mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
* libguile/scm.h (struct scm_thread, scm_thread): Rename from scm_i_thread. * libguile/deprecated.h (scm_i_thread): Add deprecated typedef. * libguile/threads.h: Adapt to renaming. * libguile/intrinsics.h: * libguile/scmsigs.h: * libguile/cache-internal.h: Remove threads.h includes; unnecessary with the forward decl. * libguile/continuations.h: * libguile/gc-inline.h: * libguile/async.h: Adapt scm_thread type name change. * libguile/async.c: * libguile/continuations.c: * libguile/control.c: * libguile/dynstack.c: * libguile/dynwind.c: * libguile/eval.c: * libguile/finalizers.c: * libguile/fluids.c: * libguile/gc.c: * libguile/intrinsics.c: * libguile/load.c: * libguile/memoize.c: * libguile/print.c: * libguile/read.c: * libguile/scmsigs.c: * libguile/script.c: * libguile/stackchk.c: * libguile/stacks.c: * libguile/symbols.c: * libguile/threads.c: * libguile/throw.c: * libguile/vm-engine.c: * libguile/vm.c: Adapt to type name change, and add additional includes as needed.
1841 lines
48 KiB
C
1841 lines
48 KiB
C
/* Copyright 1995-1998,2000-2014,2018
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of Guile.
|
||
|
||
Guile is free software: you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Guile is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with Guile. If not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <assert.h>
|
||
#include <errno.h>
|
||
#include <fcntl.h>
|
||
#include <full-read.h>
|
||
#include <nproc.h>
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h> /* for memset used by FD_ZERO on Solaris 10 */
|
||
#include <sys/time.h>
|
||
#include <unistd.h>
|
||
|
||
#if HAVE_PTHREAD_NP_H
|
||
# include <pthread_np.h>
|
||
#endif
|
||
|
||
#include "async.h"
|
||
#include "bdw-gc.h"
|
||
#include "boolean.h"
|
||
#include "continuations.h"
|
||
#include "deprecation.h"
|
||
#include "dynwind.h"
|
||
#include "eval.h"
|
||
#include "extensions.h"
|
||
#include "fluids.h"
|
||
#include "gc-inline.h"
|
||
#include "gc.h"
|
||
#include "gsubr.h"
|
||
#include "hashtab.h"
|
||
#include "init.h"
|
||
#include "iselect.h"
|
||
#include "list.h"
|
||
#include "modules.h"
|
||
#include "numbers.h"
|
||
#include "pairs.h"
|
||
#include "ports.h"
|
||
#include "scmsigs.h"
|
||
#include "strings.h"
|
||
#include "symbols.h"
|
||
#include "variable.h"
|
||
#include "vm.h"
|
||
|
||
#include "threads.h"
|
||
|
||
#include <gc/gc_mark.h>
|
||
|
||
|
||
|
||
|
||
/* The GC "kind" for threads that allow them to mark their VM
|
||
stacks. */
|
||
static int thread_gc_kind;
|
||
|
||
static struct GC_ms_entry *
|
||
thread_mark (GC_word *addr, struct GC_ms_entry *mark_stack_ptr,
|
||
struct GC_ms_entry *mark_stack_limit, GC_word env)
|
||
{
|
||
int word;
|
||
struct scm_thread *t = (struct scm_thread *) addr;
|
||
|
||
if (SCM_UNPACK (t->handle) == 0)
|
||
/* T must be on the free-list; ignore. (See warning in
|
||
gc_mark.h.) */
|
||
return mark_stack_ptr;
|
||
|
||
/* Mark T. We could be more precise, but it doesn't matter. */
|
||
for (word = 0; word * sizeof (*addr) < sizeof (*t); word++)
|
||
mark_stack_ptr = GC_MARK_AND_PUSH ((void *) addr[word],
|
||
mark_stack_ptr, mark_stack_limit,
|
||
NULL);
|
||
|
||
/* The pointerless freelists are threaded through their first word,
|
||
but GC doesn't know to trace them (as they are pointerless), so we
|
||
need to do that here. See the comments at the top of libgc's
|
||
gc_inline.h. */
|
||
if (t->pointerless_freelists)
|
||
{
|
||
size_t n;
|
||
for (n = 0; n < SCM_INLINE_GC_FREELIST_COUNT; n++)
|
||
{
|
||
void *chain = t->pointerless_freelists[n];
|
||
if (chain)
|
||
{
|
||
/* The first link is already marked by the freelist vector,
|
||
so we just have to mark the tail. */
|
||
while ((chain = *(void **)chain))
|
||
mark_stack_ptr = GC_mark_and_push (chain, mark_stack_ptr,
|
||
mark_stack_limit, NULL);
|
||
}
|
||
}
|
||
}
|
||
|
||
mark_stack_ptr = scm_i_vm_mark_stack (&t->vm, mark_stack_ptr,
|
||
mark_stack_limit);
|
||
|
||
return mark_stack_ptr;
|
||
}
|
||
|
||
|
||
|
||
static void
|
||
to_timespec (SCM t, scm_t_timespec *waittime)
|
||
{
|
||
if (scm_is_pair (t))
|
||
{
|
||
waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
|
||
waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
|
||
}
|
||
else
|
||
{
|
||
double time = scm_to_double (t);
|
||
double sec = scm_c_truncate (time);
|
||
|
||
waittime->tv_sec = (long) sec;
|
||
waittime->tv_nsec = (long) ((time - sec) * 1000000000);
|
||
}
|
||
}
|
||
|
||
|
||
|
||
/*** Queues */
|
||
|
||
/* Note: We annotate with "GC-robust" assignments whose purpose is to avoid
|
||
the risk of false references leading to unbounded retained space as
|
||
described in "Bounding Space Usage of Conservative Garbage Collectors",
|
||
H.J. Boehm, 2001. */
|
||
|
||
/* Make an empty queue data structure.
|
||
*/
|
||
static SCM
|
||
make_queue ()
|
||
{
|
||
return scm_cons (SCM_EOL, SCM_EOL);
|
||
}
|
||
|
||
static scm_i_pthread_mutex_t queue_lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
|
||
|
||
/* Put T at the back of Q and return a handle that can be used with
|
||
remqueue to remove T from Q again.
|
||
*/
|
||
static SCM
|
||
enqueue (SCM q, SCM t)
|
||
{
|
||
SCM c = scm_cons (t, SCM_EOL);
|
||
scm_i_pthread_mutex_lock (&queue_lock);
|
||
if (scm_is_null (SCM_CDR (q)))
|
||
SCM_SETCDR (q, c);
|
||
else
|
||
SCM_SETCDR (SCM_CAR (q), c);
|
||
SCM_SETCAR (q, c);
|
||
scm_i_pthread_mutex_unlock (&queue_lock);
|
||
return c;
|
||
}
|
||
|
||
/* Remove the element that the handle C refers to from the queue Q. C
|
||
must have been returned from a call to enqueue. The return value
|
||
is zero when the element referred to by C has already been removed.
|
||
Otherwise, 1 is returned.
|
||
*/
|
||
static int
|
||
remqueue (SCM q, SCM c)
|
||
{
|
||
SCM p, prev = q;
|
||
scm_i_pthread_mutex_lock (&queue_lock);
|
||
for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
|
||
{
|
||
if (scm_is_eq (p, c))
|
||
{
|
||
if (scm_is_eq (c, SCM_CAR (q)))
|
||
SCM_SETCAR (q, scm_is_eq (prev, q) ? SCM_EOL : prev);
|
||
SCM_SETCDR (prev, SCM_CDR (c));
|
||
|
||
/* GC-robust */
|
||
SCM_SETCDR (c, SCM_EOL);
|
||
|
||
scm_i_pthread_mutex_unlock (&queue_lock);
|
||
return 1;
|
||
}
|
||
prev = p;
|
||
}
|
||
scm_i_pthread_mutex_unlock (&queue_lock);
|
||
return 0;
|
||
}
|
||
|
||
/* Remove the front-most element from the queue Q and return it.
