
||
return res;
|
||
}
|
||
#endif
|
||
errout: scm_wta(num, pos, s_caller);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
unsigned long
|
||
scm_num2ulong(num, pos, s_caller)
|
||
SCM num;
|
||
char *pos;
|
||
char *s_caller;
|
||
{
|
||
unsigned long res;
|
||
if (SCM_INUMP(num))
|
||
{
|
||
res = SCM_INUM((unsigned long)num);
|
||
return res;
|
||
}
|
||
SCM_ASRTGO(SCM_NIMP(num), errout);
|
||
#ifdef SCM_FLOATS
|
||
if (SCM_REALP(num))
|
||
{
|
||
double u = SCM_REALPART(num);
|
||
if ((0 <= u) && (u <= (unsigned long)~0L))
|
||
{
|
||
res = u;
|
||
return res;
|
||
}
|
||
}
|
||
#endif
|
||
#ifdef SCM_BIGDIG
|
||
if (SCM_BIGP(num)) {
|
||
unsigned long oldres;
|
||
scm_sizet l;
|
||
res = 0;
|
||
oldres = 0;
|
||
for(l = SCM_NUMDIGS(num);l--;)
|
||
{
|
||
res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l];
|
||
if (res < oldres)
|
||
goto errout;
|
||
oldres = res;
|
||
}
|
||
return res;
|
||
}
|
||
#endif
|
||
errout: scm_wta(num, pos, s_caller);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
|
||
#ifdef SCM_FLOATS
|
||
# ifndef DBL_DIG
|
||
static void add1 SCM_P ((double f, double *fsum));
|
||
static void add1(f, fsum)
|
||
double f, *fsum;
|
||
{
|
||
*fsum = f + 1.0;
|
||
}
|
||
# endif
|
||
#endif
|
||
|
||
|
||
|
||
void
|
||
scm_init_numbers ()
|
||
{
|
||
#ifdef SCM_FLOATS
|
||
SCM_NEWCELL(scm_flo0);
|
||
# ifdef SCM_SINGLES
|
||
SCM_SETCAR (scm_flo0, scm_tc_flo);
|
||
SCM_FLO(scm_flo0) = 0.0;
|
||
# else
|
||
SCM_SETCDR (scm_flo0, (SCM)scm_must_malloc(1L*sizeof(double), "real"));
|
||
SCM_REAL(scm_flo0) = 0.0;
|
||
SCM_SETCAR (scm_flo0, scm_tc_dblr);
|
||
# endif
|
||
# ifdef DBL_DIG
|
||
scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
|
||
# else
|
||
{ /* determine floating point precision */
|
||
double f = 0.1;
|
||
double fsum = 1.0+f;
|
||
while (fsum != 1.0) {
|
||
f /= 10.0;
|
||
if (++scm_dblprec > 20) break;
|
||
add1(f, &fsum);
|
||
}
|
||
scm_dblprec = scm_dblprec-1;
|
||
}
|
||
# endif /* DBL_DIG */
|
||
#endif
|
||
#include "numbers.x"
|
||
}
|
||
|