1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00
guile/libguile/bytevectors.c
Neil Jerram 53befeb700 Change Guile license to LGPLv3+
(Not quite finished, the following will be done tomorrow.
   module/srfi/*.scm
   module/rnrs/*.scm
   module/scripts/*.scm
   testsuite/*.scm
   guile-readline/*
)
2009-06-17 00:22:09 +01:00

2012 lines
54 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 2009 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <alloca.h>
#include <gmp.h>
#include "libguile/_scm.h"
#include "libguile/bytevectors.h"
#include "libguile/strings.h"
#include "libguile/validate.h"
#include "libguile/ieee-754.h"
#include "libguile/unif.h"
#include "libguile/srfi-4.h"
#include <byteswap.h>
#include <striconveh.h>
#include <uniconv.h>
#ifdef HAVE_LIMITS_H
# include <limits.h>
#else
/* Assuming 32-bit longs. */
# define ULONG_MAX 4294967295UL
#endif
#include <string.h>
/* Utilities. */
/* Convenience macros. These are used by the various templates (macros) that
are parameterized by integer signedness. */
#define INT8_T_signed scm_t_int8
#define INT8_T_unsigned scm_t_uint8
#define INT16_T_signed scm_t_int16
#define INT16_T_unsigned scm_t_uint16
#define INT32_T_signed scm_t_int32
#define INT32_T_unsigned scm_t_uint32
#define is_signed_int8(_x) (((_x) >= -128L) && ((_x) <= 127L))
#define is_unsigned_int8(_x) ((_x) <= 255UL)
#define is_signed_int16(_x) (((_x) >= -32768L) && ((_x) <= 32767L))
#define is_unsigned_int16(_x) ((_x) <= 65535UL)
#define is_signed_int32(_x) (((_x) >= -2147483648L) && ((_x) <= 2147483647L))
#define is_unsigned_int32(_x) ((_x) <= 4294967295UL)
#define SIGNEDNESS_signed 1
#define SIGNEDNESS_unsigned 0
#define INT_TYPE(_size, _sign) INT ## _size ## _T_ ## _sign
#define INT_SWAP(_size) bswap_ ## _size
#define INT_VALID_P(_size, _sign) is_ ## _sign ## _int ## _size
#define SIGNEDNESS(_sign) SIGNEDNESS_ ## _sign
#define INTEGER_ACCESSOR_PROLOGUE(_len, _sign) \
unsigned c_len, c_index; \
_sign char *c_bv; \
\
SCM_VALIDATE_BYTEVECTOR (1, bv); \
c_index = scm_to_uint (index); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
c_bv = (_sign char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
if (SCM_UNLIKELY (c_index + ((_len) >> 3UL) - 1 >= c_len)) \
scm_out_of_range (FUNC_NAME, index);
/* Template for fixed-size integer access (only 8, 16 or 32-bit). */
#define INTEGER_REF(_len, _sign) \
SCM result; \
\
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
{ \
INT_TYPE (_len, _sign) c_result; \
\
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
if (!scm_is_eq (endianness, native_endianness)) \
c_result = INT_SWAP (_len) (c_result); \
\
result = SCM_I_MAKINUM (c_result); \
} \
\
return result;
/* Template for fixed-size integer access using the native endianness. */
#define INTEGER_NATIVE_REF(_len, _sign) \
SCM result; \
\
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
\
{ \
INT_TYPE (_len, _sign) c_result; \
\
memcpy (&c_result, &c_bv[c_index], (_len) / 8); \
result = SCM_I_MAKINUM (c_result); \
} \
\
return result;
/* Template for fixed-size integer modification (only 8, 16 or 32-bit). */
#define INTEGER_SET(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
{ \
_sign long c_value; \
INT_TYPE (_len, _sign) c_value_short; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
scm_wrong_type_arg (FUNC_NAME, 3, value); \
\
c_value = SCM_I_INUM (value); \
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
scm_out_of_range (FUNC_NAME, value); \
\
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
if (!scm_is_eq (endianness, native_endianness)) \
c_value_short = INT_SWAP (_len) (c_value_short); \
\
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
} \
\
return SCM_UNSPECIFIED;
/* Template for fixed-size integer modification using the native
endianness. */
#define INTEGER_NATIVE_SET(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
\
{ \
_sign long c_value; \
INT_TYPE (_len, _sign) c_value_short; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
scm_wrong_type_arg (FUNC_NAME, 3, value); \
\
c_value = SCM_I_INUM (value); \
if (SCM_UNLIKELY (!INT_VALID_P (_len, _sign) (c_value))) \
scm_out_of_range (FUNC_NAME, value); \
\
c_value_short = (INT_TYPE (_len, _sign)) c_value; \
\
memcpy (&c_bv[c_index], &c_value_short, (_len) / 8); \
} \
\
return SCM_UNSPECIFIED;
/* Bytevector type. */
SCM_GLOBAL_SMOB (scm_tc16_bytevector, "r6rs-bytevector", 0);
#define SCM_BYTEVECTOR_SET_LENGTH(_bv, _len) \
SCM_SET_SMOB_DATA ((_bv), (scm_t_bits) (_len))
#define SCM_BYTEVECTOR_SET_CONTENTS(_bv, _buf) \
SCM_SET_SMOB_DATA_2 ((_bv), (scm_t_bits) (_buf))
/* The empty bytevector. */
SCM scm_null_bytevector = SCM_UNSPECIFIED;
static inline SCM
make_bytevector_from_buffer (unsigned len, signed char *contents)
{
/* Assuming LEN > SCM_BYTEVECTOR_INLINE_THRESHOLD. */
SCM_RETURN_NEWSMOB2 (scm_tc16_bytevector, len, contents);
}
static inline SCM
make_bytevector (unsigned len)
{
SCM bv;
if (SCM_UNLIKELY (len == 0))
bv = scm_null_bytevector;
else
{
signed char *contents = NULL;
if (!SCM_BYTEVECTOR_INLINEABLE_SIZE_P (len))
contents = (signed char *) scm_gc_malloc (len, SCM_GC_BYTEVECTOR);
bv = make_bytevector_from_buffer (len, contents);
}
return bv;
}
/* Return a new bytevector of size LEN octets. */
SCM
scm_c_make_bytevector (unsigned len)
{
return (make_bytevector (len));
}
