1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-13 09:10:26 +02:00
guile/parallel-marker.h
2022-03-13 13:54:58 +01:00

789 lines
22 KiB
C++

#ifndef SERIAL_TRACE_H
#define SERIAL_TRACE_H
#include <pthread.h>
#include <stdatomic.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
// The Chase-Lev work-stealing deque, as initially described in "Dynamic
// Circular Work-Stealing Deque" (Chase and Lev, SPAA'05)
// (https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf)
// and improved with C11 atomics in "Correct and Efficient Work-Stealing
// for Weak Memory Models" (Lê et al, PPoPP'13)
// (http://www.di.ens.fr/%7Ezappa/readings/ppopp13.pdf).
struct mark_buf {
unsigned log_size;
size_t size;
atomic_uintptr_t *data;
};
// Min size: 8 kB on 64-bit systems, 4 kB on 32-bit.
#define mark_buf_min_log_size ((unsigned) 10)
// Max size: 2 GB on 64-bit systems, 1 GB on 32-bit.
#define mark_buf_max_log_size ((unsigned) 28)
static int
mark_buf_init(struct mark_buf *buf, unsigned log_size) {
ASSERT(log_size >= mark_buf_min_log_size);
ASSERT(log_size <= mark_buf_max_log_size);
size_t size = (1 << log_size) * sizeof(uintptr_t);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow work-stealing dequeue");
DEBUG("Failed to allocate %zu bytes", size);
return 0;
}
buf->log_size = log_size;
buf->size = 1 << log_size;
buf->data = mem;
return 1;
}
static inline size_t
mark_buf_size(struct mark_buf *buf) {
return buf->size;
}
static inline size_t
mark_buf_byte_size(struct mark_buf *buf) {
return mark_buf_size(buf) * sizeof(uintptr_t);
}
static void
mark_buf_release(struct mark_buf *buf) {
if (buf->data)
madvise(buf->data, mark_buf_byte_size(buf), MADV_DONTNEED);
}
static void
mark_buf_destroy(struct mark_buf *buf) {
if (buf->data) {
munmap(buf->data, mark_buf_byte_size(buf));
buf->data = NULL;
buf->log_size = 0;
buf->size = 0;
}
}
static inline uintptr_t
mark_buf_get(struct mark_buf *buf, size_t i) {
return atomic_load_explicit(&buf->data[i & (buf->size - 1)],
memory_order_relaxed);
}
static inline void
mark_buf_put(struct mark_buf *buf, size_t i, uintptr_t o) {
return atomic_store_explicit(&buf->data[i & (buf->size - 1)],
o,
memory_order_relaxed);
}
static inline int
mark_buf_grow(struct mark_buf *from, struct mark_buf *to,
size_t b, size_t t) {
if (from->log_size == mark_buf_max_log_size)
return 0;
if (!mark_buf_init (to, from->log_size + 1))
return 0;
for (size_t i=t; i<b; i++)
mark_buf_put(to, i, mark_buf_get(from, i));
return 1;
}
static const uintptr_t mark_deque_empty = 0;
static const uintptr_t mark_deque_abort = 1;
// Chase-Lev work-stealing deque. One thread pushes data into the deque
// at the bottom, and many threads compete to steal data from the top.
struct mark_deque {
// Ensure bottom and top are on different cache lines.
union {
atomic_size_t bottom;
char bottom_padding[64];
};
union {
atomic_size_t top;
char top_padding[64];
};
atomic_int active; // Which mark_buf is active.
struct mark_buf bufs[(mark_buf_max_log_size - mark_buf_min_log_size) + 1];
};
#define LOAD_RELAXED(loc) atomic_load_explicit(loc, memory_order_relaxed)
#define STORE_RELAXED(loc, o) atomic_store_explicit(loc, o, memory_order_relaxed)
#define LOAD_ACQUIRE(loc) atomic_load_explicit(loc, memory_order_acquire)
#define STORE_RELEASE(loc, o) atomic_store_explicit(loc, o, memory_order_release)
#define LOAD_CONSUME(loc) atomic_load_explicit(loc, memory_order_consume)
static int
mark_deque_init(struct mark_deque *q) {
memset(q, 0, sizeof (*q));
int ret = mark_buf_init(&q->bufs[0], mark_buf_min_log_size);
// Note, this fence isn't in the paper, I added it out of caution.
