1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/objcodes.c
Andy Wingo 510ca12687 add new rtl vm
* libguile/vm-engine.c (rtl_vm_engine): Add new VM.
  (vm_engine): Add support for calling RTL programs.

* libguile/tags.h (scm_tc7_rtl_program): New type for procedures that
  run on the new VM.
* libguile/evalext.c (scm_self_evaluating_p):
* libguile/goops.c (scm_class_of):
* libguile/print.c (iprin1):
* libguile/procprop.c (scm_i_procedure_arity):
* libguile/procs.c (scm_procedure_p): Add hooks for the new tc7.

* libguile/programs.h:
* libguile/programs.c (scm_make_rtl_program, scm_i_rtl_program_print)
  (scm_rtl_program_p, scm_rtl_program_code):
* module/system/vm/program.scm: Add constructors and accessors for the
  new "RTL programs".

* libguile/vm.c (rtl_boot_continuation): Define a boot program.
  (rtl_apply, rtl_values): New static RTL programs.

* libguile/frames.c (scm_frame_num_locals): Adapt for frames of RTL
  programs.

* libguile/frames.h: Add description of RTL frames.

* libguile/Makefile.am: Add rules to generate vm-operations.h.
* .gitignore: Ignore vm-operations.h.
* module/system/vm/instruction.scm:
* libguile/instructions.c:
* libguile/instructions.h: Use vm-operations.h to define enumerated
  values for the new RTL opcodes.  Define some helper macros to pack and
  unpack 32-bit instruction words.
  (rtl-instruction-list): New function, exported by (system vm
  instruction).

* libguile/objcodes.c: Wire up the bits needed to detect the new RTL
  bytecode and load it, as appropriate.
2013-05-31 09:48:16 -04:00

893 lines
23 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 2001, 2009, 2010, 2011, 2012
* 2013 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#ifdef HAVE_SYS_MMAN_H
#include <sys/mman.h>
#endif
#include <sys/stat.h>
#include <sys/types.h>
#include <assert.h>
#include <alignof.h>
#include <byteswap.h>
#include <full-read.h>
#include "_scm.h"
#include "elf.h"
#include "programs.h"
#include "objcodes.h"
/* Before, we used __BYTE_ORDER, but that is not defined on all
systems. So punt and use automake, PDP endianness be damned. */
#define SCM_BYTE_ORDER_BE 4321
#define SCM_BYTE_ORDER_LE 1234
/* Byte order of the build machine. */
#ifdef WORDS_BIGENDIAN
#define SCM_BYTE_ORDER SCM_BYTE_ORDER_BE
#else
#define SCM_BYTE_ORDER SCM_BYTE_ORDER_LE
#endif
/* This file contains the loader for Guile's on-disk format: ELF with
some custom tags in the dynamic segment. */
#if SIZEOF_SCM_T_BITS == 4
#define Elf_Half Elf32_Half
#define Elf_Word Elf32_Word
#define Elf_Ehdr Elf32_Ehdr
#define ELFCLASS ELFCLASS32
#define Elf_Phdr Elf32_Phdr
#define Elf_Dyn Elf32_Dyn
#elif SIZEOF_SCM_T_BITS == 8
#define Elf_Half Elf64_Half
#define Elf_Word Elf64_Word
#define Elf_Ehdr Elf64_Ehdr
#define ELFCLASS ELFCLASS64
#define Elf_Phdr Elf64_Phdr
#define Elf_Dyn Elf64_Dyn
#else
#error
#endif
#define DT_LOGUILE 0x37146000 /* Start of Guile-specific */
#define DT_GUILE_GC_ROOT 0x37146000 /* Offset of GC roots */