|
||
Return SCM_BOOL_F when Q is empty.
|
||
*/
|
||
static SCM
|
||
dequeue (SCM q)
|
||
{
|
||
SCM c;
|
||
scm_i_pthread_mutex_lock (&queue_lock);
|
||
c = SCM_CDR (q);
|
||
if (scm_is_null (c))
|
||
{
|
||
scm_i_pthread_mutex_unlock (&queue_lock);
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
{
|
||
SCM_SETCDR (q, SCM_CDR (c));
|
||
if (scm_is_null (SCM_CDR (q)))
|
||
SCM_SETCAR (q, SCM_EOL);
|
||
scm_i_pthread_mutex_unlock (&queue_lock);
|
||
|
||
/* GC-robust */
|
||
SCM_SETCDR (c, SCM_EOL);
|
||
|
||
return SCM_CAR (c);
|
||
}
|
||
}
|
||
|
||
/*** Thread smob routines */
|
||
|
||
|
||
static int
|
||
thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
/* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
|
||
struct. A cast like "(unsigned long) t->pthread" is a syntax error in
|
||
the struct case, hence we go via a union, and extract according to the
|
||
size of pthread_t. */
|
||
union {
|
||
scm_i_pthread_t p;
|
||
unsigned short us;
|
||
unsigned int ui;
|
||
unsigned long ul;
|
||
uintmax_t um;
|
||
} u;
|
||
scm_thread *t = SCM_I_THREAD_DATA (exp);
|
||
scm_i_pthread_t p = t->pthread;
|
||
uintmax_t id;
|
||
u.p = p;
|
||
if (sizeof (p) == sizeof (unsigned short))
|
||
id = u.us;
|
||
else if (sizeof (p) == sizeof (unsigned int))
|
||
id = u.ui;
|
||
else if (sizeof (p) == sizeof (unsigned long))
|
||
id = u.ul;
|
||
else
|
||
id = u.um;
|
||
|
||
scm_puts ("#<thread ", port);
|
||
scm_uintprint (id, 10, port);
|
||
scm_puts (" (", port);
|
||
scm_uintprint ((scm_t_bits)t, 16, port);
|
||
scm_puts (")>", port);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*** Blocking on queues. */
|
||
|
||
/* See also scm_system_async_mark_for_thread for how such a block is
|
||
interrputed.
|
||
*/
|
||
|
||
/* Put the current thread on QUEUE and go to sleep, waiting for it to
|
||
be woken up by a call to 'unblock_from_queue', or to be
|
||
interrupted. Upon return of this function, the current thread is
|
||
no longer on QUEUE, even when the sleep has been interrupted.
|
||
|
||
The caller of block_self must hold MUTEX. It will be atomically
|
||
unlocked while sleeping, just as with scm_i_pthread_cond_wait.
|
||
|
||
When WAITTIME is not NULL, the sleep will be aborted at that time.
|
||
|
||
The return value of block_self is an errno value. It will be zero
|
||
when the sleep has been successfully completed by a call to
|
||
unblock_from_queue, EINTR when it has been interrupted by the
|
||
delivery of a system async, and ETIMEDOUT when the timeout has
|
||
expired.
|
||
|
||
The system asyncs themselves are not executed by block_self.
|
||
*/
|
||
static int
|
||
block_self (SCM queue, scm_i_pthread_mutex_t *mutex,
|
||
const scm_t_timespec *waittime)
|
||
{
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
SCM q_handle;
|
||
int err;
|
||
|
||
if (scm_i_prepare_to_wait_on_cond (t, mutex, &t->sleep_cond))
|
||
return EINTR;
|
||
|
||
t->block_asyncs++;
|
||
q_handle = enqueue (queue, t->handle);
|
||
if (waittime == NULL)
|
||
err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
|
||
else
|
||
err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);
|
||
|
||
/* When we are still on QUEUE, we have been interrupted. We
|
||
report this only when no other error (such as a timeout) has
|
||
happened above.
|
||
*/
|
||
if (remqueue (queue, q_handle) && err == 0)
|
||
err = EINTR;
|
||
t->block_asyncs--;
|
||
scm_i_wait_finished (t);
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Wake up the first thread on QUEUE, if any. The awoken thread is
|
||
returned, or #f if the queue was empty.
|
||
*/
|
||
static SCM
|
||
unblock_from_queue (SCM queue)
|
||
{
|
||
SCM thread = dequeue (queue);
|
||
if (scm_is_true (thread))
|
||
scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
|
||
return thread;
|
||
}
|
||
|
||
|
||
/* Getting into and out of guile mode.
|
||
*/
|
||
|
||
/* Key used to attach a cleanup handler to a given thread. Also, if
|
||
thread-local storage is unavailable, this key is used to retrieve the
|
||
current thread with `pthread_getspecific ()'. */
|
||
scm_i_pthread_key_t scm_i_thread_key;
|
||
|
||
|
||
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
|
||
|
||
/* When thread-local storage (TLS) is available, a pointer to the
|
||
current-thread object is kept in TLS. Note that storing the thread-object
|
||
itself in TLS (rather than a pointer to some malloc'd memory) is not
|
||
possible since thread objects may live longer than the actual thread they
|
||
represent. */
|
||
SCM_THREAD_LOCAL scm_thread *scm_i_current_thread = NULL;
|
||
|
||
#endif /* SCM_HAVE_THREAD_STORAGE_CLASS */
|
||
|
||
|
||
static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
|
||
static scm_thread *all_threads = NULL;
|
||
static int thread_count;
|
||
|
||
static SCM default_dynamic_state;
|
||
|
||
/* Perform first stage of thread initialisation, in non-guile mode.
|
||
*/
|
||
static void
|
||
guilify_self_1 (struct GC_stack_base *base, int needs_unregister)
|
||
{
|
||
scm_thread t;
|
||
|
||
/* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value
|
||
before allocating anything in this thread, because allocation could
|
||
cause GC to run, and GC could cause finalizers, which could invoke
|
||
Scheme functions, which need the current thread to be set. */
|
||
|
||
memset (&t, 0, sizeof (t));
|
||
|
||
t.pthread = scm_i_pthread_self ();
|
||
t.handle = SCM_BOOL_F;
|
||
t.result = SCM_BOOL_F;
|
||
t.pending_asyncs = SCM_EOL;
|
||
t.block_asyncs = 1;
|
||
t.base = base->mem_base;
|
||
t.continuation_root = SCM_EOL;
|
||
t.continuation_base = t.base;
|
||
scm_i_pthread_cond_init (&t.sleep_cond, NULL);
|
||
scm_i_vm_prepare_stack (&t.vm);
|
||
|
||
if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0)
|
||
/* FIXME: Error conditions during the initialization phase are handled
|
||
gracelessly since public functions such as `scm_init_guile ()'
|
||
currently have type `void'. */
|
||
abort ();
|
||
|
||
t.exited = 0;
|
||
t.guile_mode = 0;
|
||
t.needs_unregister = needs_unregister;
|
||
|
||
/* The switcheroo. */
|
||
{
|
||
scm_thread *t_ptr = &t;
|
||
|
||
GC_disable ();
|
||
t_ptr = GC_generic_malloc (sizeof (*t_ptr), thread_gc_kind);
|
||
memcpy (t_ptr, &t, sizeof t);
|
||
|
||
scm_i_pthread_setspecific (scm_i_thread_key, t_ptr);
|
||
|
||
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
|
||
/* Cache the current thread in TLS for faster lookup. */
|
||
scm_i_current_thread = t_ptr;
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
t_ptr->next_thread = all_threads;
|
||
all_threads = t_ptr;
|
||
thread_count++;
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
|
||
GC_enable ();
|
||
}
|
||
}
|
||
|
||
/* Perform second stage of thread initialisation, in guile mode.