atomic_thread_fence(memory_order_release);
return ret;
}
static void
mark_deque_release(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_release(&q->bufs[i]);
}
static void
mark_deque_destroy(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_destroy(&q->bufs[i]);
}
static int
mark_deque_grow(struct mark_deque *q, int cur, size_t b, size_t t) {
if (!mark_buf_grow(&q->bufs[cur], &q->bufs[cur + 1], b, t)) {
fprintf(stderr, "failed to grow deque!!\n");
abort();
}
cur++;
STORE_RELAXED(&q->active, cur);
return cur;
}
static void
mark_deque_push(struct mark_deque *q, uintptr_t x) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
if (b - t > mark_buf_size(&q->bufs[active]) - 1) /* Full queue. */
active = mark_deque_grow(q, active, b, t);
mark_buf_put(&q->bufs[active], b, x);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + 1);
}
static uintptr_t
mark_deque_try_pop(struct mark_deque *q) {
size_t b = LOAD_RELAXED(&q->bottom);
b = b - 1;
int active = LOAD_RELAXED(&q->active);
STORE_RELAXED(&q->bottom, b);
atomic_thread_fence(memory_order_seq_cst);
size_t t = LOAD_RELAXED(&q->top);
uintptr_t x;
if (t <= b) { // Non-empty queue.
x = mark_buf_get(&q->bufs[active], b);
if (t == b) { // Single last element in queue.
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
x = mark_deque_empty;
STORE_RELAXED(&q->bottom, b + 1);
}
} else { // Empty queue.
x = mark_deque_empty;
STORE_RELAXED(&q->bottom, b + 1);
}
return x;
}
static uintptr_t
mark_deque_steal(struct mark_deque *q) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
uintptr_t x = mark_deque_empty;
if (t < b) { // Non-empty queue.
int active = LOAD_CONSUME(&q->active);
x = mark_buf_get(&q->bufs[active], t);
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
return mark_deque_abort;
}
return x;
}
#undef LOAD_RELAXED
#undef STORE_RELAXED
#undef LOAD_ACQUIRE
#undef STORE_RELEASE
#undef LOAD_CONSUME
#define LOCAL_MARK_QUEUE_SIZE 64
#define LOCAL_MARK_QUEUE_MASK 63
#define LOCAL_MARK_QUEUE_SHARE_THRESHOLD 48
#define LOCAL_MARK_QUEUE_SHARE_AMOUNT 32
struct local_mark_queue {
size_t read;
size_t write;
uintptr_t data[LOCAL_MARK_QUEUE_SIZE];
};
static inline void
local_mark_queue_init(struct local_mark_queue *q) {
q->read = q->write = 0;
}
static inline void
local_mark_queue_poison(struct local_mark_queue *q) {
q->read = 0; q->write = LOCAL_MARK_QUEUE_SIZE;
}
static inline size_t
local_mark_queue_size(struct local_mark_queue *q) {
return q->write - q->read;
}
static inline int
local_mark_queue_empty(struct local_mark_queue *q) {
return local_mark_queue_size(q) == 0;
}
static inline int
local_mark_queue_should_share(struct local_mark_queue *q) {
return local_mark_queue_size(q) >= LOCAL_MARK_QUEUE_SHARE_THRESHOLD;
}
static inline int
local_mark_queue_full(struct local_mark_queue *q) {
return local_mark_queue_size(q) >= LOCAL_MARK_QUEUE_SIZE;
}
static inline void
local_mark_queue_push(struct local_mark_queue *q, uintptr_t v) {
q->data[q->write++ & LOCAL_MARK_QUEUE_MASK] = v;
}
static inline uintptr_t
local_mark_queue_pop(struct local_mark_queue *q) {
return q->data[q->read++ & LOCAL_MARK_QUEUE_MASK];
}
struct mark_notify {
size_t notifiers;
int pending;
pthread_mutex_t lock;
pthread_cond_t cond;
};
static void
mark_notify_init(struct mark_notify *notify) {
notify->notifiers = 0;
notify->pending = 0;
pthread_mutex_init(&notify->lock, NULL);
pthread_cond_init(&notify->cond, NULL);
}
static void