#define DT_GUILE_GC_ROOT_SZ 0x37146001 /* Size in machine words of GC
roots */
#define DT_GUILE_ENTRY 0x37146002 /* Address of entry thunk */
#define DT_GUILE_RTL_VERSION 0x37146003 /* Bytecode version */
#define DT_HIGUILE 0x37146fff /* End of Guile-specific */
#ifdef WORDS_BIGENDIAN
#define ELFDATA ELFDATA2MSB
#else
#define ELFDATA ELFDATA2LSB
#endif
static void register_elf (char *data, size_t len);
enum bytecode_kind
{
BYTECODE_KIND_NONE,
BYTECODE_KIND_GUILE_2_0,
BYTECODE_KIND_GUILE_2_2
};
static SCM
pointer_to_procedure (enum bytecode_kind bytecode_kind, char *ptr)
{
switch (bytecode_kind)
{
case BYTECODE_KIND_GUILE_2_0:
{
SCM objcode;
scm_t_bits tag = SCM_MAKE_OBJCODE_TAG (SCM_OBJCODE_TYPE_MMAP, 0);
objcode = scm_double_cell (tag, (scm_t_bits) ptr, SCM_BOOL_F_BITS, 0);
return scm_make_program (objcode, SCM_BOOL_F, SCM_UNDEFINED);
}
case BYTECODE_KIND_GUILE_2_2:
{
return scm_i_make_rtl_program ((scm_t_uint32 *) ptr);
}
case BYTECODE_KIND_NONE:
default:
abort ();
}
}
static const char*
check_elf_header (const Elf_Ehdr *header)
{
if (!(header->e_ident[EI_MAG0] == ELFMAG0
&& header->e_ident[EI_MAG1] == ELFMAG1
&& header->e_ident[EI_MAG2] == ELFMAG2
&& header->e_ident[EI_MAG3] == ELFMAG3))
return "not an ELF file";
if (header->e_ident[EI_CLASS] != ELFCLASS)
return "ELF file does not have native word size";
if (header->e_ident[EI_DATA] != ELFDATA)
return "ELF file does not have native byte order";
if (header->e_ident[EI_VERSION] != EV_CURRENT)
return "bad ELF version";
if (header->e_ident[EI_OSABI] != ELFOSABI_STANDALONE)
return "unexpected OS ABI";
if (header->e_ident[EI_ABIVERSION] != 0)
return "unexpected ABI version";
if (header->e_type != ET_DYN)
return "unexpected ELF type";
if (header->e_machine != EM_NONE)
return "unexpected machine";
if (header->e_version != EV_CURRENT)
return "unexpected ELF version";
if (header->e_ehsize != sizeof *header)
return "unexpected header size";
if (header->e_phentsize != sizeof (Elf_Phdr))
return "unexpected program header size";
return NULL;
}
#define IS_ALIGNED(offset, alignment) \
(!((offset) & ((alignment) - 1)))
#define ALIGN(offset, alignment) \
((offset + (alignment - 1)) & ~(alignment - 1))
/* Return the alignment required by the ELF at DATA, of LEN bytes. */
static size_t
elf_alignment (const char *data, size_t len)
{
Elf_Ehdr *header;
int i;
size_t alignment = 8;
if (len < sizeof(Elf_Ehdr))
return alignment;
header = (Elf_Ehdr *) data;
if (header->e_phoff + header->e_phnum * header->e_phentsize >= len)
return alignment;
for (i = 0; i < header->e_phnum; i++)
{
Elf_Phdr *phdr;
const char *phdr_addr = data + header->e_phoff + i * header->e_phentsize;
if (!IS_ALIGNED ((scm_t_uintptr) phdr_addr, alignof_type (Elf_Phdr)))
return alignment;
phdr = (Elf_Phdr *) phdr_addr;
if (phdr->p_align & (phdr->p_align - 1))
return alignment;
if (phdr->p_align > alignment)
alignment = phdr->p_align;
}
return alignment;
}
/* This function leaks the memory that it allocates. */