|
||
*/
|
||
static void
|
||
guilify_self_2 (SCM dynamic_state)
|
||
{
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
t->guile_mode = 1;
|
||
|
||
SCM_NEWSMOB (t->handle, scm_tc16_thread, t);
|
||
|
||
t->continuation_root = scm_cons (t->handle, SCM_EOL);
|
||
t->continuation_base = t->base;
|
||
|
||
{
|
||
size_t size = SCM_INLINE_GC_FREELIST_COUNT * sizeof (void *);
|
||
t->freelists = scm_gc_malloc (size, "freelists");
|
||
t->pointerless_freelists = scm_gc_malloc (size, "atomic freelists");
|
||
}
|
||
|
||
t->dynamic_state = scm_gc_typed_calloc (scm_t_dynamic_state);
|
||
t->dynamic_state->thread_local_values = scm_c_make_hash_table (0);
|
||
scm_set_current_dynamic_state (dynamic_state);
|
||
|
||
t->dynstack.base = scm_gc_malloc (16 * sizeof (scm_t_bits), "dynstack");
|
||
t->dynstack.limit = t->dynstack.base + 16;
|
||
t->dynstack.top = t->dynstack.base + SCM_DYNSTACK_HEADER_LEN;
|
||
|
||
t->block_asyncs = 0;
|
||
|
||
/* See note in finalizers.c:queue_finalizer_async(). */
|
||
GC_invoke_finalizers ();
|
||
}
|
||
|
||
|
||
|
||
|
||
static void
|
||
on_thread_exit (void *v)
|
||
{
|
||
/* This handler is executed in non-guile mode. Note that although
|
||
libgc isn't guaranteed to see thread-locals, for this thread-local
|
||
that isn't an issue as we have the all_threads list. */
|
||
scm_thread *t = (scm_thread *) v, **tp;
|
||
|
||
t->exited = 1;
|
||
|
||
close (t->sleep_pipe[0]);
|
||
close (t->sleep_pipe[1]);
|
||
t->sleep_pipe[0] = t->sleep_pipe[1] = -1;
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
|
||
if (*tp == t)
|
||
{
|
||
*tp = t->next_thread;
|
||
|
||
/* GC-robust */
|
||
t->next_thread = NULL;
|
||
|
||
break;
|
||
}
|
||
thread_count--;
|
||
|
||
/* Prevent any concurrent or future marker from visiting this
|
||
thread. */
|
||
t->handle = SCM_PACK (0);
|
||
|
||
/* If there's only one other thread, it could be the signal delivery
|
||
thread, so we need to notify it to shut down by closing its read pipe.
|
||
If it's not the signal delivery thread, then closing the read pipe isn't
|
||
going to hurt. */
|
||
if (thread_count <= 1)
|
||
scm_i_close_signal_pipe ();
|
||
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
|
||
/* Although this thread has exited, the thread object might still be
|
||
alive. Release unused memory. */
|
||
t->freelists = NULL;
|
||
t->pointerless_freelists = NULL;
|
||
t->dynamic_state = NULL;
|
||
t->dynstack.base = NULL;
|
||
t->dynstack.top = NULL;
|
||
t->dynstack.limit = NULL;
|
||
scm_i_vm_free_stack (&t->vm);
|
||
|
||
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
|
||
scm_i_current_thread = NULL;
|
||
#endif
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
if (t->needs_unregister)
|
||
GC_unregister_my_thread ();
|
||
#endif
|
||
}
|
||
|
||
static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;
|
||
|
||
static void
|
||
init_thread_key (void)
|
||
{
|
||
scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
|
||
}
|
||
|
||
/* Perform any initializations necessary to make the current thread
|
||
known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself,
|
||
if necessary.
|
||
|
||
BASE is the stack base to use with GC.
|
||
|
||
DYNAMIC_STATE is the set of fluid values to start with.
|
||
|
||
Returns zero when the thread was known to guile already; otherwise
|
||
return 1.
|
||
|
||
Note that it could be the case that the thread was known
|
||
to Guile, but not in guile mode (because we are within a
|
||
scm_without_guile call). Check SCM_I_CURRENT_THREAD->guile_mode to
|
||
be sure. New threads are put into guile mode implicitly. */
|
||
|
||
static int
|
||
scm_i_init_thread_for_guile (struct GC_stack_base *base,
|
||
SCM dynamic_state)
|
||
{
|
||
scm_i_pthread_once (&init_thread_key_once, init_thread_key);
|
||
|
||
if (SCM_I_CURRENT_THREAD)
|
||
{
|
||
/* Thread is already known to Guile.
|
||
*/
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* This thread has not been guilified yet.
|
||
*/
|
||
|
||
scm_i_pthread_mutex_lock (&scm_i_init_mutex);
|
||
if (scm_initialized_p == 0)
|
||
{
|
||
/* First thread ever to enter Guile. Run the full
|
||
initialization.
|
||
*/
|
||
scm_i_init_guile (base);
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
/* Allow other threads to come in later. */
|
||
GC_allow_register_threads ();
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
|
||
}
|
||
else
|
||
{
|
||
int needs_unregister = 0;
|
||
|
||
/* Guile is already initialized, but this thread enters it for
|
||
the first time. Only initialize this thread.
|
||
*/
|
||
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
|
||
|
||
/* Register this thread with libgc. */
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
if (GC_register_my_thread (base) == GC_SUCCESS)
|
||
needs_unregister = 1;
|
||
#endif
|
||
|
||
guilify_self_1 (base, needs_unregister);
|
||
guilify_self_2 (dynamic_state);
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_init_guile ()
|
||
{
|
||
struct GC_stack_base stack_base;
|
||
|
||
if (GC_get_stack_base (&stack_base) == GC_SUCCESS)
|
||
scm_i_init_thread_for_guile (&stack_base, default_dynamic_state);
|
||
else
|
||
{
|
||
fprintf (stderr, "Failed to get stack base for current thread.\n");
|
||
exit (EXIT_FAILURE);
|
||
}
|
||
}
|
||
|
||
struct with_guile_args
|
||
{
|
||
GC_fn_type func;
|
||
void *data;
|
||
SCM dynamic_state;
|
||
};
|
||
|
||
static void *
|
||
with_guile_trampoline (void *data)
|
||
{
|
||
struct with_guile_args *args = data;
|
||
|
||
return scm_c_with_continuation_barrier (args->func, args->data);
|
||
}
|
||
|
||
static void *
|
||
with_guile (struct GC_stack_base *base, void *data)
|
||
{
|
||
void *res;
|
||
int new_thread;
|
||
scm_thread *t;
|
||
struct with_guile_args *args = data;
|
||
|
||
new_thread = scm_i_init_thread_for_guile (base, args->dynamic_state);
|
||
t = SCM_I_CURRENT_THREAD;
|
||
if (new_thread)
|
||
{
|
||
/* We are in Guile mode. */
|
||
assert (t->guile_mode);
|
||
|
||
res = scm_c_with_continuation_barrier (args->func, args->data);
|
||
|
||
/* Leave Guile mode. */
|
||
t->guile_mode = 0;
|
||
}
|
||
else if (t->guile_mode)
|
||
{
|
||
/* Already in Guile mode. */
|
||
res = scm_c_with_continuation_barrier (args->func, args->data);
|
||
}
|
||
else
|
||
{
|
||
/* We are not in Guile mode, either because we are not within a
|
||
scm_with_guile, or because we are within a scm_without_guile.