/* Return a bytevector of size LEN made up of CONTENTS. The area pointed to
by CONTENTS must have been allocated using `scm_gc_malloc ()'. */
SCM
scm_c_take_bytevector (signed char *contents, unsigned len)
{
SCM bv;
if (SCM_UNLIKELY (SCM_BYTEVECTOR_INLINEABLE_SIZE_P (len)))
{
/* Copy CONTENTS into an "in-line" buffer, then free CONTENTS. */
signed char *c_bv;
bv = make_bytevector (len);
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
memcpy (c_bv, contents, len);
scm_gc_free (contents, len, SCM_GC_BYTEVECTOR);
}
else
bv = make_bytevector_from_buffer (len, contents);
return bv;
}
/* Shrink BV to C_NEW_LEN (which is assumed to be smaller than its current
size) and return BV. */
SCM
scm_i_shrink_bytevector (SCM bv, unsigned c_new_len)
{
if (!SCM_BYTEVECTOR_INLINE_P (bv))
{
unsigned c_len;
signed char *c_bv, *c_new_bv;
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
SCM_BYTEVECTOR_SET_LENGTH (bv, c_new_len);
if (SCM_BYTEVECTOR_INLINEABLE_SIZE_P (c_new_len))
{
/* Copy to the in-line buffer and free the current buffer. */
c_new_bv = SCM_BYTEVECTOR_CONTENTS (bv);
memcpy (c_new_bv, c_bv, c_new_len);
scm_gc_free (c_bv, c_len, SCM_GC_BYTEVECTOR);
}
else
{
/* Resize the existing buffer. */
c_new_bv = scm_gc_realloc (c_bv, c_len, c_new_len,
SCM_GC_BYTEVECTOR);
SCM_BYTEVECTOR_SET_CONTENTS (bv, c_new_bv);
}
}
return bv;
}
SCM_SMOB_PRINT (scm_tc16_bytevector, print_bytevector,
bv, port, pstate)
{
unsigned c_len, i;
unsigned char *c_bv;
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = (unsigned char *) SCM_BYTEVECTOR_CONTENTS (bv);
scm_puts ("#vu8(", port);
for (i = 0; i < c_len; i++)
{
if (i > 0)
scm_putc (' ', port);
scm_uintprint (c_bv[i], 10, port);
}
scm_putc (')', port);
/* Make GCC think we use it. */
scm_remember_upto_here ((SCM) pstate);
return 1;
}
SCM_SMOB_FREE (scm_tc16_bytevector, free_bytevector, bv)
{
if (!SCM_BYTEVECTOR_INLINE_P (bv))
{
unsigned c_len;
signed char *c_bv;
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
scm_gc_free (c_bv, c_len, SCM_GC_BYTEVECTOR);
}
return 0;
}
/* General operations. */
SCM_SYMBOL (scm_sym_big, "big");
SCM_SYMBOL (scm_sym_little, "little");
SCM scm_endianness_big, scm_endianness_little;
/* Host endianness (a symbol). */
static SCM native_endianness = SCM_UNSPECIFIED;
/* Byte-swapping. */
#ifndef bswap_24
# define bswap_24(_x) \
((((_x) & 0xff0000) >> 16) | \
(((_x) & 0x00ff00)) | \
(((_x) & 0x0000ff) << 16))
#endif
SCM_DEFINE (scm_native_endianness, "native-endianness", 0, 0, 0,
(void),
"Return a symbol denoting the machine's native endianness.")
#define FUNC_NAME s_scm_native_endianness
{
return native_endianness;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_p, "bytevector?", 1, 0, 0,
(SCM obj),
"Return true if @var{obj} is a bytevector.")
#define FUNC_NAME s_scm_bytevector_p
{
return (scm_from_bool (SCM_SMOB_PREDICATE (scm_tc16_bytevector,
obj)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_make_bytevector, "make-bytevector", 1, 1, 0,
(SCM len, SCM fill),
"Return a newly allocated bytevector of @var{len} bytes, "
"optionally filled with @var{fill}.")
#define FUNC_NAME s_scm_make_bytevector
{
SCM bv;
unsigned c_len;
signed char c_fill = '\0';
SCM_VALIDATE_UINT_COPY (1, len, c_len);
if (fill != SCM_UNDEFINED)
{
int value;
value = scm_to_int (fill);
if (SCM_UNLIKELY ((value < -128) || (value > 255)))
scm_out_of_range (FUNC_NAME, fill);
c_fill = (signed char) value;
}
bv = make_bytevector (c_len);
if (fill != SCM_UNDEFINED)
{
unsigned i;
signed char *contents;
contents = SCM_BYTEVECTOR_CONTENTS (bv);
for (i = 0; i < c_len; i++)
contents[i] = c_fill;
}
return bv;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_length, "bytevector-length", 1, 0, 0,
(SCM bv),
"Return the length (in bytes) of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_length
{
SCM_VALIDATE_BYTEVECTOR (1, bv);
return (scm_from_uint (SCM_BYTEVECTOR_LENGTH (bv)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_eq_p, "bytevector=?", 2, 0, 0,
(SCM bv1, SCM bv2),
"Return is @var{bv1} equals to @var{bv2}---i.e., if they "
"have the same length and contents.")
#define FUNC_NAME s_scm_bytevector_eq_p
{
SCM result = SCM_BOOL_F;
unsigned c_len1, c_len2;
SCM_VALIDATE_BYTEVECTOR (1, bv1);
SCM_VALIDATE_BYTEVECTOR (2, bv2);
c_len1 = SCM_BYTEVECTOR_LENGTH (bv1);
c_len2 = SCM_BYTEVECTOR_LENGTH (bv2);
if (c_len1 == c_len2)
{
signed char *c_bv1, *c_bv2;
c_bv1 = SCM_BYTEVECTOR_CONTENTS (bv1);
c_bv2 = SCM_BYTEVECTOR_CONTENTS (bv2);
result = scm_from_bool (!memcmp (c_bv1, c_bv2, c_len1));
}
return result;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_fill_x, "bytevector-fill!", 2, 0, 0,
(SCM bv, SCM fill),
"Fill bytevector @var{bv} with @var{fill}, a byte.")
#define FUNC_NAME s_scm_bytevector_fill_x
{
unsigned c_len, i;
signed char *c_bv, c_fill;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_fill = scm_to_int8 (fill);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
for (i = 0; i < c_len; i++)
c_bv[i] = c_fill;
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_copy_x, "bytevector-copy!", 5, 0, 0,
(SCM source, SCM source_start, SCM target, SCM target_start,
SCM len),
"Copy @var{len} bytes from @var{source} into @var{target}, "
"starting reading from @var{source_start} (a positive index "
"within @var{source}) and start writing at "
"@var{target_start}.")