static char*
alloc_aligned (size_t len, unsigned alignment)
{
char *ret;
if (alignment == 8)
{
/* FIXME: Assert that we actually have an 8-byte-aligned malloc. */
ret = malloc (len);
}
#if defined(HAVE_SYS_MMAN_H) && defined(MMAP_ANONYMOUS)
else if (alignment == SCM_PAGE_SIZE)
{
ret = mmap (NULL, len, PROT_READ | PROT_WRITE, -1, 0);
if (ret == MAP_FAILED)
SCM_SYSERROR;
}
#endif
else
{
if (len + alignment < len)
abort ();
ret = malloc (len + alignment - 1);
if (!ret)
abort ();
ret = (char *) ALIGN ((scm_t_uintptr) ret, alignment);
}
return ret;
}
static char*
copy_and_align_elf_data (const char *data, size_t len)
{
size_t alignment;
char *copy;
alignment = elf_alignment (data, len);
copy = alloc_aligned (len, alignment);
memcpy(copy, data, len);
return copy;
}
#ifdef HAVE_SYS_MMAN_H
static int
segment_flags_to_prot (Elf_Word flags)
{
int prot = 0;
if (flags & PF_X)
prot |= PROT_EXEC;
if (flags & PF_W)
prot |= PROT_WRITE;
if (flags & PF_R)
prot |= PROT_READ;
return prot;
}
#endif
static char*
process_dynamic_segment (char *base, Elf_Phdr *dyn_phdr,
SCM *init_out, SCM *entry_out)
{
char *dyn_addr = base + dyn_phdr->p_vaddr;
Elf_Dyn *dyn = (Elf_Dyn *) dyn_addr;
size_t i, dyn_size = dyn_phdr->p_memsz / sizeof (Elf_Dyn);
char *init = 0, *gc_root = 0, *entry = 0;
scm_t_ptrdiff gc_root_size = 0;
enum bytecode_kind bytecode_kind = BYTECODE_KIND_NONE;
for (i = 0; i < dyn_size; i++)
{
if (dyn[i].d_tag == DT_NULL)
break;
switch (dyn[i].d_tag)
{
case DT_INIT:
if (init)
return "duplicate DT_INIT";
init = base + dyn[i].d_un.d_val;
break;
case DT_GUILE_GC_ROOT:
if (gc_root)
return "duplicate DT_GUILE_GC_ROOT";
gc_root = base + dyn[i].d_un.d_val;
break;
case DT_GUILE_GC_ROOT_SZ:
if (gc_root_size)
return "duplicate DT_GUILE_GC_ROOT_SZ";
gc_root_size = dyn[i].d_un.d_val;
break;
case DT_GUILE_ENTRY:
if (entry)
return "duplicate DT_GUILE_ENTRY";
entry = base + dyn[i].d_un.d_val;
break;
case DT_GUILE_RTL_VERSION:
if (bytecode_kind != BYTECODE_KIND_NONE)
return "duplicate DT_GUILE_RTL_VERSION";
{
scm_t_uint16 major = dyn[i].d_un.d_val >> 16;
scm_t_uint16 minor = dyn[i].d_un.d_val & 0xffff;
switch (major)
{
case 0x0200:
bytecode_kind = BYTECODE_KIND_GUILE_2_0;
if (minor > SCM_OBJCODE_MINOR_VERSION)
return "incompatible bytecode version";
break;
case 0x0202:
bytecode_kind = BYTECODE_KIND_GUILE_2_2;
if (minor)
return "incompatible bytecode version";
break;
default:
return "incompatible bytecode kind";
}
break;
}
}
}
if (!entry)
return "missing DT_GUILE_ENTRY";
switch (bytecode_kind)
{
case BYTECODE_KIND_GUILE_2_0:
if (init)
return "unexpected DT_INIT";
if ((scm_t_uintptr) entry % 8)
return "unaligned DT_GUILE_ENTRY";
break;
case BYTECODE_KIND_GUILE_2_2:
if ((scm_t_uintptr) init % 4)
return "unaligned DT_INIT";
if ((scm_t_uintptr) entry % 4)
return "unaligned DT_GUILE_ENTRY";
break;
case BYTECODE_KIND_NONE:
default:
return "missing DT_GUILE_RTL_VERSION";
}
if (gc_root)
GC_add_roots (gc_root, gc_root + gc_root_size);