|
||
|
||
This call to scm_with_guile() could happen from anywhere on the
|
||
stack, and in particular lower on the stack than when it was
|
||
when this thread was first guilified. Thus, `base' must be
|
||
updated. */
|
||
#if SCM_STACK_GROWS_UP
|
||
if (SCM_STACK_PTR (base->mem_base) < t->base)
|
||
t->base = SCM_STACK_PTR (base->mem_base);
|
||
#else
|
||
if (SCM_STACK_PTR (base->mem_base) > t->base)
|
||
t->base = SCM_STACK_PTR (base->mem_base);
|
||
#endif
|
||
|
||
t->guile_mode = 1;
|
||
res = GC_call_with_gc_active (with_guile_trampoline, args);
|
||
t->guile_mode = 0;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
static void *
|
||
scm_i_with_guile (void *(*func)(void *), void *data, SCM dynamic_state)
|
||
{
|
||
struct with_guile_args args;
|
||
|
||
args.func = func;
|
||
args.data = data;
|
||
args.dynamic_state = dynamic_state;
|
||
|
||
return GC_call_with_stack_base (with_guile, &args);
|
||
}
|
||
|
||
void *
|
||
scm_with_guile (void *(*func)(void *), void *data)
|
||
{
|
||
return scm_i_with_guile (func, data, default_dynamic_state);
|
||
}
|
||
|
||
void *
|
||
scm_without_guile (void *(*func)(void *), void *data)
|
||
{
|
||
void *result;
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
if (t->guile_mode)
|
||
{
|
||
SCM_I_CURRENT_THREAD->guile_mode = 0;
|
||
result = GC_do_blocking (func, data);
|
||
SCM_I_CURRENT_THREAD->guile_mode = 1;
|
||
}
|
||
else
|
||
/* Otherwise we're not in guile mode, so nothing to do. */
|
||
result = func (data);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/*** Thread creation */
|
||
|
||
/* Because (ice-9 boot-9) loads up (ice-9 threads), we know that this
|
||
variable will get loaded before a call to scm_call_with_new_thread
|
||
and therefore no lock or pthread_once_t is needed. */
|
||
static SCM call_with_new_thread_var;
|
||
|
||
SCM
|
||
scm_call_with_new_thread (SCM thunk, SCM handler)
|
||
{
|
||
SCM call_with_new_thread = scm_variable_ref (call_with_new_thread_var);
|
||
if (SCM_UNBNDP (handler))
|
||
return scm_call_1 (call_with_new_thread, thunk);
|
||
return scm_call_2 (call_with_new_thread, thunk, handler);
|
||
}
|
||
|
||
typedef struct launch_data launch_data;
|
||
|
||
struct launch_data {
|
||
launch_data *prev;
|
||
launch_data *next;
|
||
SCM dynamic_state;
|
||
SCM thunk;
|
||
};
|
||
|
||
/* GC-protect the launch data for new threads. */
|
||
static launch_data *protected_launch_data;
|
||
static scm_i_pthread_mutex_t protected_launch_data_lock =
|
||
SCM_I_PTHREAD_MUTEX_INITIALIZER;
|
||
|
||
static void
|
||
protect_launch_data (launch_data *data)
|
||
{
|
||
scm_i_pthread_mutex_lock (&protected_launch_data_lock);
|
||
data->next = protected_launch_data;
|
||
if (protected_launch_data)
|
||
protected_launch_data->prev = data;
|
||
protected_launch_data = data;
|
||
scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
|
||
}
|
||
|
||
static void
|
||
unprotect_launch_data (launch_data *data)
|
||
{
|
||
scm_i_pthread_mutex_lock (&protected_launch_data_lock);
|
||
if (data->next)
|
||
data->next->prev = data->prev;
|
||
if (data->prev)
|
||
data->prev->next = data->next;
|
||
else
|
||
protected_launch_data = data->next;
|
||
scm_i_pthread_mutex_unlock (&protected_launch_data_lock);
|
||
}
|
||
|
||
static void *
|
||
really_launch (void *d)
|
||
{
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
unprotect_launch_data (d);
|
||
/* The thread starts with asyncs blocked. */
|
||
t->block_asyncs++;
|
||
SCM_I_CURRENT_THREAD->result = scm_call_0 (((launch_data *)d)->thunk);
|
||
return 0;
|
||
}
|
||
|
||
static void *
|
||
launch_thread (void *d)
|
||
{
|
||
launch_data *data = (launch_data *)d;
|
||
scm_i_pthread_detach (scm_i_pthread_self ());
|
||
scm_i_with_guile (really_launch, d, data->dynamic_state);
|
||
return NULL;
|
||
}
|
||
|
||
SCM_INTERNAL SCM scm_sys_call_with_new_thread (SCM);
|
||
SCM_DEFINE (scm_sys_call_with_new_thread, "%call-with-new-thread", 1, 0, 0,
|
||
(SCM thunk), "")
|
||
#define FUNC_NAME s_scm_sys_call_with_new_thread
|
||
{
|
||
launch_data *data;
|
||
scm_i_pthread_t id;
|
||
int err;
|
||
|
||
SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);
|
||
|
||
GC_collect_a_little ();
|
||
data = scm_gc_typed_calloc (launch_data);
|
||
data->dynamic_state = scm_current_dynamic_state ();
|
||
data->thunk = thunk;
|
||
protect_launch_data (data);
|
||
err = scm_i_pthread_create (&id, NULL, launch_thread, data);
|
||
if (err)
|
||
{
|
||
errno = err;
|
||
scm_syserror (NULL);
|
||
}
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_spawn_thread (scm_t_catch_body body, void *body_data,
|
||
scm_t_catch_handler handler, void *handler_data)
|
||
{
|
||
SCM body_closure, handler_closure;
|
||
|
||
body_closure = scm_i_make_catch_body_closure (body, body_data);
|
||
handler_closure = handler == NULL ? SCM_UNDEFINED :
|
||
scm_i_make_catch_handler_closure (handler, handler_data);
|
||
|
||
return scm_call_with_new_thread (body_closure, handler_closure);
|
||
}
|
||
|
||
SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
|
||
(),
|
||
"Move the calling thread to the end of the scheduling queue.")
|
||
#define FUNC_NAME s_scm_yield
|
||
{
|
||
return scm_from_bool (scm_i_sched_yield ());
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM cancel_thread_var;
|
||
|
||
SCM
|
||
scm_cancel_thread (SCM thread)
|
||
{
|
||
scm_call_1 (scm_variable_ref (cancel_thread_var), thread);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
static SCM join_thread_var;
|
||
|
||
SCM
|
||
scm_join_thread (SCM thread)
|
||
{
|
||
return scm_call_1 (scm_variable_ref (join_thread_var), thread);
|
||
}
|
||
|
||
SCM
|
||
scm_join_thread_timed (SCM thread, SCM timeout, SCM timeoutval)
|
||
{
|
||
SCM join_thread = scm_variable_ref (join_thread_var);
|
||
|
||
if (SCM_UNBNDP (timeout))
|
||
return scm_call_1 (join_thread, thread);
|
||
else if (SCM_UNBNDP (timeoutval))
|
||
return scm_call_2 (join_thread, thread, timeout);
|
||
else
|
||
return scm_call_3 (join_thread, thread, timeout, timeoutval);
|
||
}
|
||
|
||
SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a thread.")