#define FUNC_NAME s_scm_bytevector_copy_x
{
unsigned c_len, c_source_len, c_target_len;
unsigned c_source_start, c_target_start;
signed char *c_source, *c_target;
SCM_VALIDATE_BYTEVECTOR (1, source);
SCM_VALIDATE_BYTEVECTOR (3, target);
c_len = scm_to_uint (len);
c_source_start = scm_to_uint (source_start);
c_target_start = scm_to_uint (target_start);
c_source = SCM_BYTEVECTOR_CONTENTS (source);
c_target = SCM_BYTEVECTOR_CONTENTS (target);
c_source_len = SCM_BYTEVECTOR_LENGTH (source);
c_target_len = SCM_BYTEVECTOR_LENGTH (target);
if (SCM_UNLIKELY (c_source_start + c_len > c_source_len))
scm_out_of_range (FUNC_NAME, source_start);
if (SCM_UNLIKELY (c_target_start + c_len > c_target_len))
scm_out_of_range (FUNC_NAME, target_start);
memcpy (c_target + c_target_start,
c_source + c_source_start,
c_len);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_copy, "bytevector-copy", 1, 0, 0,
(SCM bv),
"Return a newly allocated copy of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_copy
{
SCM copy;
unsigned c_len;
signed char *c_bv, *c_copy;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = SCM_BYTEVECTOR_CONTENTS (bv);
copy = make_bytevector (c_len);
c_copy = SCM_BYTEVECTOR_CONTENTS (copy);
memcpy (c_copy, c_bv, c_len);
return copy;
}
#undef FUNC_NAME
SCM_DEFINE (scm_uniform_array_to_bytevector, "uniform-array->bytevector",
1, 0, 0, (SCM array),
"Return a newly allocated bytevector whose contents\n"
"will be copied from the uniform array @var{array}.")
#define FUNC_NAME s_scm_uniform_array_to_bytevector
{
SCM contents, ret;
size_t len;
scm_t_array_handle h;
const void *base;
size_t sz;
contents = scm_array_contents (array, SCM_BOOL_T);
if (scm_is_false (contents))
scm_wrong_type_arg_msg (FUNC_NAME, 0, array, "uniform contiguous array");
scm_array_get_handle (contents, &h);
base = scm_array_handle_uniform_elements (&h);
len = h.dims->inc * (h.dims->ubnd - h.dims->lbnd + 1);
sz = scm_array_handle_uniform_element_size (&h);
ret = make_bytevector (len * sz);
memcpy (SCM_BYTEVECTOR_CONTENTS (ret), base, len * sz);
scm_array_handle_release (&h);
return ret;
}
#undef FUNC_NAME
/* Operations on bytes and octets. */
SCM_DEFINE (scm_bytevector_u8_ref, "bytevector-u8-ref", 2, 0, 0,
(SCM bv, SCM index),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_u8_ref
{
INTEGER_NATIVE_REF (8, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s8_ref, "bytevector-s8-ref", 2, 0, 0,
(SCM bv, SCM index),
"Return the byte located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_s8_ref
{
INTEGER_NATIVE_REF (8, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u8_set_x, "bytevector-u8-set!", 3, 0, 0,
(SCM bv, SCM index, SCM value),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_u8_set_x
{
INTEGER_NATIVE_SET (8, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s8_set_x, "bytevector-s8-set!", 3, 0, 0,
(SCM bv, SCM index, SCM value),
"Return the octet located at @var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_s8_set_x
{
INTEGER_NATIVE_SET (8, signed);
}
#undef FUNC_NAME
#undef OCTET_ACCESSOR_PROLOGUE
SCM_DEFINE (scm_bytevector_to_u8_list, "bytevector->u8-list", 1, 0, 0,
(SCM bv),
"Return a newly allocated list of octets containing the "
"contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_u8_list
{
SCM lst, pair;
unsigned c_len, i;
unsigned char *c_bv;
SCM_VALIDATE_BYTEVECTOR (1, bv);
c_len = SCM_BYTEVECTOR_LENGTH (bv);
c_bv = (unsigned char *) SCM_BYTEVECTOR_CONTENTS (bv);
lst = scm_make_list (scm_from_uint (c_len), SCM_UNSPECIFIED);
for (i = 0, pair = lst;
i < c_len;
i++, pair = SCM_CDR (pair))
{
SCM_SETCAR (pair, SCM_I_MAKINUM (c_bv[i]));
}
return lst;
}
#undef FUNC_NAME
SCM_DEFINE (scm_u8_list_to_bytevector, "u8-list->bytevector", 1, 0, 0,
(SCM lst),
"Turn @var{lst}, a list of octets, into a bytevector.")
#define FUNC_NAME s_scm_u8_list_to_bytevector
{
SCM bv, item;
long c_len, i;
unsigned char *c_bv;
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len);
bv = make_bytevector (c_len);
c_bv = (unsigned char *) SCM_BYTEVECTOR_CONTENTS (bv);
for (i = 0; i < c_len; lst = SCM_CDR (lst), i++)
{
item = SCM_CAR (lst);
if (SCM_LIKELY (SCM_I_INUMP (item)))
{
long c_item;
c_item = SCM_I_INUM (item);
if (SCM_LIKELY ((c_item >= 0) && (c_item < 256)))
c_bv[i] = (unsigned char) c_item;
else
goto type_error;
}
else
goto type_error;
}
return bv;
type_error:
scm_wrong_type_arg (FUNC_NAME, 1, item);
return SCM_BOOL_F;
}
#undef FUNC_NAME
/* Compute the two's complement of VALUE (a positive integer) on SIZE octets
using (2^(SIZE * 8) - VALUE). */
static inline void
twos_complement (mpz_t value, size_t size)
{
unsigned long bit_count;
/* We expect BIT_COUNT to fit in a unsigned long thanks to the range
checking on SIZE performed earlier. */
bit_count = (unsigned long) size << 3UL;
if (SCM_LIKELY (bit_count < sizeof (unsigned long)))
mpz_ui_sub (value, 1UL << bit_count, value);
else
{
mpz_t max;
mpz_init (max);
mpz_ui_pow_ui (max, 2, bit_count);
mpz_sub (value, max, value);
mpz_clear (max);
}
}
static inline SCM
bytevector_large_ref (const char *c_bv, size_t c_size, int signed_p,
SCM endianness)
{
SCM result;
mpz_t c_mpz;
int c_endianness, negative_p = 0;