*init_out = init ? pointer_to_procedure (bytecode_kind, init) : SCM_BOOL_F;
*entry_out = pointer_to_procedure (bytecode_kind, entry);
return NULL;
}
#define ABORT(msg) do { err_msg = msg; goto cleanup; } while (0)
static SCM
load_thunk_from_memory (char *data, size_t len, int is_read_only)
#define FUNC_NAME "load-thunk-from-memory"
{
Elf_Ehdr *header;
Elf_Phdr *ph;
const char *err_msg = 0;
size_t n, alignment = 8;
int i;
int dynamic_segment = -1;
SCM init = SCM_BOOL_F, entry = SCM_BOOL_F;
if (len < sizeof *header)
ABORT ("object file too small");
header = (Elf_Ehdr*) data;
if ((err_msg = check_elf_header (header)))
goto cleanup;
if (header->e_phnum == 0)
ABORT ("no loadable segments");
n = header->e_phnum;
if (len < header->e_phoff + n * sizeof (Elf_Phdr))
ABORT ("object file too small");
ph = (Elf_Phdr*) (data + header->e_phoff);
/* Check that the segment table is sane. */
for (i = 0; i < n; i++)
{
if (ph[i].p_filesz != ph[i].p_memsz)
ABORT ("expected p_filesz == p_memsz");
if (!ph[i].p_flags)
ABORT ("expected nonzero segment flags");
if (ph[i].p_align < alignment)
{
if (ph[i].p_align % alignment)
ABORT ("expected new alignment to be multiple of old");
alignment = ph[i].p_align;
}
if (ph[i].p_type == PT_DYNAMIC)
{
if (dynamic_segment >= 0)
ABORT ("expected only one PT_DYNAMIC segment");
dynamic_segment = i;
}
if (i == 0)
{
if (ph[i].p_vaddr != 0)
ABORT ("first loadable vaddr is not 0");
}
else
{
if (ph[i].p_vaddr < ph[i-1].p_vaddr + ph[i-1].p_memsz)
ABORT ("overlapping segments");
if (ph[i].p_offset + ph[i].p_filesz > len)
ABORT ("segment beyond end of byte array");
}
}
if (dynamic_segment < 0)
ABORT ("no PT_DYNAMIC segment");
if (!IS_ALIGNED ((scm_t_uintptr) data, alignment))
ABORT ("incorrectly aligned base");
/* Allow writes to writable pages. */
if (is_read_only)
{
#ifdef HAVE_SYS_MMAN_H
for (i = 0; i < n; i++)
{
if (ph[i].p_flags == PF_R)
continue;
if (ph[i].p_align != 4096)
continue;
if (mprotect (data + ph[i].p_vaddr,
ph[i].p_memsz,
segment_flags_to_prot (ph[i].p_flags)))
goto cleanup;
}
#else
ABORT ("expected writable pages");
#endif
}
if ((err_msg = process_dynamic_segment (data, &ph[dynamic_segment],
&init, &entry)))
goto cleanup;
if (scm_is_true (init))
scm_call_0 (init);
register_elf (data, len);
/* Finally! Return the thunk. */
return entry;
cleanup:
{
if (errno)
SCM_SYSERROR;
scm_misc_error (FUNC_NAME, err_msg ? err_msg : "error loading ELF file",
SCM_EOL);
}
}
#undef FUNC_NAME
#define SCM_PAGE_SIZE 4096
static char*
map_file_contents (int fd, size_t len, int *is_read_only)
#define FUNC_NAME "load-thunk-from-file"
{
char *data;
#ifdef HAVE_SYS_MMAN_H
data = mmap (NULL, len, PROT_READ, MAP_PRIVATE, fd, 0);
if (data == MAP_FAILED)
SCM_SYSERROR;
*is_read_only = 1;
#else
if (lseek (fd, 0, SEEK_START) < 0)
{
int errno_save = errno;
(void) close (fd);
errno = errno_save;
SCM_SYSERROR;
}
/* Given that we are using the read fallback, optimistically assume
that the .go files were made with 8-byte alignment.
