1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00
guile/libguile/eq.c
Neil Jerram 53befeb700 Change Guile license to LGPLv3+
(Not quite finished, the following will be done tomorrow.
   module/srfi/*.scm
   module/rnrs/*.scm
   module/scripts/*.scm
   testsuite/*.scm
   guile-readline/*
)
2009-06-17 00:22:09 +01:00

326 lines
9.7 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996,1997,1998,2000,2001,2003, 2004, 2006 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "libguile/_scm.h"
#include "libguile/ramap.h"
#include "libguile/stackchk.h"
#include "libguile/strorder.h"
#include "libguile/async.h"
#include "libguile/root.h"
#include "libguile/smob.h"
#include "libguile/unif.h"
#include "libguile/vectors.h"
#include "libguile/struct.h"
#include "libguile/goops.h"
#include "libguile/objects.h"
#include "libguile/validate.h"
#include "libguile/eq.h"
#include "libguile/private-options.h"
#ifdef HAVE_STRING_H
#include <string.h>
#endif
SCM_DEFINE1 (scm_eq_p, "eq?", scm_tc7_rpsubr,
(SCM x, SCM y),
"Return @code{#t} if @var{x} and @var{y} are the same object,\n"
"except for numbers and characters. For example,\n"
"\n"
"@example\n"
"(define x (vector 1 2 3))\n"
"(define y (vector 1 2 3))\n"
"\n"
"(eq? x x) @result{} #t\n"
"(eq? x y) @result{} #f\n"
"@end example\n"
"\n"
"Numbers and characters are not equal to any other object, but\n"
"the problem is they're not necessarily @code{eq?} to themselves\n"
"either. This is even so when the number comes directly from a\n"
"variable,\n"
"\n"
"@example\n"
"(let ((n (+ 2 3)))\n"
" (eq? n n)) @result{} *unspecified*\n"
"@end example\n"
"\n"
"Generally @code{eqv?} should be used when comparing numbers or\n"
"characters. @code{=} or @code{char=?} can be used too.\n"
"\n"
"It's worth noting that end-of-list @code{()}, @code{#t},\n"
"@code{#f}, a symbol of a given name, and a keyword of a given\n"
"name, are unique objects. There's just one of each, so for\n"
"instance no matter how @code{()} arises in a program, it's the\n"
"same object and can be compared with @code{eq?},\n"
"\n"
"@example\n"
"(define x (cdr '(123)))\n"
"(define y (cdr '(456)))\n"
"(eq? x y) @result{} #t\n"
"\n"
"(define x (string->symbol \"foo\"))\n"
"(eq? x 'foo) @result{} #t\n"
"@end example")
#define FUNC_NAME s_scm_eq_p
{
return scm_from_bool (scm_is_eq (x, y));
}
#undef FUNC_NAME
/* We compare doubles in a special way for 'eqv?' to be able to
distinguish plus and minus zero and to identify NaNs.
*/
static int
real_eqv (double x, double y)
{
return !memcmp (&x, &y, sizeof(double)) || (x != x && y != y);
}
#include <stdio.h>
SCM_PRIMITIVE_GENERIC_1 (scm_eqv_p, "eqv?", scm_tc7_rpsubr,
(SCM x, SCM y),
"Return @code{#t} if @var{x} and @var{y} are the same object, or\n"
"for characters and numbers the same value.\n"
"\n"
"On objects except characters and numbers, @code{eqv?} is the\n"
"same as @code{eq?}, it's true if @var{x} and @var{y} are the\n"
"same object.\n"
"\n"
"If @var{x} and @var{y} are numbers or characters, @code{eqv?}\n"
"compares their type and value. An exact number is not\n"
"@code{eqv?} to an inexact number (even if their value is the\n"
"same).\n"
"\n"
"@example\n"
"(eqv? 3 (+ 1 2)) @result{} #t\n"
"(eqv? 1 1.0) @result{} #f\n"
"@end example")
#define FUNC_NAME s_scm_eqv_p
{
if (scm_is_eq (x, y))
return SCM_BOOL_T;
if (SCM_IMP (x))
return SCM_BOOL_F;
if (SCM_IMP (y))
return SCM_BOOL_F;
/* this ensures that types and scm_length are the same. */
if (SCM_CELL_TYPE (x) != SCM_CELL_TYPE (y))
{
/* fractions use 0x10000 as a flag (at the suggestion of Marius Vollmer),
but this checks the entire type word, so fractions may be accidentally
flagged here as unequal. Perhaps I should use the 4th double_cell word?