if (signed_p)
{
if (scm_is_eq (endianness, scm_sym_big))
negative_p = c_bv[0] & 0x80;
else
negative_p = c_bv[c_size - 1] & 0x80;
}
c_endianness = scm_is_eq (endianness, scm_sym_big) ? 1 : -1;
mpz_init (c_mpz);
mpz_import (c_mpz, 1 /* 1 word */, 1 /* word order doesn't matter */,
c_size /* word is C_SIZE-byte long */,
c_endianness,
0 /* nails */, c_bv);
if (signed_p && negative_p)
{
twos_complement (c_mpz, c_size);
mpz_neg (c_mpz, c_mpz);
}
result = scm_from_mpz (c_mpz);
mpz_clear (c_mpz); /* FIXME: Needed? */
return result;
}
static inline int
bytevector_large_set (char *c_bv, size_t c_size, int signed_p,
SCM value, SCM endianness)
{
mpz_t c_mpz;
int c_endianness, c_sign, err = 0;
c_endianness = scm_is_eq (endianness, scm_sym_big) ? 1 : -1;
mpz_init (c_mpz);
scm_to_mpz (value, c_mpz);
c_sign = mpz_sgn (c_mpz);
if (c_sign < 0)
{
if (SCM_LIKELY (signed_p))
{
mpz_neg (c_mpz, c_mpz);
twos_complement (c_mpz, c_size);
}
else
{
err = -1;
goto finish;
}
}
if (c_sign == 0)
/* Zero. */
memset (c_bv, 0, c_size);
else
{
size_t word_count, value_size;
value_size = (mpz_sizeinbase (c_mpz, 2) + (8 * c_size)) / (8 * c_size);
if (SCM_UNLIKELY (value_size > c_size))
{
err = -2;
goto finish;
}
mpz_export (c_bv, &word_count, 1 /* word order doesn't matter */,
c_size, c_endianness,
0 /* nails */, c_mpz);
if (SCM_UNLIKELY (word_count != 1))
/* Shouldn't happen since we already checked with VALUE_SIZE. */
abort ();
}
finish:
mpz_clear (c_mpz);
return err;
}
#define GENERIC_INTEGER_ACCESSOR_PROLOGUE(_sign) \
unsigned long c_len, c_index, c_size; \
char *c_bv; \
\
SCM_VALIDATE_BYTEVECTOR (1, bv); \
c_index = scm_to_ulong (index); \
c_size = scm_to_ulong (size); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
/* C_SIZE must have its 3 higher bits set to zero so that \
multiplying it by 8 yields a number that fits in an \
unsigned long. */ \
if (SCM_UNLIKELY ((c_size == 0) || (c_size >= (ULONG_MAX >> 3L)))) \
scm_out_of_range (FUNC_NAME, size); \
if (SCM_UNLIKELY (c_index + c_size > c_len)) \
scm_out_of_range (FUNC_NAME, index);
/* Template of an integer reference function. */
#define GENERIC_INTEGER_REF(_sign) \
SCM result; \
\
if (c_size < 3) \
{ \
int swap; \
_sign int value; \
\
swap = !scm_is_eq (endianness, native_endianness); \
switch (c_size) \
{ \
case 1: \
{ \
_sign char c_value8; \
memcpy (&c_value8, c_bv, 1); \
value = c_value8; \
} \
break; \
case 2: \
{ \
INT_TYPE (16, _sign) c_value16; \
memcpy (&c_value16, c_bv, 2); \
if (swap) \
value = (INT_TYPE (16, _sign)) bswap_16 (c_value16); \
else \
value = c_value16; \
} \
break; \
default: \
abort (); \
} \
\
result = SCM_I_MAKINUM ((_sign int) value); \
} \
else \
result = bytevector_large_ref ((char *) c_bv, \
c_size, SIGNEDNESS (_sign), \
endianness); \
\
return result;
static inline SCM
bytevector_signed_ref (const char *c_bv, size_t c_size, SCM endianness)
{
GENERIC_INTEGER_REF (signed);
}
static inline SCM
bytevector_unsigned_ref (const char *c_bv, size_t c_size, SCM endianness)
{
GENERIC_INTEGER_REF (unsigned);
}
/* Template of an integer assignment function. */
#define GENERIC_INTEGER_SET(_sign) \
if (c_size < 3) \
{ \
_sign int c_value; \
\
if (SCM_UNLIKELY (!SCM_I_INUMP (value))) \
goto range_error; \
\
c_value = SCM_I_INUM (value); \
switch (c_size) \
{ \
case 1: \
if (SCM_LIKELY (INT_VALID_P (8, _sign) (c_value))) \
{ \
_sign char c_value8; \
c_value8 = (_sign char) c_value; \
memcpy (c_bv, &c_value8, 1); \
} \
else \
goto range_error; \
break; \
\
case 2: \
if (SCM_LIKELY (INT_VALID_P (16, _sign) (c_value))) \
{ \
int swap; \
INT_TYPE (16, _sign) c_value16; \
\
swap = !scm_is_eq (endianness, native_endianness); \
\
if (swap) \
c_value16 = (INT_TYPE (16, _sign)) bswap_16 (c_value); \
else \
c_value16 = c_value; \
\
memcpy (c_bv, &c_value16, 2); \
} \
else \
goto range_error; \
break; \
\
default: \
abort (); \
} \
} \
else \
{ \
int err; \
\
err = bytevector_large_set (c_bv, c_size, \
SIGNEDNESS (_sign), \
value, endianness); \
if (err) \
goto range_error; \
} \
\
return; \
\
range_error: \
scm_out_of_range (FUNC_NAME, value); \
return;
static inline void
bytevector_signed_set (char *c_bv, size_t c_size,
SCM value, SCM endianness,
const char *func_name)
#define FUNC_NAME func_name
{
GENERIC_INTEGER_SET (signed);
}
#undef FUNC_NAME
static inline void
bytevector_unsigned_set (char *c_bv, size_t c_size,
SCM value, SCM endianness,
const char *func_name)
#define FUNC_NAME func_name
{
GENERIC_INTEGER_SET (unsigned);
}
#undef FUNC_NAME
#undef GENERIC_INTEGER_SET
#undef GENERIC_INTEGER_REF
SCM_DEFINE (scm_bytevector_uint_ref, "bytevector-uint-ref", 4, 0, 0,
(SCM bv, SCM index, SCM endianness, SCM size),
"Return the @var{size}-octet long unsigned integer at index "
"@var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_uint_ref
{
GENERIC_INTEGER_ACCESSOR_PROLOGUE (unsigned);
return (bytevector_unsigned_ref (&c_bv[c_index], c_size, endianness));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_sint_ref, "bytevector-sint-ref", 4, 0, 0,
(SCM bv, SCM index, SCM endianness, SCM size),
"Return the @var{size}-octet long unsigned integer at index "
"@var{index} in @var{bv}.")