mark_notify_destroy(struct mark_notify *notify) {
pthread_mutex_destroy(&notify->lock);
pthread_cond_destroy(&notify->cond);
}
static void
mark_notify_add_notifier(struct mark_notify *notify) {
pthread_mutex_lock(&notify->lock);
notify->notifiers++;
pthread_mutex_unlock(&notify->lock);
}
static void
mark_notify_remove_notifier(struct mark_notify *notify) {
pthread_mutex_lock(&notify->lock);
notify->notifiers--;
if (notify->notifiers == 0)
pthread_cond_signal(&notify->cond);
pthread_mutex_unlock(&notify->lock);
}
enum mark_notify_status {
MARK_NOTIFY_DONE,
MARK_NOTIFY_WOKE
};
static enum mark_notify_status
mark_notify_wait(struct mark_notify *notify) {
enum mark_notify_status res;
pthread_mutex_lock(&notify->lock);
if (notify->pending) {
res = MARK_NOTIFY_WOKE;
notify->pending = 0;
goto done;
}
if (notify->notifiers == 0) {
res = MARK_NOTIFY_DONE;
goto done;
}
// Spurious wakeup is OK.
DEBUG("-- marker waiting\n");
pthread_cond_wait(&notify->cond, &notify->lock);
DEBUG("-- marker woke\n");
res = MARK_NOTIFY_WOKE;
notify->pending = 0;
done:
pthread_mutex_unlock(&notify->lock);
return res;
}
static void
mark_notify_wake(struct mark_notify *notify) {
DEBUG("== notifying pending wake!\n");
pthread_mutex_lock(&notify->lock);
notify->pending = 1;
pthread_cond_signal(&notify->cond);
pthread_mutex_unlock(&notify->lock);
DEBUG("== notifying pending wake done\n");
}
// A mostly lock-free multi-producer, single consumer queue, largely
// inspired by Rust's std::sync::channel.
//
// https://www.1024cores.net/home/lock-free-algorithms/queues/non-intrusive-mpsc-node-based-queue
struct mark_channel_message {
struct mark_channel_message * _Atomic next;
// Payload will be zero only for free messages, and for the sentinel
// message.
atomic_uintptr_t payload;
};
#define MARK_CHANNEL_WRITER_MESSAGE_COUNT ((size_t)1024)
struct mark_channel {
union {
struct mark_channel_message* _Atomic head;
char head_padding[64];
};
union {
atomic_size_t length;
char length_padding[64];
};
struct mark_channel_message* tail;
struct mark_channel_message sentinel;
struct mark_notify notify;
};
struct mark_channel_writer {
struct mark_channel_message messages[MARK_CHANNEL_WRITER_MESSAGE_COUNT];
size_t next_message;
struct mark_channel *channel;
};
static void
mark_channel_init(struct mark_channel *ch) {
memset(ch, 0, sizeof(*ch));
atomic_init(&ch->head, &ch->sentinel);
atomic_init(&ch->length, 0);
mark_notify_init(&ch->notify);
ch->tail = &ch->sentinel;
}
static void
mark_channel_destroy(struct mark_channel *ch) {
mark_notify_destroy(&ch->notify);
}
static void
mark_channel_push(struct mark_channel *ch, struct mark_channel_message *msg) {
ASSERT(msg->payload);
atomic_store_explicit(&msg->next, NULL, memory_order_relaxed);
struct mark_channel_message *prev =
atomic_exchange_explicit(&ch->head, msg, memory_order_acq_rel);
atomic_store_explicit(&prev->next, msg, memory_order_release);
size_t old_length =
atomic_fetch_add_explicit(&ch->length, 1, memory_order_relaxed);
if (old_length == 0)
mark_notify_wake(&ch->notify);
}
static uintptr_t
mark_channel_try_pop(struct mark_channel *ch) {
struct mark_channel_message *tail = ch->tail;
struct mark_channel_message *next =
atomic_load_explicit(&tail->next, memory_order_acquire);
if (next) {
ch->tail = next;
uintptr_t payload =
atomic_load_explicit(&next->payload, memory_order_acquire);
ASSERT(payload != 0);
// Indicate to the writer that the old tail node can now be re-used.