alignment. */
data = malloc (end);
if (!data)
{
(void) close (fd);
scm_misc_error (FUNC_NAME, "failed to allocate ~A bytes",
scm_list_1 (scm_from_size_t (end)));
}
if (full_read (fd, data, end) != end)
{
int errno_save = errno;
(void) close (fd);
errno = errno_save;
if (errno)
SCM_SYSERROR;
scm_misc_error (FUNC_NAME, "short read while loading objcode",
SCM_EOL);
}
/* If our optimism failed, fall back. */
{
unsigned alignment = sniff_elf_alignment (data, end);
if (alignment != 8)
{
char *copy = copy_and_align_elf_data (data, end, alignment);
free (data);
data = copy;
}
}
*is_read_only = 0;
#endif
return data;
}
#undef FUNC_NAME
SCM_DEFINE (scm_load_thunk_from_file, "load-thunk-from-file", 1, 0, 0,
(SCM filename),
"")
#define FUNC_NAME s_scm_load_thunk_from_file
{
char *c_filename;
int fd, is_read_only;
off_t end;
char *data;
SCM_VALIDATE_STRING (1, filename);
c_filename = scm_to_locale_string (filename);
fd = open (c_filename, O_RDONLY | O_BINARY | O_CLOEXEC);
free (c_filename);
if (fd < 0) SCM_SYSERROR;
end = lseek (fd, 0, SEEK_END);
if (end < 0)
SCM_SYSERROR;
data = map_file_contents (fd, end, &is_read_only);
(void) close (fd);
return load_thunk_from_memory (data, end, is_read_only);
}
#undef FUNC_NAME
SCM_DEFINE (scm_load_thunk_from_memory, "load-thunk-from-memory", 1, 0, 0,
(SCM bv),
"")
#define FUNC_NAME s_scm_load_thunk_from_memory
{
char *data;
size_t len;
SCM_VALIDATE_BYTEVECTOR (1, bv);
data = (char *) SCM_BYTEVECTOR_CONTENTS (bv);
len = SCM_BYTEVECTOR_LENGTH (bv);
/* Copy data in order to align it, to trace its GC roots and
writable sections, and to keep it in memory. */
data = copy_and_align_elf_data (data, len);
return load_thunk_from_memory (data, len, 0);
}
#undef FUNC_NAME
/*
* Objcode type
*/
/* Convert X, which is in byte order BYTE_ORDER, to its native
representation. */
static inline uint32_t
to_native_order (uint32_t x, int byte_order)
{
if (byte_order == SCM_BYTE_ORDER)
return x;
else
return bswap_32 (x);
}
SCM
scm_c_make_objcode_slice (SCM parent, const scm_t_uint8 *ptr)
#define FUNC_NAME "make-objcode-slice"
{
const struct scm_objcode *data, *parent_data;
const scm_t_uint8 *parent_base;
SCM_VALIDATE_OBJCODE (1, parent);
parent_data = SCM_OBJCODE_DATA (parent);
parent_base = SCM_C_OBJCODE_BASE (parent_data);
if (ptr < parent_base
|| ptr >= (parent_base + parent_data->len + parent_data->metalen
- sizeof (struct scm_objcode)))
scm_misc_error
(FUNC_NAME, "offset out of bounds (~a vs ~a + ~a + ~a)",
scm_list_4 (scm_from_unsigned_integer ((scm_t_bits) ptr),
scm_from_unsigned_integer ((scm_t_bits) parent_base),
scm_from_uint32 (parent_data->len),
scm_from_uint32 (parent_data->metalen)));
/* Make sure bytecode for the objcode-meta is suitable aligned. Failing to
do so leads to SIGBUS/SIGSEGV on some arches (e.g., SPARC). */
assert ((((scm_t_bits) ptr) &
(alignof_type (struct scm_objcode) - 1UL)) == 0);
data = (struct scm_objcode*) ptr;
assert (SCM_C_OBJCODE_BASE (data) + data->len + data->metalen
<= parent_base + parent_data->len + parent_data->metalen);