#define FUNC_NAME s_scm_bytevector_sint_ref
{
GENERIC_INTEGER_ACCESSOR_PROLOGUE (signed);
return (bytevector_signed_ref (&c_bv[c_index], c_size, endianness));
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_uint_set_x, "bytevector-uint-set!", 5, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
"Set the @var{size}-octet long unsigned integer at @var{index} "
"to @var{value}.")
#define FUNC_NAME s_scm_bytevector_uint_set_x
{
GENERIC_INTEGER_ACCESSOR_PROLOGUE (unsigned);
bytevector_unsigned_set (&c_bv[c_index], c_size, value, endianness,
FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_sint_set_x, "bytevector-sint-set!", 5, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness, SCM size),
"Set the @var{size}-octet long signed integer at @var{index} "
"to @var{value}.")
#define FUNC_NAME s_scm_bytevector_sint_set_x
{
GENERIC_INTEGER_ACCESSOR_PROLOGUE (signed);
bytevector_signed_set (&c_bv[c_index], c_size, value, endianness,
FUNC_NAME);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
/* Operations on integers of arbitrary size. */
#define INTEGERS_TO_LIST(_sign) \
SCM lst, pair; \
size_t i, c_len, c_size; \
\
SCM_VALIDATE_BYTEVECTOR (1, bv); \
SCM_VALIDATE_SYMBOL (2, endianness); \
c_size = scm_to_uint (size); \
\
c_len = SCM_BYTEVECTOR_LENGTH (bv); \
if (SCM_UNLIKELY (c_len == 0)) \
lst = SCM_EOL; \
else if (SCM_UNLIKELY (c_len < c_size)) \
scm_out_of_range (FUNC_NAME, size); \
else \
{ \
const char *c_bv; \
\
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
lst = scm_make_list (scm_from_uint (c_len / c_size), \
SCM_UNSPECIFIED); \
for (i = 0, pair = lst; \
i <= c_len - c_size; \
i += c_size, c_bv += c_size, pair = SCM_CDR (pair)) \
{ \
SCM_SETCAR (pair, \
bytevector_ ## _sign ## _ref (c_bv, c_size, \
endianness)); \
} \
} \
\
return lst;
SCM_DEFINE (scm_bytevector_to_sint_list, "bytevector->sint-list",
3, 0, 0,
(SCM bv, SCM endianness, SCM size),
"Return a list of signed integers of @var{size} octets "
"representing the contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_sint_list
{
INTEGERS_TO_LIST (signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_to_uint_list, "bytevector->uint-list",
3, 0, 0,
(SCM bv, SCM endianness, SCM size),
"Return a list of unsigned integers of @var{size} octets "
"representing the contents of @var{bv}.")
#define FUNC_NAME s_scm_bytevector_to_uint_list
{
INTEGERS_TO_LIST (unsigned);
}
#undef FUNC_NAME
#undef INTEGER_TO_LIST
#define INTEGER_LIST_TO_BYTEVECTOR(_sign) \
SCM bv; \
long c_len; \
size_t c_size; \
char *c_bv, *c_bv_ptr; \
\
SCM_VALIDATE_LIST_COPYLEN (1, lst, c_len); \
SCM_VALIDATE_SYMBOL (2, endianness); \
c_size = scm_to_uint (size); \
\
if (SCM_UNLIKELY ((c_size == 0) || (c_size >= (ULONG_MAX >> 3L)))) \
scm_out_of_range (FUNC_NAME, size); \
\
bv = make_bytevector (c_len * c_size); \
c_bv = (char *) SCM_BYTEVECTOR_CONTENTS (bv); \
\
for (c_bv_ptr = c_bv; \
!scm_is_null (lst); \
lst = SCM_CDR (lst), c_bv_ptr += c_size) \
{ \
bytevector_ ## _sign ## _set (c_bv_ptr, c_size, \
SCM_CAR (lst), endianness, \
FUNC_NAME); \
} \
\
return bv;
SCM_DEFINE (scm_uint_list_to_bytevector, "uint-list->bytevector",
3, 0, 0,
(SCM lst, SCM endianness, SCM size),
"Return a bytevector containing the unsigned integers "
"listed in @var{lst} and encoded on @var{size} octets "
"according to @var{endianness}.")
#define FUNC_NAME s_scm_uint_list_to_bytevector
{
INTEGER_LIST_TO_BYTEVECTOR (unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_sint_list_to_bytevector, "sint-list->bytevector",
3, 0, 0,
(SCM lst, SCM endianness, SCM size),
"Return a bytevector containing the signed integers "
"listed in @var{lst} and encoded on @var{size} octets "
"according to @var{endianness}.")
#define FUNC_NAME s_scm_sint_list_to_bytevector
{
INTEGER_LIST_TO_BYTEVECTOR (signed);
}
#undef FUNC_NAME
#undef INTEGER_LIST_TO_BYTEVECTOR
/* Operations on 16-bit integers. */
SCM_DEFINE (scm_bytevector_u16_ref, "bytevector-u16-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u16_ref
{
INTEGER_REF (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_ref, "bytevector-s16-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 16-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s16_ref
{
INTEGER_REF (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_native_ref, "bytevector-u16-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u16_native_ref
{
INTEGER_NATIVE_REF (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_native_ref, "bytevector-s16-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 16-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s16_native_ref
{
INTEGER_NATIVE_REF (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_set_x, "bytevector-u16-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u16_set_x
{
INTEGER_SET (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_set_x, "bytevector-s16-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s16_set_x
{
INTEGER_SET (16, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u16_native_set_x, "bytevector-u16-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u16_native_set_x
{
INTEGER_NATIVE_SET (16, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s16_native_set_x, "bytevector-s16-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s16_native_set_x
{
INTEGER_NATIVE_SET (16, signed);
}
#undef FUNC_NAME
/* Operations on 32-bit integers. */
/* Unfortunately, on 32-bit machines `SCM' is not large enough to hold
arbitrary 32-bit integers. Thus we fall back to using the
`large_{ref,set}' variants on 32-bit machines. */
#define LARGE_INTEGER_REF(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE(_len, _sign); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), endianness));
#define LARGE_INTEGER_SET(_len, _sign) \
int err; \
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
SCM_VALIDATE_SYMBOL (4, endianness); \
\
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), value, endianness); \
if (SCM_UNLIKELY (err)) \
scm_out_of_range (FUNC_NAME, value); \
\
return SCM_UNSPECIFIED;
#define LARGE_INTEGER_NATIVE_REF(_len, _sign) \
INTEGER_ACCESSOR_PROLOGUE(_len, _sign); \
return (bytevector_large_ref ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), native_endianness));
#define LARGE_INTEGER_NATIVE_SET(_len, _sign) \
int err; \
INTEGER_ACCESSOR_PROLOGUE (_len, _sign); \
\
err = bytevector_large_set ((char *) c_bv + c_index, _len / 8, \
SIGNEDNESS (_sign), value, \
native_endianness); \
if (SCM_UNLIKELY (err)) \
scm_out_of_range (FUNC_NAME, value); \
\
return SCM_UNSPECIFIED;
SCM_DEFINE (scm_bytevector_u32_ref, "bytevector-u32-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u32_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_REF (32, unsigned);
#else
LARGE_INTEGER_REF (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_ref, "bytevector-s32-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 32-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s32_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_REF (32, signed);