// Note though that the new tail node is floating garbage; its
// payload has been popped but the node itself is still part of the
// queue. Care has to be taken to ensure that any remaining queue
// entries are popped before the associated channel writer's
// messages are deallocated.
atomic_store_explicit(&tail->payload, 0, memory_order_release);
atomic_fetch_sub_explicit(&ch->length, 1, memory_order_relaxed);
return payload;
}
// if (atomic_load_explicit(&ch->head) == tail) return EMPTY else INCONSISTENT
return 0;
}
static uintptr_t
mark_channel_pop(struct mark_channel *ch) {
while (1) {
uintptr_t ret = mark_channel_try_pop(ch);
if (ret)
return ret;
if (atomic_load_explicit(&ch->length, memory_order_relaxed) == 0) {
if (mark_notify_wait(&ch->notify) == MARK_NOTIFY_DONE)
return 0;
}
}
}
static void
mark_channel_writer_init(struct mark_channel *ch,
struct mark_channel_writer *writer) {
memset(writer, 0, sizeof(*writer));
writer->channel = ch;
}
static void
mark_channel_write(struct mark_channel_writer *writer, uintptr_t payload) {
ASSERT(payload);
struct mark_channel_message *msg = &writer->messages[writer->next_message];
while (atomic_load_explicit(&msg->payload, memory_order_acquire) != 0)
sched_yield();
writer->next_message++;
if (writer->next_message == MARK_CHANNEL_WRITER_MESSAGE_COUNT)
writer->next_message = 0;
atomic_store_explicit(&msg->payload, payload, memory_order_release);
mark_channel_push(writer->channel, msg);
}
static void
mark_channel_writer_activate(struct mark_channel_writer *writer) {
mark_notify_add_notifier(&writer->channel->notify);
}
static void
mark_channel_writer_deactivate(struct mark_channel_writer *writer) {
mark_notify_remove_notifier(&writer->channel->notify);
}
enum mark_worker_state {
MARK_WORKER_STOPPED,
MARK_WORKER_IDLE,
MARK_WORKER_MARKING,
MARK_WORKER_STOPPING,
MARK_WORKER_DEAD
};
struct mark_worker {
struct context *cx;
pthread_t thread;
enum mark_worker_state state;
pthread_mutex_t lock;
pthread_cond_t cond;
struct mark_channel_writer writer;
};
#define MARK_WORKERS_MAX_COUNT 8
struct marker {
struct mark_deque deque;
pthread_mutex_t deque_writer_lock;
struct mark_channel overflow;
atomic_size_t active_markers;
size_t worker_count;
struct mark_worker workers[MARK_WORKERS_MAX_COUNT];
};
struct local_marker {
struct mark_worker *worker;
struct mark_deque *deque;
struct context *cx;
struct local_mark_queue local;
};
struct context;
static inline struct marker* context_marker(struct context *cx);
static size_t number_of_current_processors(void) { return 1; }
static void
mark_worker_init(struct mark_worker *worker, struct context *cx,
struct marker *marker) {
worker->cx = cx;
worker->thread = 0;
worker->state = MARK_WORKER_STOPPED;
pthread_mutex_init(&worker->lock, NULL);
pthread_cond_init(&worker->cond, NULL);
mark_channel_writer_init(&marker->overflow, &worker->writer);
}
static void mark_worker_mark(struct mark_worker *worker);
static void*
mark_worker_thread(void *data) {
struct mark_worker *worker = data;
pthread_mutex_lock(&worker->lock);
while (1) {
switch (worker->state) {
case MARK_WORKER_IDLE:
pthread_cond_wait(&worker->cond, &worker->lock);
break;
case MARK_WORKER_MARKING:
mark_worker_mark(worker);
worker->state = MARK_WORKER_IDLE;
break;
case MARK_WORKER_STOPPING:
worker->state = MARK_WORKER_DEAD;
pthread_mutex_unlock(&worker->lock);
return NULL;
default:
abort();
}
}
}
static int
mark_worker_spawn(struct mark_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_STOPPED);
worker->state = MARK_WORKER_IDLE;
pthread_mutex_unlock(&worker->lock);
if (pthread_create(&worker->thread, NULL, mark_worker_thread, worker)) {
perror("spawning marker thread failed");
worker->state = MARK_WORKER_STOPPED;
return 0;
}
return 1;
}
static void
mark_worker_request_mark(struct mark_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_IDLE);
mark_channel_writer_activate(&worker->writer);
worker->state = MARK_WORKER_MARKING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static void
mark_worker_finished_marking(struct mark_worker *worker) {
// Signal controller that we are done with marking.
