1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-18 01:30:27 +02:00
guile/module/language/cps/specialize-numbers.scm
Andy Wingo c54c151eb6 $primcall has a "param" member
* module/language/cps.scm ($primcall): Add "param" member, which will be
  a constant parameter to the primcall.  The idea is that constants used
  by primcalls as immediates don't need to participate in optimizations
  in any way -- they should not participate in CSE, have the same
  lifetime as the primcall so not part of DCE either, and don't need
  slot allocation.  Indirecting them through a named $const binding is
  complication for no benefit.  This change should eventually improve
  compilation time and memory usage, once we fully take advantage of it,
  as the number of labels and variables will go down.
* module/language/cps/closure-conversion.scm:
* module/language/cps/compile-bytecode.scm:
* module/language/cps/constructors.scm:
* module/language/cps/contification.scm:
* module/language/cps/cse.scm:
* module/language/cps/dce.scm:
* module/language/cps/effects-analysis.scm:
* module/language/cps/elide-values.scm:
* module/language/cps/handle-interrupts.scm:
* module/language/cps/licm.scm:
* module/language/cps/peel-loops.scm:
* module/language/cps/prune-bailouts.scm:
* module/language/cps/prune-top-level-scopes.scm:
* module/language/cps/reify-primitives.scm:
* module/language/cps/renumber.scm:
* module/language/cps/rotate-loops.scm:
* module/language/cps/self-references.scm:
* module/language/cps/simplify.scm:
* module/language/cps/slot-allocation.scm:
* module/language/cps/specialize-numbers.scm:
* module/language/cps/specialize-primcalls.scm:
* module/language/cps/split-rec.scm:
* module/language/cps/type-checks.scm:
* module/language/cps/type-fold.scm:
* module/language/cps/types.scm:
* module/language/cps/utils.scm:
* module/language/cps/verify.scm:
* module/language/tree-il/compile-cps.scm: Adapt all users.
2017-11-05 15:00:16 +01:00

746 lines
31 KiB
Scheme

;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2015, 2016, 2017 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Some arithmetic operations have multiple implementations: one
;;; polymorphic implementation that works on all kinds of numbers, like
;;; `add', and one or more specialized variants for unboxed numbers of
;;; some kind, like `fadd'. If we can replace a polymorphic
;;; implementation with a monomorphic implementation, we should do so --
;;; it will speed up the runtime and avoid boxing numbers.
;;;
;;; A polymorphic operation can be specialized if its result is
;;; specialized. To specialize an operation, we manually unbox its
;;; arguments and box its return value, relying on CSE to remove boxes
;;; where possible.
;;;
;;; We also want to specialize phi variables. A phi variable is bound
;;; by a continuation with more than one predecessor. For example in
;;; this code:
;;;
;;; (+ 1.0 (if a 2.0 3.0))
;;;
;;; We want to specialize this code to:
;;;
;;; (f64->scm (fl+ (scm->f64 1.0) (if a (scm->f64 2.0) (scm->f64 3.0))))
;;;
;;; Hopefully later passes will remove the conversions. In any case,
;;; specialization will likely result in a lower heap-number allocation
;;; rate, and that cost is higher than the extra opcodes to do
;;; conversions. This transformation is especially important for loop
;;; variables.