#else
LARGE_INTEGER_REF (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_native_ref, "bytevector-u32-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u32_native_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_REF (32, unsigned);
#else
LARGE_INTEGER_NATIVE_REF (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_native_ref, "bytevector-s32-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 32-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s32_native_ref
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_REF (32, signed);
#else
LARGE_INTEGER_NATIVE_REF (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_set_x, "bytevector-u32-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u32_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_SET (32, unsigned);
#else
LARGE_INTEGER_SET (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_set_x, "bytevector-s32-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s32_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_SET (32, signed);
#else
LARGE_INTEGER_SET (32, signed);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u32_native_set_x, "bytevector-u32-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u32_native_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_SET (32, unsigned);
#else
LARGE_INTEGER_NATIVE_SET (32, unsigned);
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s32_native_set_x, "bytevector-s32-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s32_native_set_x
{
#if SIZEOF_VOID_P > 4
INTEGER_NATIVE_SET (32, signed);
#else
LARGE_INTEGER_NATIVE_SET (32, signed);
#endif
}
#undef FUNC_NAME
/* Operations on 64-bit integers. */
/* For 64-bit integers, we use only the `large_{ref,set}' variant. */
SCM_DEFINE (scm_bytevector_u64_ref, "bytevector-u64-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_u64_ref
{
LARGE_INTEGER_REF (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_ref, "bytevector-s64-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the signed 64-bit integer from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_s64_ref
{
LARGE_INTEGER_REF (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_native_ref, "bytevector-u64-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u64_native_ref
{
LARGE_INTEGER_NATIVE_REF (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_native_ref, "bytevector-s64-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the unsigned 64-bit integer from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s64_native_ref
{
LARGE_INTEGER_NATIVE_REF (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_set_x, "bytevector-u64-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_u64_set_x
{
LARGE_INTEGER_SET (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_set_x, "bytevector-s64-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_s64_set_x
{
LARGE_INTEGER_SET (64, signed);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_u64_native_set_x, "bytevector-u64-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the unsigned integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_u64_native_set_x
{
LARGE_INTEGER_NATIVE_SET (64, unsigned);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_s64_native_set_x, "bytevector-s64-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the signed integer @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_s64_native_set_x
{
LARGE_INTEGER_NATIVE_SET (64, signed);
}
#undef FUNC_NAME
/* Operations on IEEE-754 numbers. */
/* There are two possible word endians, visible in glibc's <ieee754.h>.
However, in R6RS, when the endianness is `little', little endian is
assumed for both the byte order and the word order. This is clear from
Section 2.1 of R6RS-lib (in response to
http://www.r6rs.org/formal-comments/comment-187.txt). */
/* Convert to/from a floating-point number with different endianness. This
method is probably not the most efficient but it should be portable. */
static inline void
float_to_foreign_endianness (union scm_ieee754_float *target,
float source)
{
union scm_ieee754_float src;
src.f = source;
#ifdef WORDS_BIGENDIAN
/* Assuming little endian for both byte and word order. */
target->little_endian.negative = src.big_endian.negative;
target->little_endian.exponent = src.big_endian.exponent;
target->little_endian.mantissa = src.big_endian.mantissa;
#else
target->big_endian.negative = src.little_endian.negative;
target->big_endian.exponent = src.little_endian.exponent;
target->big_endian.mantissa = src.little_endian.mantissa;
#endif
}
static inline float
float_from_foreign_endianness (const union scm_ieee754_float *source)
{
union scm_ieee754_float result;
#ifdef WORDS_BIGENDIAN
/* Assuming little endian for both byte and word order. */
result.big_endian.negative = source->little_endian.negative;
result.big_endian.exponent = source->little_endian.exponent;
result.big_endian.mantissa = source->little_endian.mantissa;
#else
result.little_endian.negative = source->big_endian.negative;
result.little_endian.exponent = source->big_endian.exponent;
result.little_endian.mantissa = source->big_endian.mantissa;
#endif
return (result.f);
}
static inline void
double_to_foreign_endianness (union scm_ieee754_double *target,
double source)
{
union scm_ieee754_double src;
src.d = source;
#ifdef WORDS_BIGENDIAN
/* Assuming little endian for both byte and word order. */
target->little_little_endian.negative = src.big_endian.negative;
target->little_little_endian.exponent = src.big_endian.exponent;
target->little_little_endian.mantissa0 = src.big_endian.mantissa0;
target->little_little_endian.mantissa1 = src.big_endian.mantissa1;
#else
target->big_endian.negative = src.little_little_endian.negative;
target->big_endian.exponent = src.little_little_endian.exponent;
target->big_endian.mantissa0 = src.little_little_endian.mantissa0;
target->big_endian.mantissa1 = src.little_little_endian.mantissa1;
#endif
}
static inline double
double_from_foreign_endianness (const union scm_ieee754_double *source)
{
union scm_ieee754_double result;
#ifdef WORDS_BIGENDIAN
/* Assuming little endian for both byte and word order. */
result.big_endian.negative = source->little_little_endian.negative;
result.big_endian.exponent = source->little_little_endian.exponent;
result.big_endian.mantissa0 = source->little_little_endian.mantissa0;
result.big_endian.mantissa1 = source->little_little_endian.mantissa1;
#else
result.little_little_endian.negative = source->big_endian.negative;
result.little_little_endian.exponent = source->big_endian.exponent;
result.little_little_endian.mantissa0 = source->big_endian.mantissa0;
result.little_little_endian.mantissa1 = source->big_endian.mantissa1;
#endif
return (result.d);
}
/* Template macros to abstract over doubles and floats.