|
||
#define FUNC_NAME s_scm_thread_p
|
||
{
|
||
return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
|
||
/* We implement our own mutex type since we want them to be 'fair', we
|
||
want to do fancy things while waiting for them (like running
|
||
asyncs) and we might want to add things that are nice for
|
||
debugging.
|
||
*/
|
||
|
||
enum scm_mutex_kind {
|
||
/* A standard mutex can only be locked once. If you try to lock it
|
||
again from the thread that locked it to begin with (the "owner"
|
||
thread), it throws an error. It can only be unlocked from the
|
||
thread that locked it in the first place. */
|
||
SCM_MUTEX_STANDARD,
|
||
/* A recursive mutex can be locked multiple times by its owner. It
|
||
then has to be unlocked the corresponding number of times, and like
|
||
standard mutexes can only be unlocked by the owner thread. */
|
||
SCM_MUTEX_RECURSIVE,
|
||
/* An unowned mutex is like a standard mutex, except that it can be
|
||
unlocked by any thread. A corrolary of this behavior is that a
|
||
thread's attempt to lock a mutex that it already owns will block
|
||
instead of signalling an error, as it could be that some other
|
||
thread unlocks the mutex, allowing the owner thread to proceed.
|
||
This kind of mutex is a bit strange and is here for use by
|
||
SRFI-18. */
|
||
SCM_MUTEX_UNOWNED
|
||
};
|
||
|
||
struct scm_mutex {
|
||
scm_i_pthread_mutex_t lock;
|
||
/* The thread that owns this mutex, or #f if the mutex is unlocked. */
|
||
SCM owner;
|
||
/* Queue of threads waiting for this mutex. */
|
||
SCM waiting;
|
||
/* For SCM_MUTEX_RECURSIVE (and only SCM_MUTEX_RECURSIVE), the
|
||
recursive lock count. The first lock does not count. */
|
||
int level;
|
||
};
|
||
|
||
#define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
|
||
#define SCM_MUTEX_DATA(x) ((struct scm_mutex *) SCM_SMOB_DATA (x))
|
||
#define SCM_MUTEX_KIND(x) ((enum scm_mutex_kind) (SCM_SMOB_FLAGS (x) & 0x3))
|
||
|
||
static int
|
||
scm_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
struct scm_mutex *m = SCM_MUTEX_DATA (mx);
|
||
scm_puts ("#<mutex ", port);
|
||
scm_uintprint ((scm_t_bits)m, 16, port);
|
||
scm_puts (">", port);
|
||
return 1;
|
||
}
|
||
|
||
SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
|
||
SCM_SYMBOL (recursive_sym, "recursive");
|
||
|
||
SCM_DEFINE (scm_make_mutex_with_kind, "make-mutex", 0, 1, 0,
|
||
(SCM kind),
|
||
"Create a new mutex. If @var{kind} is not given, the mutex\n"
|
||
"will be a standard non-recursive mutex. Otherwise pass\n"
|
||
"@code{recursive} to make a recursive mutex, or\n"
|
||
"@code{allow-external-unlock} to make a non-recursive mutex\n"
|
||
"that can be unlocked from any thread.")
|
||
#define FUNC_NAME s_scm_make_mutex_with_kind
|
||
{
|
||
enum scm_mutex_kind mkind = SCM_MUTEX_STANDARD;
|
||
struct scm_mutex *m;
|
||
scm_i_pthread_mutex_t lock = SCM_I_PTHREAD_MUTEX_INITIALIZER;
|
||
|
||
if (!SCM_UNBNDP (kind))
|
||
{
|
||
if (scm_is_eq (kind, allow_external_unlock_sym))
|
||
mkind = SCM_MUTEX_UNOWNED;
|
||
else if (scm_is_eq (kind, recursive_sym))
|
||
mkind = SCM_MUTEX_RECURSIVE;
|
||
else
|
||
SCM_MISC_ERROR ("unsupported mutex kind: ~a", scm_list_1 (kind));
|
||
}
|
||
|
||
m = scm_gc_malloc (sizeof (struct scm_mutex), "mutex");
|
||
/* Because PTHREAD_MUTEX_INITIALIZER is static, it's plain old data,
|
||
and so we can just copy it. */
|
||
memcpy (&m->lock, &lock, sizeof (m->lock));
|
||
m->owner = SCM_BOOL_F;
|
||
m->level = 0;
|
||
m->waiting = make_queue ();
|
||
|
||
return scm_new_smob (scm_tc16_mutex | (mkind << 16), (scm_t_bits) m);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_make_mutex (void)
|
||
{
|
||
return scm_make_mutex_with_kind (SCM_UNDEFINED);
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
|
||
(void),
|
||
"Create a new recursive mutex. ")
|
||
#define FUNC_NAME s_scm_make_recursive_mutex
|
||
{
|
||
return scm_make_mutex_with_kind (recursive_sym);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_lock_mutex (SCM mx)
|
||
{
|
||
return scm_timed_lock_mutex (mx, SCM_UNDEFINED);
|
||
}
|
||
|
||
static inline SCM
|
||
lock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
|
||
scm_thread *current_thread, scm_t_timespec *waittime)
|
||
#define FUNC_NAME "lock-mutex"
|
||
{
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
|
||
if (scm_is_eq (m->owner, SCM_BOOL_F))
|
||
{
|
||
m->owner = current_thread->handle;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
return SCM_BOOL_T;
|
||
}
|
||
else if (kind == SCM_MUTEX_RECURSIVE &&
|
||
scm_is_eq (m->owner, current_thread->handle))
|
||
{
|
||
m->level++;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
return SCM_BOOL_T;
|
||
}
|
||
else if (kind == SCM_MUTEX_STANDARD &&
|
||
scm_is_eq (m->owner, current_thread->handle))
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_MISC_ERROR ("mutex already locked by thread", SCM_EOL);
|
||
}
|
||
else
|
||
while (1)
|
||
{
|
||
int err = block_self (m->waiting, &m->lock, waittime);
|
||
|
||
if (err == 0)
|
||
{
|
||
if (scm_is_eq (m->owner, SCM_BOOL_F))
|
||
{
|
||
m->owner = current_thread->handle;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
return SCM_BOOL_T;
|
||
}
|
||
else
|
||
continue;
|
||
}
|
||
else if (err == ETIMEDOUT)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
return SCM_BOOL_F;
|
||
}
|
||
else if (err == EINTR)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
scm_async_tick ();
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
continue;
|
||
}
|
||
else
|
||
{
|
||
/* Shouldn't happen. */
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
errno = err;
|
||
SCM_SYSERROR;
|
||
}
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_timed_lock_mutex, "lock-mutex", 1, 1, 0,
|
||
(SCM mutex, SCM timeout),
|
||
"Lock mutex @var{mutex}. If the mutex is already locked, "
|
||
"the calling thread blocks until the mutex becomes available.")