;;;
;;; Code:
(define-module (language cps specialize-numbers)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-11)
#:use-module (language cps)
#:use-module (language cps intmap)
#:use-module (language cps intset)
#:use-module (language cps renumber)
#:use-module (language cps types)
#:use-module (language cps utils)
#:use-module (language cps with-cps)
#:export (specialize-numbers))
(define (specialize-f64-binop cps k src op a b)
(let ((fop (match op
('add 'fadd)
('sub 'fsub)
('mul 'fmul)
('div 'fdiv))))
(with-cps cps
(letv f64-a f64-b result)
(letk kbox ($kargs ('result) (result)
($continue k src
($primcall 'f64->scm #f (result)))))
(letk kop ($kargs ('f64-b) (f64-b)
($continue kbox src
($primcall fop #f (f64-a f64-b)))))
(letk kunbox-b ($kargs ('f64-a) (f64-a)
($continue kop src
($primcall 'scm->f64 #f (b)))))
(build-term
($continue kunbox-b src
($primcall 'scm->f64 #f (a)))))))
(define* (specialize-u64-binop cps k src op a b #:key
(unbox-a 'scm->u64)
(unbox-b 'scm->u64))
(let ((uop (match op
('add 'uadd)
('sub 'usub)
('mul 'umul)
('logand 'ulogand)
('logior 'ulogior)
('logxor 'ulogxor)
('logsub 'ulogsub)
('rsh 'ursh)
('lsh 'ulsh))))
(with-cps cps
(letv u64-a u64-b result)
(letk kbox ($kargs ('result) (result)
($continue k src
($primcall 'u64->scm #f (result)))))
(letk kop ($kargs ('u64-b) (u64-b)
($continue kbox src
($primcall uop #f (u64-a u64-b)))))
(letk kunbox-b ($kargs ('u64-a) (u64-a)
($continue kop src
($primcall unbox-b #f (b)))))
(build-term
($continue kunbox-b src
($primcall unbox-a #f (a)))))))
(define (truncate-u64 cps k src scm)
(with-cps cps
(letv u64)
(letk kbox ($kargs ('u64) (u64)
($continue k src
($primcall 'u64->scm #f (u64)))))
(build-term
($continue kbox src
($primcall 'scm->u64/truncate #f (scm))))))
(define (specialize-u64-comparison cps kf kt src op a b)
(let ((op (symbol-append 'u64- op)))
(with-cps cps
(letv u64-a u64-b)
(letk kop ($kargs ('u64-b) (u64-b)
($continue kf src
($branch kt ($primcall op #f (u64-a u64-b))))))
(letk kunbox-b ($kargs ('u64-a) (u64-a)
($continue kop src
($primcall 'scm->u64 #f (b)))))
(build-term
($continue kunbox-b src
($primcall 'scm->u64 #f (a)))))))
(define (specialize-u64-scm-comparison cps kf kt src op a-u64 b-scm)
(let ((u64-op (symbol-append 'u64- op)))
(with-cps cps
(letv u64 s64 zero z64 sunk)
(letk kheap ($kargs ('sunk) (sunk)
($continue kf src
($branch kt ($primcall op #f (sunk b-scm))))))
;; Re-box the variable. FIXME: currently we use a specially
;; marked u64->scm to avoid CSE from hoisting the allocation
;; again. Instaed we should just use a-u64 directly and implement
;; an allocation sinking pass that should handle this..
(letk kretag ($kargs () ()
($continue kheap src
($primcall 'u64->scm/unlikely #f (u64)))))
(letk kcmp ($kargs () ()
($continue kf src
($branch kt ($primcall u64-op #f (u64 s64))))))
(letk kz64 ($kargs ('z64) (z64)
($continue (case op ((< <= =) kf) (else kt)) src
($branch kcmp ($primcall 's64-<= #f (z64 s64))))))
(letk kzero ($kargs ('zero) (zero)
($continue kz64 src ($primcall 'load-s64 #f (zero)))))
(letk ks64 ($kargs ('s64) (s64)
($continue kzero src ($const 0))))
(letk kfix ($kargs () ()
($continue ks64 src
($primcall 'untag-fixnum #f (b-scm)))))
(letk ku64 ($kargs ('u64) (u64)
($continue kretag src