return scm_double_cell (SCM_MAKE_OBJCODE_TAG (SCM_OBJCODE_TYPE_SLICE, 0),
(scm_t_bits)data, SCM_UNPACK (parent), 0);
}
#undef FUNC_NAME
struct mapped_elf_image
{
char *start;
char *end;
};
static struct mapped_elf_image *mapped_elf_images = NULL;
static size_t mapped_elf_images_count = 0;
static size_t mapped_elf_images_allocated = 0;
static size_t
find_mapped_elf_insertion_index (char *ptr)
{
/* "mapped_elf_images_count" must never be dereferenced. */
size_t start = 0, end = mapped_elf_images_count;
while (start < end)
{
size_t n = start + (end - start) / 2;
if (ptr < mapped_elf_images[n].end)
end = n;
else
start = n + 1;
}
return start;
}
static void
register_elf (char *data, size_t len)
{
scm_i_pthread_mutex_lock (&scm_i_misc_mutex);
{
/* My kingdom for a generic growable sorted vector library. */
if (mapped_elf_images_count == mapped_elf_images_allocated)
{
struct mapped_elf_image *prev;
size_t n;
if (mapped_elf_images_allocated)
mapped_elf_images_allocated *= 2;
else
mapped_elf_images_allocated = 16;
prev = mapped_elf_images;
mapped_elf_images =
scm_gc_malloc_pointerless (sizeof (*mapped_elf_images)
* mapped_elf_images_allocated,
"mapped elf images");
for (n = 0; n < mapped_elf_images_count; n++)
{
mapped_elf_images[n].start = prev[n].start;
mapped_elf_images[n].end = prev[n].end;
}
}
{
size_t end;
size_t n = find_mapped_elf_insertion_index (data);
for (end = mapped_elf_images_count; n < end; end--)
{
mapped_elf_images[end].start = mapped_elf_images[end - 1].start;
mapped_elf_images[end].end = mapped_elf_images[end - 1].end;
}
mapped_elf_images_count++;
mapped_elf_images[n].start = data;
mapped_elf_images[n].end = data + len;
}
}
scm_i_pthread_mutex_unlock (&scm_i_misc_mutex);
}
static SCM
scm_find_mapped_elf_image (SCM ip)
{
char *ptr = (char *) scm_to_uintptr_t (ip);
SCM result;
scm_i_pthread_mutex_lock (&scm_i_misc_mutex);
{
size_t n = find_mapped_elf_insertion_index ((char *) ptr);
if (n < mapped_elf_images_count
&& mapped_elf_images[n].start <= ptr
&& ptr < mapped_elf_images[n].end)
{
signed char *data = (signed char *) mapped_elf_images[n].start;
size_t len = mapped_elf_images[n].end - mapped_elf_images[n].start;
result = scm_c_take_gc_bytevector (data, len, SCM_BOOL_F);
}
else
result = SCM_BOOL_F;
}
scm_i_pthread_mutex_unlock (&scm_i_misc_mutex);
return result;
}
/*
* Scheme interface
*/
SCM_DEFINE (scm_objcode_p, "objcode?", 1, 0, 0,
(SCM obj),
"")
#define FUNC_NAME s_scm_objcode_p
{
return scm_from_bool (SCM_OBJCODE_P (obj));
}
#undef FUNC_NAME
SCM_DEFINE (scm_objcode_meta, "objcode-meta", 1, 0, 0,
(SCM objcode),
"")
#define FUNC_NAME s_scm_objcode_meta
{
SCM_VALIDATE_OBJCODE (1, objcode);
if (SCM_OBJCODE_META_LEN (objcode) == 0)
return SCM_BOOL_F;
else
return scm_c_make_objcode_slice (objcode, (SCM_OBJCODE_BASE (objcode)
+ SCM_OBJCODE_LEN (objcode)));
}
#undef FUNC_NAME
/* Wrap BYTECODE in objcode, interpreting its lengths according to
BYTE_ORDER. */
static SCM
bytecode_to_objcode (SCM bytecode, int byte_order)
#define FUNC_NAME "bytecode->objcode"
{
size_t size, len, metalen;
const scm_t_uint8 *c_bytecode;