|
||
#define FUNC_NAME s_scm_timed_lock_mutex
|
||
{
|
||
scm_t_timespec cwaittime, *waittime = NULL;
|
||
struct scm_mutex *m;
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
SCM ret;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mutex);
|
||
m = SCM_MUTEX_DATA (mutex);
|
||
|
||
if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
|
||
{
|
||
to_timespec (timeout, &cwaittime);
|
||
waittime = &cwaittime;
|
||
}
|
||
|
||
/* Specialized lock_mutex implementations according to the mutex
|
||
kind. */
|
||
switch (SCM_MUTEX_KIND (mutex))
|
||
{
|
||
case SCM_MUTEX_STANDARD:
|
||
ret = lock_mutex (SCM_MUTEX_STANDARD, m, t, waittime);
|
||
break;
|
||
case SCM_MUTEX_RECURSIVE:
|
||
ret = lock_mutex (SCM_MUTEX_RECURSIVE, m, t, waittime);
|
||
break;
|
||
case SCM_MUTEX_UNOWNED:
|
||
ret = lock_mutex (SCM_MUTEX_UNOWNED, m, t, waittime);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
scm_remember_upto_here_1 (mutex);
|
||
|
||
return ret;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
lock_mutex_return_void (SCM mx)
|
||
{
|
||
(void) scm_lock_mutex (mx);
|
||
}
|
||
|
||
static void
|
||
unlock_mutex_return_void (SCM mx)
|
||
{
|
||
(void) scm_unlock_mutex (mx);
|
||
}
|
||
|
||
void
|
||
scm_dynwind_lock_mutex (SCM mutex)
|
||
{
|
||
scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex,
|
||
SCM_F_WIND_EXPLICITLY);
|
||
scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex,
|
||
SCM_F_WIND_EXPLICITLY);
|
||
}
|
||
|
||
SCM
|
||
scm_try_mutex (SCM mutex)
|
||
{
|
||
return scm_timed_lock_mutex (mutex, SCM_INUM0);
|
||
}
|
||
|
||
/* This function is static inline so that the compiler can specialize it
|
||
against the mutex kind. */
|
||
static inline void
|
||
unlock_mutex (enum scm_mutex_kind kind, struct scm_mutex *m,
|
||
scm_thread *current_thread)
|
||
#define FUNC_NAME "unlock-mutex"
|
||
{
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
|
||
if (!scm_is_eq (m->owner, current_thread->handle))
|
||
{
|
||
if (scm_is_eq (m->owner, SCM_BOOL_F))
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
|
||
}
|
||
|
||
if (kind != SCM_MUTEX_UNOWNED)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
|
||
}
|
||
}
|
||
|
||
if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
|
||
m->level--;
|
||
else
|
||
{
|
||
m->owner = SCM_BOOL_F;
|
||
/* Wake up one waiter. */
|
||
unblock_from_queue (m->waiting);
|
||
}
|
||
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_unlock_mutex, "unlock-mutex", 1, 0, 0, (SCM mutex),
|
||
"Unlocks @var{mutex}. The calling thread must already hold\n"
|
||
"the lock on @var{mutex}, unless the mutex was created with\n"
|
||
"the @code{allow-external-unlock} option; otherwise an error\n"
|
||
"will be signalled.")
|
||
#define FUNC_NAME s_scm_unlock_mutex
|
||
{
|
||
struct scm_mutex *m;
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mutex);
|
||
|
||
m = SCM_MUTEX_DATA (mutex);
|
||
|
||
/* Specialized unlock_mutex implementations according to the mutex
|
||
kind. */
|
||
switch (SCM_MUTEX_KIND (mutex))
|
||
{
|
||
case SCM_MUTEX_STANDARD:
|
||
unlock_mutex (SCM_MUTEX_STANDARD, m, t);
|
||
break;
|
||
case SCM_MUTEX_RECURSIVE:
|
||
unlock_mutex (SCM_MUTEX_RECURSIVE, m, t);
|
||
break;
|
||
case SCM_MUTEX_UNOWNED:
|
||
unlock_mutex (SCM_MUTEX_UNOWNED, m, t);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
scm_remember_upto_here_1 (mutex);
|
||
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a mutex.")
|
||
#define FUNC_NAME s_scm_mutex_p
|
||
{
|
||
return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
|
||
(SCM mx),
|
||
"Return the thread owning @var{mx}, or @code{#f}.")
|
||
#define FUNC_NAME s_scm_mutex_owner
|
||
{
|
||
SCM owner;
|
||
struct scm_mutex *m = NULL;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
m = SCM_MUTEX_DATA (mx);
|
||
scm_i_pthread_mutex_lock (&m->lock);
|
||
owner = m->owner;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
|
||
return owner;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
|
||
(SCM mx),
|
||
"Return the lock level of mutex @var{mx}.")
|
||
#define FUNC_NAME s_scm_mutex_level
|
||
{
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
if (SCM_MUTEX_KIND (mx) == SCM_MUTEX_RECURSIVE)
|
||
return scm_from_int (SCM_MUTEX_DATA (mx)->level + 1);
|
||
else if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
|
||
return SCM_INUM0;
|
||
else
|
||
return SCM_INUM1;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
|
||
(SCM mx),
|
||
"Returns @code{#t} if the mutex @var{mx} is locked.")
|
||
#define FUNC_NAME s_scm_mutex_locked_p
|
||
{
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
if (scm_is_eq (SCM_MUTEX_DATA (mx)->owner, SCM_BOOL_F))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
|
||
struct scm_cond {
|
||
scm_i_pthread_mutex_t lock;
|
||
SCM waiting; /* the threads waiting for this condition. */
|
||
};
|
||
|
||
#define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
|
||
#define SCM_CONDVAR_DATA(x) ((struct scm_cond *) SCM_SMOB_DATA (x))
|
||
|
||
static int
|
||
scm_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
struct scm_cond *c = SCM_CONDVAR_DATA (cv);
|
||
scm_puts ("#<condition-variable ", port);
|
||
scm_uintprint ((scm_t_bits)c, 16, port);
|
||
scm_puts (">", port);
|
||
return 1;
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
|
||
(void),
|
||
"Make a new condition variable.")
|
||
#define FUNC_NAME s_scm_make_condition_variable
|
||
{
|
||
struct scm_cond *c;
|
||
SCM cv;
|
||
|
||
c = scm_gc_malloc (sizeof (struct scm_cond), "condition variable");
|
||
c->waiting = SCM_EOL;
|
||
SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
|
||
c->waiting = make_queue ();
|
||
return cv;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static inline SCM
|
||
timed_wait (enum scm_mutex_kind kind, struct scm_mutex *m, struct scm_cond *c,
|
||
scm_thread *current_thread, scm_t_timespec *waittime)
|
||
#define FUNC_NAME "wait-condition-variable"
|
||
{
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
|
||
if (!scm_is_eq (m->owner, current_thread->handle))
|
||
{
|
||
if (scm_is_eq (m->owner, SCM_BOOL_F))
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_MISC_ERROR ("mutex not locked", SCM_EOL);
|
||
}
|
||
|
||
if (kind != SCM_MUTEX_UNOWNED)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_MISC_ERROR ("mutex not locked by current thread", SCM_EOL);
|
||
}
|
||
}
|
||
|
||
while (1)
|
||
{
|
||
int err = 0;
|
||
|
||
/* Unlock the mutex. */
|
||
if (kind == SCM_MUTEX_RECURSIVE && m->level > 0)
|
||
m->level--;
|
||
else
|
||
{
|
||
m->owner = SCM_BOOL_F;
|
||
/* Wake up one waiter. */
|
||
unblock_from_queue (m->waiting);
|
||
}
|
||
|
||
/* Wait for someone to signal the cond, a timeout, or an
|
||
interrupt. */
|
||
err = block_self (c->waiting, &m->lock, waittime);
|
||
|
||
/* We woke up for some reason. Reacquire the mutex before doing
|
||
anything else.
|
||
|
||
FIXME: We disable interrupts while reacquiring the mutex. If
|
||
we allow interrupts here, there's the risk of a nonlocal exit
|
||
before we reaquire the mutex, which would be visible to user
|
||
code.