*/
/* treat mixes of real and complex types specially */
if (SCM_INEXACTP (x))
{
if (SCM_REALP (x))
return scm_from_bool (SCM_COMPLEXP (y)
&& real_eqv (SCM_REAL_VALUE (x),
SCM_COMPLEX_REAL (y))
&& SCM_COMPLEX_IMAG (y) == 0.0);
else
return scm_from_bool (SCM_REALP (y)
&& real_eqv (SCM_COMPLEX_REAL (x),
SCM_REAL_VALUE (y))
&& SCM_COMPLEX_IMAG (x) == 0.0);
}
if (SCM_FRACTIONP (x) && SCM_FRACTIONP (y))
return scm_i_fraction_equalp (x, y);
return SCM_BOOL_F;
}
if (SCM_NUMP (x))
{
if (SCM_BIGP (x)) {
return scm_from_bool (scm_i_bigcmp (x, y) == 0);
} else if (SCM_REALP (x)) {
return scm_from_bool (real_eqv (SCM_REAL_VALUE (x), SCM_REAL_VALUE (y)));
} else if (SCM_FRACTIONP (x)) {
return scm_i_fraction_equalp (x, y);
} else { /* complex */
return scm_from_bool (real_eqv (SCM_COMPLEX_REAL (x),
SCM_COMPLEX_REAL (y))
&& real_eqv (SCM_COMPLEX_IMAG (x),
SCM_COMPLEX_IMAG (y)));
}
}
if (SCM_UNPACK (g_scm_eqv_p))
return scm_call_generic_2 (g_scm_eqv_p, x, y);
else
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_PRIMITIVE_GENERIC_1 (scm_equal_p, "equal?", scm_tc7_rpsubr,
(SCM x, SCM y),
"Return @code{#t} if @var{x} and @var{y} are the same type, and\n"
"their contents or value are equal.\n"
"\n"
"For a pair, string, vector or array, @code{equal?} compares the\n"
"contents, and does so using using the same @code{equal?}\n"
"recursively, so a deep structure can be traversed.\n"
"\n"
"@example\n"
"(equal? (list 1 2 3) (list 1 2 3)) @result{} #t\n"
"(equal? (list 1 2 3) (vector 1 2 3)) @result{} #f\n"
"@end example\n"
"\n"
"For other objects, @code{equal?} compares as per @code{eqv?},\n"
"which means characters and numbers are compared by type and\n"
"value (and like @code{eqv?}, exact and inexact numbers are not\n"
"@code{equal?}, even if their value is the same).\n"
"\n"
"@example\n"
"(equal? 3 (+ 1 2)) @result{} #t\n"
"(equal? 1 1.0) @result{} #f\n"
"@end example\n"
"\n"
"Hash tables are currently only compared as per @code{eq?}, so\n"
"two different tables are not @code{equal?}, even if their\n"
"contents are the same.\n"
"\n"
"@code{equal?} does not support circular data structures, it may\n"
"go into an infinite loop if asked to compare two circular lists\n"
"or similar.\n"
"\n"
"New application-defined object types (Smobs) have an\n"
"@code{equalp} handler which is called by @code{equal?}. This\n"
"lets an application traverse the contents or control what is\n"
"considered @code{equal?} for two such objects. If there's no\n"
"handler, the default is to just compare as per @code{eq?}.")
#define FUNC_NAME s_scm_equal_p
{
SCM_CHECK_STACK;
tailrecurse:
SCM_TICK;
if (scm_is_eq (x, y))
return SCM_BOOL_T;
if (SCM_IMP (x))
return SCM_BOOL_F;
if (SCM_IMP (y))
return SCM_BOOL_F;
if (scm_is_pair (x) && scm_is_pair (y))
{
if (scm_is_false (scm_equal_p (SCM_CAR (x), SCM_CAR (y))))
return SCM_BOOL_F;
x = SCM_CDR(x);
y = SCM_CDR(y);
goto tailrecurse;
}
if (SCM_TYP7 (x) == scm_tc7_string && SCM_TYP7 (y) == scm_tc7_string)
return scm_string_equal_p (x, y);
if (SCM_TYP7 (x) == scm_tc7_smob && SCM_TYP16 (x) == SCM_TYP16 (y))
{
int i = SCM_SMOBNUM (x);
if (!(i < scm_numsmob))
return SCM_BOOL_F;
if (scm_smobs[i].equalp)
return (scm_smobs[i].equalp) (x, y);
else
goto generic_equal;
}
/* This ensures that types and scm_length are the same. */
if (SCM_CELL_TYPE (x) != SCM_CELL_TYPE (y))
{
/* treat mixes of real and complex types specially */
if (SCM_INEXACTP (x) && SCM_INEXACTP (y))
{
if (SCM_REALP (x))
return scm_from_bool (SCM_COMPLEXP (y)
&& SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y)
&& SCM_COMPLEX_IMAG (y) == 0.0);
else
return scm_from_bool (SCM_REALP (y)
&& SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y)
&& SCM_COMPLEX_IMAG (x) == 0.0);
}
/* Vectors can be equal to one-dimensional arrays.
*/
if (SCM_I_ARRAYP (x) || SCM_I_ARRAYP (y))
return scm_array_equal_p (x, y);
return SCM_BOOL_F;
}
switch (SCM_TYP7 (x))
{
default:
break;
case scm_tc7_number:
switch SCM_TYP16 (x)
{
case scm_tc16_big:
return scm_bigequal (x, y);
case scm_tc16_real:
return scm_real_equalp (x, y);
case scm_tc16_complex:
return scm_complex_equalp (x, y);
case scm_tc16_fraction:
return scm_i_fraction_equalp (x, y);
}
case scm_tc7_vector:
case scm_tc7_wvect:
return scm_i_vector_equal_p (x, y);
}
/* Check equality between structs of equal type (see cell-type test above)
that are not GOOPS instances. GOOPS instances are treated via the
generic function. */
if ((SCM_STRUCTP (x)) && (!SCM_INSTANCEP (x)))
return scm_i_struct_equalp (x, y);
generic_equal:
if (SCM_UNPACK (g_scm_equal_p))
return scm_call_generic_2 (g_scm_equal_p, x, y);
else
return SCM_BOOL_F;
}
#undef FUNC_NAME
void
scm_init_eq ()
{
#include "libguile/eq.x"
}
/*
Local Variables:
c-file-style: "gnu"
End:
*/