($branch kfix ($primcall 'fixnum? #f (b-scm))))))
(build-term
($continue ku64 src
($primcall 'scm->u64 #f (a-u64)))))))
(define (specialize-f64-comparison cps kf kt src op a b)
(let ((op (symbol-append 'f64- op)))
(with-cps cps
(letv f64-a f64-b)
(letk kop ($kargs ('f64-b) (f64-b)
($continue kf src
($branch kt ($primcall op #f (f64-a f64-b))))))
(letk kunbox-b ($kargs ('f64-a) (f64-a)
($continue kop src
($primcall 'scm->f64 #f (b)))))
(build-term
($continue kunbox-b src
($primcall 'scm->f64 #f (a)))))))
(define (sigbits-union x y)
(and x y (logior x y)))
(define (sigbits-intersect x y)
(cond
((not x) y)
((not y) x)
(else (logand x y))))
(define (sigbits-intersect3 a b c)
(sigbits-intersect a (sigbits-intersect b c)))
(define (next-power-of-two n)
(let lp ((out 1))
(if (< n out)
out
(lp (ash out 1)))))
(define (range->sigbits min max)
(cond
((or (< min 0) (> max #xffffFFFFffffFFFF)) #f)
((eqv? min max) min)
(else (1- (next-power-of-two max)))))
(define (inferred-sigbits types label var)
(call-with-values (lambda () (lookup-pre-type types label var))
(lambda (type min max)
(and (type<=? type (logior &exact-integer &u64 &s64))
(range->sigbits min max)))))
(define significant-bits-handlers (make-hash-table))
(define-syntax-rule (define-significant-bits-handler
((primop label types out def ...) arg ...)
body ...)
(hashq-set! significant-bits-handlers 'primop
(lambda (label types out param args defs)
(match args ((arg ...) (match defs ((def ...) body ...)))))))
(define-significant-bits-handler ((logand label types out res) a b)
(let ((sigbits (sigbits-intersect3 (inferred-sigbits types label a)
(inferred-sigbits types label b)
(intmap-ref out res (lambda (_) 0)))))
(intmap-add (intmap-add out a sigbits sigbits-union)
b sigbits sigbits-union)))
(define (significant-bits-handler primop)
(hashq-ref significant-bits-handlers primop))
(define (compute-significant-bits cps types kfun)
"Given the locally inferred types @var{types}, compute a map of VAR ->
BITS indicating the significant bits needed for a variable. BITS may be
#f to indicate all bits, or a non-negative integer indicating a bitmask."
(let ((preds (invert-graph (compute-successors cps kfun))))
(let lp ((worklist (intmap-keys preds)) (visited empty-intset)
(out empty-intmap))
(match (intset-prev worklist)
(#f out)
(label
(let ((worklist (intset-remove worklist label))
(visited* (intset-add visited label)))
(define (continue out*)
(if (and (eq? out out*) (eq? visited visited*))
(lp worklist visited out)
(lp (intset-union worklist (intmap-ref preds label))
visited* out*)))
(define (add-def out var)
(intmap-add out var 0 sigbits-union))
(define (add-defs out vars)
(match vars
(() out)
((var . vars) (add-defs (add-def out var) vars))))
(define (add-unknown-use out var)
(intmap-add out var (inferred-sigbits types label var)
sigbits-union))
(define (add-unknown-uses out vars)
(match vars
(() out)
((var . vars)
(add-unknown-uses (add-unknown-use out var) vars))))
(continue
(match (intmap-ref cps label)
(($ $kfun src meta self)
(add-def out self))
(($ $kargs names vars ($ $continue k src exp))
(let ((out (add-defs out vars)))
(match exp
((or ($ $const) ($ $prim) ($ $fun) ($ $closure) ($ $rec))
;; No uses, so no info added to sigbits.