XXX: Guile can only convert to/from doubles. */
#define IEEE754_UNION(_c_type) union scm_ieee754_ ## _c_type
#define IEEE754_TO_SCM(_c_type) scm_from_double
#define IEEE754_FROM_SCM(_c_type) scm_to_double
#define IEEE754_FROM_FOREIGN_ENDIANNESS(_c_type) \
_c_type ## _from_foreign_endianness
#define IEEE754_TO_FOREIGN_ENDIANNESS(_c_type) \
_c_type ## _to_foreign_endianness
/* Templace getters and setters. */
#define IEEE754_ACCESSOR_PROLOGUE(_type) \
INTEGER_ACCESSOR_PROLOGUE (sizeof (_type) << 3UL, signed);
#define IEEE754_REF(_type) \
_type c_result; \
\
IEEE754_ACCESSOR_PROLOGUE (_type); \
SCM_VALIDATE_SYMBOL (3, endianness); \
\
if (scm_is_eq (endianness, native_endianness)) \
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
else \
{ \
IEEE754_UNION (_type) c_raw; \
\
memcpy (&c_raw, &c_bv[c_index], sizeof (c_raw)); \
c_result = \
IEEE754_FROM_FOREIGN_ENDIANNESS (_type) (&c_raw); \
} \
\
return (IEEE754_TO_SCM (_type) (c_result));
#define IEEE754_NATIVE_REF(_type) \
_type c_result; \
\
IEEE754_ACCESSOR_PROLOGUE (_type); \
\
memcpy (&c_result, &c_bv[c_index], sizeof (c_result)); \
return (IEEE754_TO_SCM (_type) (c_result));
#define IEEE754_SET(_type) \
_type c_value; \
\
IEEE754_ACCESSOR_PROLOGUE (_type); \
SCM_VALIDATE_REAL (3, value); \
SCM_VALIDATE_SYMBOL (4, endianness); \
c_value = IEEE754_FROM_SCM (_type) (value); \
\
if (scm_is_eq (endianness, native_endianness)) \
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
else \
{ \
IEEE754_UNION (_type) c_raw; \
\
IEEE754_TO_FOREIGN_ENDIANNESS (_type) (&c_raw, c_value); \
memcpy (&c_bv[c_index], &c_raw, sizeof (c_raw)); \
} \
\
return SCM_UNSPECIFIED;
#define IEEE754_NATIVE_SET(_type) \
_type c_value; \
\
IEEE754_ACCESSOR_PROLOGUE (_type); \
SCM_VALIDATE_REAL (3, value); \
c_value = IEEE754_FROM_SCM (_type) (value); \
\
memcpy (&c_bv[c_index], &c_value, sizeof (c_value)); \
return SCM_UNSPECIFIED;
/* Single precision. */
SCM_DEFINE (scm_bytevector_ieee_single_ref,
"bytevector-ieee-single-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the IEEE-754 single from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_ieee_single_ref
{
IEEE754_REF (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_native_ref,
"bytevector-ieee-single-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the IEEE-754 single from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_single_native_ref
{
IEEE754_NATIVE_REF (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_set_x,
"bytevector-ieee-single-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store real @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_ieee_single_set_x
{
IEEE754_SET (float);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_single_native_set_x,
"bytevector-ieee-single-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the real @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_single_native_set_x
{
IEEE754_NATIVE_SET (float);
}
#undef FUNC_NAME
/* Double precision. */
SCM_DEFINE (scm_bytevector_ieee_double_ref,
"bytevector-ieee-double-ref",
3, 0, 0,
(SCM bv, SCM index, SCM endianness),
"Return the IEEE-754 double from @var{bv} at "
"@var{index}.")
#define FUNC_NAME s_scm_bytevector_ieee_double_ref
{
IEEE754_REF (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_native_ref,
"bytevector-ieee-double-native-ref",
2, 0, 0,
(SCM bv, SCM index),
"Return the IEEE-754 double from @var{bv} at "
"@var{index} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_double_native_ref
{
IEEE754_NATIVE_REF (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_set_x,
"bytevector-ieee-double-set!",
4, 0, 0,
(SCM bv, SCM index, SCM value, SCM endianness),
"Store real @var{value} in @var{bv} at @var{index} according to "
"@var{endianness}.")
#define FUNC_NAME s_scm_bytevector_ieee_double_set_x
{
IEEE754_SET (double);
}
#undef FUNC_NAME
SCM_DEFINE (scm_bytevector_ieee_double_native_set_x,
"bytevector-ieee-double-native-set!",
3, 0, 0,
(SCM bv, SCM index, SCM value),
"Store the real @var{value} at index @var{index} "
"of @var{bv} using the native endianness.")
#define FUNC_NAME s_scm_bytevector_ieee_double_native_set_x
{
IEEE754_NATIVE_SET (double);
}
#undef FUNC_NAME
#undef IEEE754_UNION
#undef IEEE754_TO_SCM
#undef IEEE754_FROM_SCM
#undef IEEE754_FROM_FOREIGN_ENDIANNESS
#undef IEEE754_TO_FOREIGN_ENDIANNESS
#undef IEEE754_REF
#undef IEEE754_NATIVE_REF
#undef IEEE754_SET
#undef IEEE754_NATIVE_SET
/* Operations on strings. */
/* Produce a function that returns the length of a UTF-encoded string. */
#define UTF_STRLEN_FUNCTION(_utf_width) \
static inline size_t \
utf ## _utf_width ## _strlen (const uint ## _utf_width ## _t *str) \
{ \
size_t len = 0; \
const uint ## _utf_width ## _t *ptr; \
for (ptr = str; \
*ptr != 0; \
ptr++) \
{ \
len++; \
} \
\
return (len * ((_utf_width) / 8)); \
}
UTF_STRLEN_FUNCTION (8)
/* Return the length (in bytes) of STR, a UTF-(UTF_WIDTH) encoded string. */
#define UTF_STRLEN(_utf_width, _str) \
utf ## _utf_width ## _strlen (_str)
/* Return the "portable" name of the UTF encoding of size UTF_WIDTH and
ENDIANNESS (Gnulib's `iconv_open' module guarantees the portability of the
encoding name). */
static inline void
utf_encoding_name (char *name, size_t utf_width, SCM endianness)
{
strcpy (name, "UTF-");
strcat (name, ((utf_width == 8)
? "8"
: ((utf_width == 16)
? "16"
: ((utf_width == 32)
? "32"
: "??"))));
strcat (name,
((scm_is_eq (endianness, scm_sym_big))
? "BE"