mark_channel_writer_deactivate(&worker->writer);
}
static void
mark_worker_request_stop(struct mark_worker *worker) {
pthread_mutex_lock(&worker->lock);
ASSERT(worker->state == MARK_WORKER_IDLE);
worker->state = MARK_WORKER_STOPPING;
pthread_cond_signal(&worker->cond);
pthread_mutex_unlock(&worker->lock);
}
static int
marker_init(struct context *cx) {
struct marker *marker = context_marker(cx);
if (!mark_deque_init(&marker->deque))
return 0;
pthread_mutex_init(&marker->deque_writer_lock, NULL);
mark_channel_init(&marker->overflow);
size_t desired_worker_count = 0;
if (getenv("GC_MARKERS"))
desired_worker_count = atoi(getenv("GC_MARKERS"));
if (desired_worker_count == 0)
desired_worker_count = number_of_current_processors();
if (desired_worker_count > MARK_WORKERS_MAX_COUNT)
desired_worker_count = MARK_WORKERS_MAX_COUNT;
for (size_t i = 0; i < desired_worker_count; i++) {
mark_worker_init(&marker->workers[i], cx, marker);
if (mark_worker_spawn(&marker->workers[i]))
marker->worker_count++;
else
break;
}
return marker->worker_count > 0;
}
static void marker_prepare(struct context *cx) {}
static void marker_release(struct context *cx) {
mark_deque_release(&context_marker(cx)->deque);
}
struct gcobj;
static inline void marker_visit(void **loc, void *mark_data) ALWAYS_INLINE;
static inline void trace_one(struct gcobj *obj, void *mark_data) ALWAYS_INLINE;
static inline int mark_object(struct context *cx,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
marker_share(struct local_marker *mark) {
struct marker *marker = context_marker(mark->cx);
DEBUG("marker %p: trying to share\n", mark->worker);
if (pthread_mutex_trylock(&marker->deque_writer_lock) != 0) {
DEBUG("marker %p: trylock failed\n", mark->worker);
if (local_mark_queue_full(&mark->local)) {
DEBUG("marker %p: forcing lock acquisition\n", mark->worker);
pthread_mutex_lock(&marker->deque_writer_lock);
} else
return;
}
DEBUG("marker %p: sharing\n", mark->worker);
for (size_t i = 0; i < LOCAL_MARK_QUEUE_SHARE_AMOUNT; i++)
mark_deque_push(&marker->deque, local_mark_queue_pop(&mark->local));
pthread_mutex_unlock(&marker->deque_writer_lock);
}
static inline void
marker_visit(void **loc, void *mark_data) {
struct local_marker *mark = mark_data;
struct gcobj *obj = *loc;
if (obj && mark_object(mark->cx, obj)) {
if (local_mark_queue_should_share(&mark->local))
marker_share(mark);
local_mark_queue_push(&mark->local, (uintptr_t)obj);
}
}
static uintptr_t
mark_worker_steal(struct local_marker *mark) {
DEBUG("marker %p: trying to steal\n", mark->worker);
while (1) {
uintptr_t addr = mark_deque_steal(mark->deque);
if (addr == mark_deque_empty) {
struct marker *marker = context_marker(mark->cx);
if (atomic_fetch_sub_explicit(&marker->active_markers, 1,
memory_order_relaxed) == 1) {
DEBUG(" ->> marker %p: DONE (no spinning) <<-\n", mark->worker);
return 0;
}
size_t spin_count = 0;