out)
(($ $values args)
(match (intmap-ref cps k)
(($ $kargs _ vars)
(if (intset-ref visited k)
(fold (lambda (arg var out)
(intmap-add out arg (intmap-ref out var)
sigbits-union))
out args vars)
out))
(($ $ktail)
(add-unknown-uses out args))))
(($ $call proc args)
(add-unknown-use (add-unknown-uses out args) proc))
(($ $callk label proc args)
(add-unknown-use (add-unknown-uses out args) proc))
(($ $branch kt ($ $primcall name param args))
(add-unknown-uses out args))
(($ $primcall name param args)
(let ((h (significant-bits-handler name)))
(if h
(match (intmap-ref cps k)
(($ $kargs _ defs)
(h label types out param args defs)))
(add-unknown-uses out args))))
(($ $prompt escape? tag handler)
(add-unknown-use out tag)))))
(_ out)))))))))
(define (specialize-operations cps)
(define (visit-cont label cont cps types sigbits)
(define (operand-in-range? var &type &min &max)
(call-with-values (lambda ()
(lookup-pre-type types label var))
(lambda (type min max)
(and (type<=? type &type) (<= &min min max &max)))))
(define (u64-operand? var)
(operand-in-range? var &exact-integer 0 #xffffffffffffffff))
(define (all-u64-bits-set? var)
(operand-in-range? var &exact-integer
#xffffffffffffffff
#xffffffffffffffff))
(define (only-u64-bits-used? var)
(let ((bits (intmap-ref sigbits var)))
(and bits (= bits (logand bits #xffffFFFFffffFFFF)))))
(define (u64-result? result)
(or (only-u64-bits-used? result)
(call-with-values
(lambda ()
(lookup-post-type types label result 0))
(lambda (type min max)
(and (type<=? type &exact-integer)
(<= 0 min max #xffffffffffffffff))))))
(define (f64-operands? vara varb)
(let-values (((typea mina maxa) (lookup-pre-type types label vara))
((typeb minb maxb) (lookup-pre-type types label varb)))
(and (zero? (logand (logior typea typeb) (lognot &real)))
(or (eqv? typea &flonum)
(eqv? typeb &flonum)))))
(match cont
(($ $kfun)
(let ((types (infer-types cps label)))
(values cps types (compute-significant-bits cps types label))))
(($ $kargs names vars
($ $continue k src
($ $primcall (and op (or 'add 'sub 'mul 'div)) #f (a b))))
(match (intmap-ref cps k)
(($ $kargs (_) (result))
(call-with-values (lambda ()
(lookup-post-type types label result 0))
(lambda (type min max)
(values
(cond
((eqv? type &flonum)
(with-cps cps
(let$ body (specialize-f64-binop k src op a b))
(setk label ($kargs names vars ,body))))
((and (type<=? type &exact-integer)
(or (<= 0 min max #xffffffffffffffff)
(only-u64-bits-used? result))
(u64-operand? a) (u64-operand? b)
(not (eq? op 'div)))
(with-cps cps
(let$ body (specialize-u64-binop k src op a b))
(setk label ($kargs names vars ,body))))
(else
cps))
types
sigbits))))))
(($ $kargs names vars
($ $continue k src ($ $primcall 'ash #f (a b))))
(match (intmap-ref cps k)
(($ $kargs (_) (result))
(call-with-values (lambda ()
(lookup-pre-type types label b))
(lambda (b-type b-min b-max)
(values
(cond
((or (not (u64-result? result))
(not (u64-operand? a))
(not (type<=? b-type &exact-integer))
(< b-min 0 b-max)
(<= b-min -64)
(<= 64 b-max))
cps)
((and (< b-min 0) (= b-min b-max))
(with-cps cps
(let$ body
(with-cps-constants ((bits (- b-min)))
($ (specialize-u64-binop k src 'rsh a bits))))
(setk label ($kargs names vars ,body))))
((< b-min 0)
(with-cps cps
(let$ body
(with-cps-constants ((zero 0))
(letv bits)
(let$ body
(specialize-u64-binop k src 'rsh a bits))
(letk kneg ($kargs ('bits) (bits) ,body))
(build-term
($continue kneg src
($primcall 'sub #f (zero b))))))
(setk label ($kargs names vars ,body))))
(else
(with-cps cps
(let$ body (specialize-u64-binop k src 'lsh a b))
(setk label ($kargs names vars ,body)))))
types
sigbits))))))
(($ $kargs names vars
($ $continue k src
($ $primcall (and op (or 'logand 'logior 'logsub 'logxor)) #f (a b))))
(match (intmap-ref cps k)
(($ $kargs (_) (result))
(values
(cond
((u64-result? result)
;; Given that we know the result can be unboxed to a u64,
;; any out-of-range bits won't affect the result and so we
;; can unconditionally project the operands onto u64.