|
||
|
||
For example the unwind handler in
|
||
|
||
(with-mutex m (wait-condition-variable c m))
|
||
|
||
that tries to unlock M could see M in an already-unlocked
|
||
state, if an interrupt while waiting on C caused the wait to
|
||
abort and the woke thread lost the race to reacquire M. That's
|
||
not great. Maybe it's necessary but for now we just disable
|
||
interrupts while reaquiring a mutex after a wait. */
|
||
current_thread->block_asyncs++;
|
||
if (kind == SCM_MUTEX_RECURSIVE &&
|
||
scm_is_eq (m->owner, current_thread->handle))
|
||
{
|
||
m->level++;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
}
|
||
else
|
||
while (1)
|
||
{
|
||
if (scm_is_eq (m->owner, SCM_BOOL_F))
|
||
{
|
||
m->owner = current_thread->handle;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
break;
|
||
}
|
||
block_self (m->waiting, &m->lock, waittime);
|
||
}
|
||
current_thread->block_asyncs--;
|
||
|
||
/* Now that we have the mutex again, handle the return value. */
|
||
if (err == 0)
|
||
return SCM_BOOL_T;
|
||
else if (err == ETIMEDOUT)
|
||
return SCM_BOOL_F;
|
||
else if (err == EINTR)
|
||
/* Let caller run scm_async_tick() and loop. */
|
||
return SCM_BOOL_T;
|
||
else
|
||
{
|
||
/* Shouldn't happen. */
|
||
errno = err;
|
||
SCM_SYSERROR;
|
||
}
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
|
||
(SCM cond, SCM mutex, SCM timeout),
|
||
"Wait until condition variable @var{cv} has been signalled. While waiting, "
|
||
"mutex @var{mx} is atomically unlocked (as with @code{unlock-mutex}) and "
|
||
"is locked again when this function returns. When @var{t} is given, "
|
||
"it specifies a point in time where the waiting should be aborted. It "
|
||
"can be either a integer as returned by @code{current-time} or a pair "
|
||
"as returned by @code{gettimeofday}. When the waiting is aborted the "
|
||
"mutex is locked and @code{#f} is returned. When the condition "
|
||
"variable is in fact signalled, the mutex is also locked and @code{#t} "
|
||
"is returned. ")
|
||
#define FUNC_NAME s_scm_timed_wait_condition_variable
|
||
{
|
||
scm_t_timespec waittime_val, *waittime = NULL;
|
||
struct scm_cond *c;
|
||
struct scm_mutex *m;
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
SCM ret;
|
||
|
||
SCM_VALIDATE_CONDVAR (1, cond);
|
||
SCM_VALIDATE_MUTEX (2, mutex);
|
||
|
||
c = SCM_CONDVAR_DATA (cond);
|
||
m = SCM_MUTEX_DATA (mutex);
|
||
|
||
if (!SCM_UNBNDP (timeout))
|
||
{
|
||
to_timespec (timeout, &waittime_val);
|
||
waittime = &waittime_val;
|
||
}
|
||
|
||
/* Specialized timed_wait implementations according to the mutex
|
||
kind. */
|
||
switch (SCM_MUTEX_KIND (mutex))
|
||
{
|
||
case SCM_MUTEX_STANDARD:
|
||
ret = timed_wait (SCM_MUTEX_STANDARD, m, c, t, waittime);
|
||
break;
|
||
case SCM_MUTEX_RECURSIVE:
|
||
ret = timed_wait (SCM_MUTEX_RECURSIVE, m, c, t, waittime);
|
||
break;
|
||
case SCM_MUTEX_UNOWNED:
|
||
ret = timed_wait (SCM_MUTEX_UNOWNED, m, c, t, waittime);
|
||
break;
|
||
default:
|
||
abort ();
|
||
}
|
||
|
||
scm_remember_upto_here_2 (mutex, cond);
|
||
|
||
return ret;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
|
||
(SCM cv),
|
||
"Wake up one thread that is waiting for @var{cv}")
|
||
#define FUNC_NAME s_scm_signal_condition_variable
|
||
{
|
||
struct scm_cond *c;
|
||
SCM_VALIDATE_CONDVAR (1, cv);
|
||
c = SCM_CONDVAR_DATA (cv);
|
||
unblock_from_queue (c->waiting);
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
|
||
(SCM cv),
|
||
"Wake up all threads that are waiting for @var{cv}. ")
|
||
#define FUNC_NAME s_scm_broadcast_condition_variable
|
||
{
|
||
struct scm_cond *c;
|
||
SCM_VALIDATE_CONDVAR (1, cv);
|
||
c = SCM_CONDVAR_DATA (cv);
|
||
while (scm_is_true (unblock_from_queue (c->waiting)))
|
||
;
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a condition variable.")
|
||
#define FUNC_NAME s_scm_condition_variable_p
|
||
{
|
||
return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/*** Select */
|
||
|
||
struct select_args
|
||
{
|
||
int nfds;
|
||
fd_set *read_fds;
|
||
fd_set *write_fds;
|
||
fd_set *except_fds;
|
||
struct timeval *timeout;
|
||
|
||
int result;
|
||
int errno_value;
|
||
};
|
||
|
||
static void *
|
||
do_std_select (void *args)
|
||
{
|
||
struct select_args *select_args;
|
||
|
||
select_args = (struct select_args *) args;
|
||
|
||
select_args->result =
|
||
select (select_args->nfds,
|
||
select_args->read_fds, select_args->write_fds,
|
||
select_args->except_fds, select_args->timeout);
|
||
select_args->errno_value = errno;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
int
|
||
scm_std_select (int nfds,
|
||
fd_set *readfds,
|
||
fd_set *writefds,
|
||
fd_set *exceptfds,
|
||
struct timeval *timeout)
|
||
{
|
||
fd_set my_readfds;
|
||
int res, eno, wakeup_fd;
|
||
scm_thread *t = SCM_I_CURRENT_THREAD;
|
||
struct select_args args;
|
||
|
||
if (readfds == NULL)
|
||
{
|
||
FD_ZERO (&my_readfds);
|
||
readfds = &my_readfds;
|
||
}
|
||
|
||
if (scm_i_prepare_to_wait_on_fd (t, t->sleep_pipe[1]))
|
||
{
|
||
eno = EINTR;
|
||
res = -1;
|
||
}
|
||
else
|
||
{
|
||
wakeup_fd = t->sleep_pipe[0];
|
||
FD_SET (wakeup_fd, readfds);
|
||
if (wakeup_fd >= nfds)
|
||
nfds = wakeup_fd+1;
|
||
|
||
args.nfds = nfds;
|
||
args.read_fds = readfds;
|
||
args.write_fds = writefds;
|
||
args.except_fds = exceptfds;
|
||
args.timeout = timeout;
|
||
|
||
/* Explicitly cooperate with the GC. */
|
||
scm_without_guile (do_std_select, &args);
|
||
|
||
res = args.result;
|
||
eno = args.errno_value;
|
||
|
||
scm_i_wait_finished (t);
|
||
|
||
if (res > 0 && FD_ISSET (wakeup_fd, readfds))
|
||
{
|
||
char dummy;
|
||
full_read (wakeup_fd, &dummy, 1);
|
||
|
||
FD_CLR (wakeup_fd, readfds);
|
||
res -= 1;
|
||
if (res == 0)
|
||
{
|
||
eno = EINTR;
|
||
res = -1;
|
||
}
|
||
}
|
||
}
|
||
errno = eno;
|
||
return res;
|
||
}
|
||
|
||
/* Convenience API for blocking while in guile mode. */
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
|
||
/* It seems reasonable to not run procedures related to mutex and condition
|
||
variables within `GC_do_blocking ()' since, (i) the GC can operate even
|
||
without it, and (ii) the only potential gain would be GC latency. See
|
||
http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251
|
||
for a discussion of the pros and cons. */
|
||
|
||
int
|
||
scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
int res = scm_i_pthread_mutex_lock (mutex);
|
||
return res;
|
||
}
|
||
|
||
static void
|
||
do_unlock (void *data)
|
||
{
|
||
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
|
||
}
|
||
|
||
void
|
||
scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
scm_i_scm_pthread_mutex_lock (mutex);
|
||
scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
|
||
}
|
||
|
||
int
|
||
scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
return scm_i_pthread_cond_wait (cond, mutex);
|
||
}
|
||
|
||
int
|
||
scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
|
||
scm_i_pthread_mutex_t *mutex,
|
||
const scm_t_timespec *wt)
|
||
{
|
||
return scm_i_pthread_cond_timedwait (cond, mutex, wt);
|
||
}
|
||
|
||
#endif
|
||
|
||
static void
|
||
do_unlock_with_asyncs (void *data)
|
||
{
|
||
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
|
||
SCM_I_CURRENT_THREAD->block_asyncs--;
|
||
}
|
||
|
||
void
|
||
scm_i_dynwind_pthread_mutex_lock_block_asyncs (scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
SCM_I_CURRENT_THREAD->block_asyncs++;
|
||
scm_i_scm_pthread_mutex_lock (mutex);
|
||
scm_dynwind_unwind_handler (do_unlock_with_asyncs, mutex,
|
||
SCM_F_WIND_EXPLICITLY);
|
||
}
|
||
|
||
unsigned long
|
||
scm_std_usleep (unsigned long usecs)
|
||
{
|
||
struct timeval tv;
|
||
tv.tv_usec = usecs % 1000000;
|
||
tv.tv_sec = usecs / 1000000;
|
||
scm_std_select (0, NULL, NULL, NULL, &tv);
|
||
return tv.tv_sec * 1000000 + tv.tv_usec;
|
||
}
|
||
|
||
unsigned int
|
||
scm_std_sleep (unsigned int secs)
|
||
{
|
||
struct timeval tv;
|
||
tv.tv_usec = 0;
|
||
tv.tv_sec = secs;
|
||
scm_std_select (0, NULL, NULL, NULL, &tv);
|
||
return tv.tv_sec;
|
||
}
|
||
|
||
/*** Misc */
|
||
|
||
SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
|
||
(void),
|
||
"Return the thread that called this function.")