while (1) {
addr = mark_deque_steal(mark->deque);
if (addr != mark_deque_empty) {
DEBUG("marker %p: spinning got 0x%zx\n", mark->worker, addr);
atomic_fetch_add_explicit(&marker->active_markers, 1,
memory_order_relaxed);
break;
}
if (atomic_load_explicit(&marker->active_markers,
memory_order_relaxed) == 0) {
DEBUG(" ->> marker %p: DONE <<-\n", mark->worker);
return 0;
}
// spin
DEBUG("marker %p: spinning #%zu\n", mark->worker, spin_count);
if (spin_count < 10)
__builtin_ia32_pause();
else if (spin_count < 20)
sched_yield();
else if (spin_count < 40)
usleep(0);
else
usleep(1);
spin_count++;
}
}
DEBUG("marker %p: stealing got 0x%zx\n", mark->worker, addr);
if (addr == mark_deque_abort)
continue;
return addr;
}
}
static void
mark_worker_mark(struct mark_worker *worker) {
struct local_marker mark;
mark.worker = worker;
mark.deque = &context_marker(worker->cx)->deque;
mark.cx = worker->cx;
local_mark_queue_init(&mark.local);
size_t n = 0;
DEBUG("marker %p: running mark loop\n", worker);
while (1) {
uintptr_t addr;
if (!local_mark_queue_empty(&mark.local)) {
addr = local_mark_queue_pop(&mark.local);
} else {
addr = mark_worker_steal(&mark);
if (!addr)
break;
}
trace_one((struct gcobj*)addr, &mark);
n++;
}
DEBUG("marker %p: done marking, %zu objects traced\n", worker, n);
mark_worker_finished_marking(worker);
}
static inline void
marker_visit_root(void **loc, struct context *cx) {
struct gcobj *obj = *loc;
if (obj && mark_object(cx, obj))
mark_deque_push(&context_marker(cx)->deque, (uintptr_t)obj);
}
static inline void
marker_trace(struct context *cx) {
struct marker *marker = context_marker(cx);
DEBUG("starting trace; %zu workers\n", marker->worker_count);
while (1) {
DEBUG("waking workers\n");
atomic_store_explicit(&marker->active_markers, marker->worker_count,
memory_order_release);
for (size_t i = 0; i < marker->worker_count; i++)
mark_worker_request_mark(&marker->workers[i]);
DEBUG("running controller loop\n");
size_t n = 0;
while (1) {
DEBUG("controller: popping\n");
uintptr_t addr = mark_channel_pop(&marker->overflow);
DEBUG("controller: popped 0x%zx\n", addr);
if (!addr)
break;
mark_deque_push(&marker->deque, addr);
DEBUG("controller: pushed to deque\n");
n++;
}
DEBUG("controller loop done, %zu objects sent for rebalancing\n", n);
// As in the ISMM'16 paper, it's possible that a worker decides to
// stop because the deque is empty, but actually there was an
// in-flight object in the mark channel that we hadn't been able to
// push yet. Loop in that case.
{
uintptr_t addr = mark_deque_try_pop(&marker->deque);
if (addr == mark_deque_empty)
break;
DEBUG("--> controller looping again due to slop\n");
mark_deque_push(&marker->deque, addr);
}
}
ASSERT(atomic_load(&marker->overflow.length) == 0);
ASSERT(atomic_load(&marker->overflow.head) == marker->overflow.tail);
DEBUG("trace finished\n");
}
#endif // SERIAL_MARK_H