(cond
((and (eq? op 'logand) (all-u64-bits-set? a))
(with-cps cps
(let$ body (truncate-u64 k src b))
(setk label ($kargs names vars ,body))))
((and (eq? op 'logand) (all-u64-bits-set? b))
(with-cps cps
(let$ body (truncate-u64 k src a))
(setk label ($kargs names vars ,body))))
(else
(with-cps cps
(let$ body (specialize-u64-binop k src op a b
#:unbox-a
'scm->u64/truncate
#:unbox-b
'scm->u64/truncate))
(setk label ($kargs names vars ,body))))))
(else cps))
types sigbits))))
(($ $kargs names vars
($ $continue k src
($ $branch kt ($ $primcall (and op (or '< '<= '= '>= '>)) #f (a b)))))
(values
(cond
((f64-operands? a b)
(with-cps cps
(let$ body (specialize-f64-comparison k kt src op a b))
(setk label ($kargs names vars ,body))))
((u64-operand? a)
(let ((specialize (if (u64-operand? b)
specialize-u64-comparison
specialize-u64-scm-comparison)))
(with-cps cps
(let$ body (specialize k kt src op a b))
(setk label ($kargs names vars ,body)))))
((u64-operand? b)
(let ((op (match op
('< '>) ('<= '>=) ('= '=) ('>= '<=) ('> '<))))
(with-cps cps
(let$ body (specialize-u64-scm-comparison k kt src op b a))
(setk label ($kargs names vars ,body)))))
(else cps))
types
sigbits))
(_ (values cps types sigbits))))
(values (intmap-fold visit-cont cps cps #f #f)))
;; Compute a map from VAR -> LABEL, where LABEL indicates the cont that
;; binds VAR.
(define (compute-defs conts labels)
(intset-fold
(lambda (label defs)
(match (intmap-ref conts label)
(($ $kfun src meta self tail clause)
(intmap-add defs self label))
(($ $kargs names vars)
(fold1 (lambda (var defs)
(intmap-add defs var label))
vars defs))
(_ defs)))
labels empty-intmap))
;; Compute vars whose definitions are all unboxable and whose uses
;; include an unbox operation.
(define (compute-specializable-vars cps body preds defs
exp-result-unboxable?
unbox-ops)
;; Compute a map of VAR->LABEL... indicating the set of labels that
;; define VAR with unboxable values, given the set of vars
;; UNBOXABLE-VARS which is known already to be unboxable.
(define (collect-unboxable-def-labels unboxable-vars)
(define (add-unboxable-def unboxable-defs var label)
(intmap-add unboxable-defs var (intset label) intset-union))
(intset-fold (lambda (label unboxable-defs)
(match (intmap-ref cps label)
(($ $kargs _ _ ($ $continue k _ exp))
(match exp
((? exp-result-unboxable?)
(match (intmap-ref cps k)
(($ $kargs (_) (def))
(add-unboxable-def unboxable-defs def label))))
(($ $values vars)
(match (intmap-ref cps k)
(($ $kargs _ defs)
(fold
(lambda (var def unboxable-defs)
(if (intset-ref unboxable-vars var)
(add-unboxable-def unboxable-defs def label)
unboxable-defs))
unboxable-defs vars defs))
;; Could be $ktail for $values.
(_ unboxable-defs)))
(_ unboxable-defs)))
(_ unboxable-defs)))
body empty-intmap))
;; Compute the set of vars which are always unboxable.
(define (compute-unboxable-defs)
(fixpoint
(lambda (unboxable-vars)
(intmap-fold
(lambda (def unboxable-pred-labels unboxable-vars)
(if (and (not (intset-ref unboxable-vars def))
;; Are all defining expressions unboxable?