|
||
#define FUNC_NAME s_scm_current_thread
|
||
{
|
||
return SCM_I_CURRENT_THREAD->handle;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_c_make_list (size_t n, SCM fill)
|
||
{
|
||
SCM res = SCM_EOL;
|
||
while (n-- > 0)
|
||
res = scm_cons (fill, res);
|
||
return res;
|
||
}
|
||
|
||
SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
|
||
(void),
|
||
"Return a list of all threads.")
|
||
#define FUNC_NAME s_scm_all_threads
|
||
{
|
||
/* We can not allocate while holding the thread_admin_mutex because
|
||
of the way GC is done.
|
||
*/
|
||
int n = thread_count;
|
||
scm_thread *t;
|
||
SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l;
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
l = &list;
|
||
for (t = all_threads; t && n > 0; t = t->next_thread)
|
||
{
|
||
if (t != scm_i_signal_delivery_thread)
|
||
{
|
||
SCM_SETCAR (*l, t->handle);
|
||
l = SCM_CDRLOC (*l);
|
||
}
|
||
n--;
|
||
}
|
||
*l = SCM_EOL;
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
return list;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
|
||
(SCM thread),
|
||
"Return @code{#t} iff @var{thread} has exited.\n")
|
||
#define FUNC_NAME s_scm_thread_exited_p
|
||
{
|
||
return scm_from_bool (scm_c_thread_exited_p (thread));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
int
|
||
scm_c_thread_exited_p (SCM thread)
|
||
#define FUNC_NAME s_scm_thread_exited_p
|
||
{
|
||
scm_thread *t;
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
return t->exited;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0,
|
||
(void),
|
||
"Return the total number of processors of the machine, which\n"
|
||
"is guaranteed to be at least 1. A ``processor'' here is a\n"
|
||
"thread execution unit, which can be either:\n\n"
|
||
"@itemize\n"
|
||
"@item an execution core in a (possibly multi-core) chip, in a\n"
|
||
" (possibly multi- chip) module, in a single computer, or\n"
|
||
"@item a thread execution unit inside a core in the case of\n"
|
||
" @dfn{hyper-threaded} CPUs.\n"
|
||
"@end itemize\n\n"
|
||
"Which of the two definitions is used, is unspecified.\n")
|
||
#define FUNC_NAME s_scm_total_processor_count
|
||
{
|
||
return scm_from_ulong (num_processors (NPROC_ALL));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0,
|
||
(void),
|
||
"Like @code{total-processor-count}, but return the number of\n"
|
||
"processors available to the current process. See\n"
|
||
"@code{setaffinity} and @code{getaffinity} for more\n"
|
||
"information.\n")
|
||
#define FUNC_NAME s_scm_current_processor_count
|
||
{
|
||
return scm_from_ulong (num_processors (NPROC_CURRENT));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
|
||
static scm_i_pthread_cond_t wake_up_cond;
|
||
static int threads_initialized_p = 0;
|
||
|
||
|
||
/*** Initialization */
|
||
|
||
scm_i_pthread_mutex_t scm_i_misc_mutex;
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
|
||
#endif
|
||
|
||
void
|
||
scm_threads_prehistory (void *base)
|
||
{
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
|
||
pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
|
||
PTHREAD_MUTEX_RECURSIVE);
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
|
||
scm_i_pthread_cond_init (&wake_up_cond, NULL);
|
||
|
||
thread_gc_kind =
|
||
GC_new_kind (GC_new_free_list (),
|
||
GC_MAKE_PROC (GC_new_proc (thread_mark), 0),
|
||
0, 1);
|
||
|
||
guilify_self_1 ((struct GC_stack_base *) base, 0);
|
||
}
|
||
|
||
scm_t_bits scm_tc16_thread;
|
||
scm_t_bits scm_tc16_mutex;
|
||
scm_t_bits scm_tc16_condvar;
|
||
|
||
static void
|
||
scm_init_ice_9_threads (void *unused)
|
||
{
|
||
#include "threads.x"
|
||
|
||
cancel_thread_var =
|
||
scm_module_variable (scm_current_module (),
|
||
scm_from_latin1_symbol ("cancel-thread"));
|
||
join_thread_var =
|
||
scm_module_variable (scm_current_module (),
|
||
scm_from_latin1_symbol ("join-thread"));
|
||
call_with_new_thread_var =
|
||
scm_module_variable (scm_current_module (),
|
||
scm_from_latin1_symbol ("call-with-new-thread"));
|
||
}
|
||
|
||
void
|
||
scm_init_threads ()
|
||
{
|
||
scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_thread));
|
||
scm_set_smob_print (scm_tc16_thread, thread_print);
|
||
|
||
scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (struct scm_mutex));
|
||
scm_set_smob_print (scm_tc16_mutex, scm_mutex_print);
|
||
|
||
scm_tc16_condvar = scm_make_smob_type ("condition-variable",
|
||
sizeof (struct scm_cond));
|
||
scm_set_smob_print (scm_tc16_condvar, scm_cond_print);
|
||
|
||
default_dynamic_state = SCM_BOOL_F;
|
||
guilify_self_2 (scm_i_make_initial_dynamic_state ());
|
||
threads_initialized_p = 1;
|
||
|
||
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
|
||
"scm_init_ice_9_threads",
|
||
scm_init_ice_9_threads, NULL);
|
||
}
|
||
|
||
void
|
||
scm_init_threads_default_dynamic_state ()
|
||
{
|
||
default_dynamic_state = scm_current_dynamic_state ();
|
||
}
|
||
|
||
|
||
|