struct scm_objcode *data;
if (!scm_is_bytevector (bytecode))
scm_wrong_type_arg (FUNC_NAME, 1, bytecode);
size = SCM_BYTEVECTOR_LENGTH (bytecode);
c_bytecode = (const scm_t_uint8*)SCM_BYTEVECTOR_CONTENTS (bytecode);
SCM_ASSERT_RANGE (0, bytecode, size >= sizeof(struct scm_objcode));
data = (struct scm_objcode*)c_bytecode;
len = to_native_order (data->len, byte_order);
metalen = to_native_order (data->metalen, byte_order);
if (len + metalen != (size - sizeof (*data)))
scm_misc_error (FUNC_NAME, "bad bytevector size (~a != ~a)",
scm_list_2 (scm_from_size_t (size),
scm_from_uint32 (sizeof (*data) + len + metalen)));
/* foolishly, we assume that as long as bytecode is around, that c_bytecode
will be of the same length; perhaps a bad assumption? */
return scm_double_cell (SCM_MAKE_OBJCODE_TAG (SCM_OBJCODE_TYPE_BYTEVECTOR, 0),
(scm_t_bits)data, SCM_UNPACK (bytecode), 0);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytecode_to_objcode, "bytecode->objcode", 1, 1, 0,
(SCM bytecode, SCM endianness),
"")
#define FUNC_NAME s_scm_bytecode_to_objcode
{
int byte_order;
if (SCM_UNBNDP (endianness))
byte_order = SCM_BYTE_ORDER;
else if (scm_is_eq (endianness, scm_endianness_big))
byte_order = SCM_BYTE_ORDER_BE;
else if (scm_is_eq (endianness, scm_endianness_little))
byte_order = SCM_BYTE_ORDER_LE;
else
scm_wrong_type_arg (FUNC_NAME, 2, endianness);
return bytecode_to_objcode (bytecode, byte_order);
}
#undef FUNC_NAME
SCM_DEFINE (scm_objcode_to_bytecode, "objcode->bytecode", 1, 1, 0,
(SCM objcode, SCM endianness),
"")
#define FUNC_NAME s_scm_objcode_to_bytecode
{
scm_t_uint32 len, meta_len, total_len;
int byte_order;
SCM_VALIDATE_OBJCODE (1, objcode);
if (SCM_UNBNDP (endianness))
byte_order = SCM_BYTE_ORDER;
else if (scm_is_eq (endianness, scm_endianness_big))
byte_order = SCM_BYTE_ORDER_BE;
else if (scm_is_eq (endianness, scm_endianness_little))
byte_order = SCM_BYTE_ORDER_LE;
else
scm_wrong_type_arg (FUNC_NAME, 2, endianness);
len = SCM_OBJCODE_LEN (objcode);
meta_len = SCM_OBJCODE_META_LEN (objcode);
total_len = sizeof (struct scm_objcode);
total_len += to_native_order (len, byte_order);
total_len += to_native_order (meta_len, byte_order);
return scm_c_take_gc_bytevector ((scm_t_int8*)SCM_OBJCODE_DATA (objcode),
total_len, objcode);
}
#undef FUNC_NAME
void
scm_i_objcode_print (SCM objcode, SCM port, scm_print_state *pstate)
{
scm_puts_unlocked ("#<objcode ", port);
scm_uintprint ((scm_t_bits)SCM_OBJCODE_BASE (objcode), 16, port);
scm_puts_unlocked (">", port);
}
void
scm_bootstrap_objcodes (void)
{
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
"scm_init_objcodes",
(scm_t_extension_init_func)scm_init_objcodes, NULL);
}
void
scm_init_objcodes (void)
{
#ifndef SCM_MAGIC_SNARFER
#include "libguile/objcodes.x"
#endif
scm_c_define_gsubr ("find-mapped-elf-image", 1, 0, 0,
(scm_t_subr) scm_find_mapped_elf_image);
scm_c_define ("word-size", scm_from_size_t (sizeof(SCM)));
scm_c_define ("byte-order", scm_from_uint16 (SCM_BYTE_ORDER));
}
/*
Local Variables:
c-file-style: "gnu"
End:
*/