(and-map (lambda (pred)
(intset-ref unboxable-pred-labels pred))
(intmap-ref preds (intmap-ref defs def))))
(intset-add unboxable-vars def)
unboxable-vars))
(collect-unboxable-def-labels unboxable-vars)
unboxable-vars))
empty-intset))
;; Compute the set of vars that may ever be unboxed.
(define (compute-unbox-uses unboxable-defs)
(intset-fold
(lambda (label unbox-uses)
(match (intmap-ref cps label)
(($ $kargs _ _ ($ $continue k _ exp))
(match exp
(($ $primcall (? (lambda (op) (memq op unbox-ops))) #f (var))
(intset-add unbox-uses var))
(($ $values vars)
(match (intmap-ref cps k)
(($ $kargs _ defs)
(fold (lambda (var def unbox-uses)
(if (intset-ref unboxable-defs def)
(intset-add unbox-uses var)
unbox-uses))
unbox-uses vars defs))
(($ $ktail)
;; Assume return is rare and that any unboxable def can
;; be reboxed when leaving the procedure.
(fold (lambda (var unbox-uses)
(intset-add unbox-uses var))
unbox-uses vars))))
(_ unbox-uses)))
(_ unbox-uses)))
body empty-intset))
(let ((unboxable-defs (compute-unboxable-defs)))
(intset-intersect unboxable-defs (compute-unbox-uses unboxable-defs))))
;; Compute vars whose definitions are all inexact reals and whose uses
;; include an unbox operation.
(define (compute-specializable-f64-vars cps body preds defs)
;; Can the result of EXP definitely be unboxed as an f64?
(define (exp-result-f64? exp)
(match exp
((or ($ $primcall 'f64->scm #f (_))
($ $const (and (? number?) (? inexact?) (? real?))))
#t)
(_ #f)))
(compute-specializable-vars cps body preds defs exp-result-f64? '(scm->f64)))
;; Compute vars whose definitions are all exact integers in the u64
;; range and whose uses include an unbox operation.
(define (compute-specializable-u64-vars cps body preds defs)
;; Can the result of EXP definitely be unboxed as a u64?
(define (exp-result-u64? exp)
(match exp
((or ($ $primcall 'u64->scm #f (_))
($ $primcall 'u64->scm/unlikely #f (_))
($ $const (and (? number?) (? exact-integer?)
(? (lambda (n) (<= 0 n #xffffffffffffffff))))))
#t)
(_ #f)))
(compute-specializable-vars cps body preds defs exp-result-u64?
'(scm->u64 'scm->u64/truncate)))
(define (compute-phi-vars cps preds)
(intmap-fold (lambda (label preds phis)
(match preds
(() phis)
((_) phis)
(_
(match (intmap-ref cps label)
(($ $kargs names vars)
(fold1 (lambda (var phis)
(intset-add phis var))
vars phis))
(_ phis)))))
preds empty-intset))
;; Compute the set of variables which have more than one definition,
;; whose definitions are always f64-valued or u64-valued, and which have
;; at least one use that is an unbox operation.
(define (compute-specializable-phis cps body preds defs)
(let ((f64-vars (compute-specializable-f64-vars cps body preds defs))
(u64-vars (compute-specializable-u64-vars cps body preds defs))
(phi-vars (compute-phi-vars cps preds)))
(unless (eq? empty-intset (intset-intersect f64-vars u64-vars))
(error "expected f64 and u64 vars to be disjoint sets"))
(intset-fold (lambda (var out) (intmap-add out var 'u64))
(intset-intersect u64-vars phi-vars)
(intset-fold (lambda (var out) (intmap-add out var 'f64))
(intset-intersect f64-vars phi-vars)
empty-intmap))))
;; Each definition of an f64/u64 variable should unbox that variable.
;; The cont that binds the variable should re-box it under its original
;; name, and rely on CSE to remove the boxing as appropriate.