: ((scm_is_eq (endianness, scm_sym_little))
? "LE"
: "unknown")));
}
/* Maximum length of a UTF encoding name. */
#define MAX_UTF_ENCODING_NAME_LEN 16
/* Produce the body of a `string->utf' function. */
#define STRING_TO_UTF(_utf_width) \
SCM utf; \
int err; \
char *c_str; \
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
char *c_utf = NULL, *c_locale; \
size_t c_strlen, c_raw_strlen, c_utf_len = 0; \
\
SCM_VALIDATE_STRING (1, str); \
if (endianness == SCM_UNDEFINED) \
endianness = scm_sym_big; \
else \
SCM_VALIDATE_SYMBOL (2, endianness); \
\
c_strlen = scm_c_string_length (str); \
c_raw_strlen = c_strlen * ((_utf_width) / 8); \
do \
{ \
c_str = (char *) alloca (c_raw_strlen + 1); \
c_raw_strlen = scm_to_locale_stringbuf (str, c_str, c_strlen); \
} \
while (c_raw_strlen > c_strlen); \
c_str[c_raw_strlen] = '\0'; \
\
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
\
c_locale = (char *) alloca (strlen (locale_charset ()) + 1); \
strcpy (c_locale, locale_charset ()); \
\
err = mem_iconveh (c_str, c_raw_strlen, \
c_locale, c_utf_name, \
iconveh_question_mark, NULL, \
&c_utf, &c_utf_len); \
if (SCM_UNLIKELY (err)) \
scm_syserror_msg (FUNC_NAME, "failed to convert string: ~A", \
scm_list_1 (str), err); \
else \
/* C_UTF is null-terminated. */ \
utf = scm_c_take_bytevector ((signed char *) c_utf, \
c_utf_len); \
\
return (utf);
SCM_DEFINE (scm_string_to_utf8, "string->utf8",
1, 0, 0,
(SCM str),
"Return a newly allocated bytevector that contains the UTF-8 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf8
{
SCM utf;
char *c_str;
uint8_t *c_utf;
size_t c_strlen, c_raw_strlen;
SCM_VALIDATE_STRING (1, str);
c_strlen = scm_c_string_length (str);
c_raw_strlen = c_strlen;
do
{
c_str = (char *) alloca (c_raw_strlen + 1);
c_raw_strlen = scm_to_locale_stringbuf (str, c_str, c_strlen);
}
while (c_raw_strlen > c_strlen);
c_str[c_raw_strlen] = '\0';
c_utf = u8_strconv_from_locale (c_str);
if (SCM_UNLIKELY (c_utf == NULL))
scm_syserror (FUNC_NAME);
else
/* C_UTF is null-terminated. */
utf = scm_c_take_bytevector ((signed char *) c_utf,
UTF_STRLEN (8, c_utf));
return (utf);
}
#undef FUNC_NAME
SCM_DEFINE (scm_string_to_utf16, "string->utf16",
1, 1, 0,
(SCM str, SCM endianness),
"Return a newly allocated bytevector that contains the UTF-16 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf16
{
STRING_TO_UTF (16);
}
#undef FUNC_NAME
SCM_DEFINE (scm_string_to_utf32, "string->utf32",
1, 1, 0,
(SCM str, SCM endianness),
"Return a newly allocated bytevector that contains the UTF-32 "
"encoding of @var{str}.")
#define FUNC_NAME s_scm_string_to_utf32
{
STRING_TO_UTF (32);
}
#undef FUNC_NAME
/* Produce the body of a function that converts a UTF-encoded bytevector to a
string. */
#define UTF_TO_STRING(_utf_width) \
SCM str = SCM_BOOL_F; \
int err; \
char *c_str = NULL, *c_locale; \
char c_utf_name[MAX_UTF_ENCODING_NAME_LEN]; \
const char *c_utf; \
size_t c_strlen = 0, c_utf_len; \
\
SCM_VALIDATE_BYTEVECTOR (1, utf); \
if (endianness == SCM_UNDEFINED) \
endianness = scm_sym_big; \
else \
SCM_VALIDATE_SYMBOL (2, endianness); \
\
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf); \
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf); \
utf_encoding_name (c_utf_name, (_utf_width), endianness); \
\
c_locale = (char *) alloca (strlen (locale_charset ()) + 1); \
strcpy (c_locale, locale_charset ()); \
\
err = mem_iconveh (c_utf, c_utf_len, \
c_utf_name, c_locale, \
iconveh_question_mark, NULL, \
&c_str, &c_strlen); \
if (SCM_UNLIKELY (err)) \
scm_syserror_msg (FUNC_NAME, "failed to convert to string: ~A", \
scm_list_1 (utf), err); \
else \
/* C_STR is null-terminated. */ \
str = scm_take_locale_stringn (c_str, c_strlen); \
\
return (str);
SCM_DEFINE (scm_utf8_to_string, "utf8->string",
1, 0, 0,
(SCM utf),
"Return a newly allocate string that contains from the UTF-8-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf8_to_string
{
SCM str;
int err;
char *c_str = NULL, *c_locale;
const char *c_utf;
size_t c_utf_len, c_strlen = 0;
SCM_VALIDATE_BYTEVECTOR (1, utf);
c_utf_len = SCM_BYTEVECTOR_LENGTH (utf);
c_locale = (char *) alloca (strlen (locale_charset ()) + 1);
strcpy (c_locale, locale_charset ());
c_utf = (char *) SCM_BYTEVECTOR_CONTENTS (utf);
err = mem_iconveh (c_utf, c_utf_len,
"UTF-8", c_locale,
iconveh_question_mark, NULL,
&c_str, &c_strlen);
if (SCM_UNLIKELY (err))
scm_syserror_msg (FUNC_NAME, "failed to convert to string: ~A",
scm_list_1 (utf), err);
else
/* C_STR is null-terminated. */
str = scm_take_locale_stringn (c_str, c_strlen);
return (str);
}
#undef FUNC_NAME
SCM_DEFINE (scm_utf16_to_string, "utf16->string",
1, 1, 0,
(SCM utf, SCM endianness),
"Return a newly allocate string that contains from the UTF-16-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf16_to_string
{
UTF_TO_STRING (16);
}
#undef FUNC_NAME
SCM_DEFINE (scm_utf32_to_string, "utf32->string",
1, 1, 0,
(SCM utf, SCM endianness),
"Return a newly allocate string that contains from the UTF-32-"
"encoded contents of bytevector @var{utf}.")
#define FUNC_NAME s_scm_utf32_to_string
{
UTF_TO_STRING (32);
}
#undef FUNC_NAME
/* Initialization. */
void
scm_init_bytevectors (void)
{
#include "libguile/bytevectors.x"
#ifdef WORDS_BIGENDIAN
native_endianness = scm_sym_big;
#else
native_endianness = scm_sym_little;
#endif
scm_endianness_big = scm_sym_big;
scm_endianness_little = scm_sym_little;
scm_null_bytevector =
scm_gc_protect_object (make_bytevector_from_buffer (0, NULL));
}