(define (apply-specialization cps kfun body preds defs phis)
(define (compute-unbox-labels)
(intmap-fold (lambda (phi kind labels)
(fold1 (lambda (pred labels)
(intset-add labels pred))
(intmap-ref preds (intmap-ref defs phi))
labels))
phis empty-intset))
(define (unbox-op var)
(match (intmap-ref phis var)
('f64 'scm->f64)
('u64 'scm->u64)))
(define (box-op var)
(match (intmap-ref phis var)
('f64 'f64->scm)
('u64 'u64->scm)))
(define (unbox-operands)
(define (unbox-arg cps arg def-var have-arg)
(if (intmap-ref phis def-var (lambda (_) #f))
(with-cps cps
(letv unboxed)
(let$ body (have-arg unboxed))
(letk kunboxed ($kargs ('unboxed) (unboxed) ,body))
(build-term
($continue kunboxed #f ($primcall (unbox-op def-var) #f (arg)))))
(have-arg cps arg)))
(define (unbox-args cps args def-vars have-args)
(match args
(() (have-args cps '()))
((arg . args)
(match def-vars
((def-var . def-vars)
(unbox-arg cps arg def-var
(lambda (cps arg)
(unbox-args cps args def-vars
(lambda (cps args)
(have-args cps (cons arg args)))))))))))
(intset-fold
(lambda (label cps)
(match (intmap-ref cps label)
(($ $kargs names vars ($ $continue k src exp))
(match (intmap-ref cps k)
(($ $kargs _ defs)
(match exp
;; For expressions that define a single value, we know we need
;; to unbox that value. For $values though we might have to
;; unbox just a subset of values.
(($ $values args)
(with-cps cps
(let$ term (unbox-args
args defs
(lambda (cps args)
(with-cps cps
(build-term
($continue k src ($values args)))))))
(setk label ($kargs names vars ,term))))
(_
(match defs
((def)
(with-cps cps
(letv boxed)
(letk kunbox ($kargs ('boxed) (boxed)
($continue k src
($primcall (unbox-op def) #f (boxed)))))
(setk label ($kargs names vars
($continue kunbox src ,exp)))))))))))))
(compute-unbox-labels)
cps))
(define (compute-box-labels)
(intmap-fold (lambda (phi kind labels)
(intset-add labels (intmap-ref defs phi)))
phis empty-intset))
(define (box-results cps)
(intset-fold
(lambda (label cps)
(match (intmap-ref cps label)
(($ $kargs names vars term)
(let* ((boxed (fold1 (lambda (var boxed)
(if (intmap-ref phis var (lambda (_) #f))
(intmap-add boxed var (fresh-var))
boxed))
vars empty-intmap))
(bound-vars (map (lambda (var)
(intmap-ref boxed var (lambda (var) var)))
vars)))
(define (box-var cps name var done)
(let ((unboxed (intmap-ref boxed var (lambda (_) #f))))
(if unboxed
(with-cps cps
(let$ term (done))
(letk kboxed ($kargs (name) (var) ,term))
(build-term
($continue kboxed #f
($primcall (box-op var) #f (unboxed)))))
(done cps))))
(define (box-vars cps names vars done)
(match vars
(() (done cps))
((var . vars)
(match names
((name . names)
(box-var cps name var
(lambda (cps)
(box-vars cps names vars done))))))))
(with-cps cps
(let$ box-term (box-vars names vars
(lambda (cps)
(with-cps cps term))))
(setk label ($kargs names bound-vars ,box-term)))))))
(compute-box-labels)
cps))
(box-results (unbox-operands)))
(define (specialize-phis cps)
(intmap-fold
(lambda (kfun body cps)
(let* ((preds (compute-predecessors cps kfun #:labels body))
(defs (compute-defs cps body))
(phis (compute-specializable-phis cps body preds defs)))
(if (eq? phis empty-intmap)
cps
(apply-specialization cps kfun body preds defs phis))))
(compute-reachable-functions cps)
cps))
(define (specialize-numbers cps)
;; Type inference wants a renumbered graph; OK.
(let ((cps (renumber cps)))
(with-fresh-name-state cps
(specialize-phis (specialize-operations cps)))))