1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-08 22:50:27 +02:00
guile/gc-ephemeron.c
Andy Wingo 78da8d5811 Add ephemeron implementation
This commit adds support for ephemerons to the API and wires it into the
collectors.  It also adds a new test.
2023-01-23 20:56:25 +01:00

582 lines
22 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#include <math.h>
#include <stdatomic.h>
#include <stdlib.h>
#define GC_IMPL 1
#include "address-hash.h"
#include "debug.h"
#include "gc-embedder-api.h"
#include "gc-ephemeron-internal.h"
// # Overview
//
// An ephemeron is a conjunction consisting of the ephemeron object
// itself, a "key" object, and a "value" object. If the ephemeron and
// the key are live, then the value is kept live and can be looked up
// given the ephemeron object.
//
// Sometimes we write this as E×K⇒V, indicating that you need both E and
// K to get V. We'll use this notation in these comments sometimes.
//
// The key and the value of an ephemeron are never modified, except
// possibly via forwarding during GC.
//
// If the key of an ephemeron ever becomes unreachable, the ephemeron
// object will be marked as dead by the collector, and neither key nor
// value will be accessible. Users can also explicitly mark an
// ephemeron as dead.
//
// Users can build collections of ephemerons by chaining them together.
// If an ephemeron ever becomes dead, the ephemeron will be removed from
// the chain by the garbage collector.
//
// # Tracing algorithm
//
// Tracing ephemerons is somewhat complicated. Tracing the live objects
// in a heap is usually a parallelizable fan-out kind of operation,
// requiring minimal synchronization between tracing worker threads.
// However with ephemerons, each worker thread may need to check if
// there is a pending ephemeron E for an object K, marking the
// associated V for later traversal by the tracer. Doing this without
// introducing excessive global serialization points is the motivation
// for the complications that follow.
//
// From the viewpoint of the garbage collector, an ephemeron E×K⇒V has 4
// possible states:
//
// - Traced: An E that was already fully traced as of a given GC epoch.
//
// - Claimed: GC discovers E for the first time in a GC epoch
//
// - Pending: K's liveness is unknown
//
// - Resolved: K is live; V needs tracing
//
// The ephemeron state is kept in an atomic variable. The pending and
// resolved states also have associated atomic list link fields as well;
// it doesn't appear possible to coalesce them into a single field
// without introducing serialization. Finally, there is a bit to
// indicate whether a "traced" ephemeron is live or dead, and a field to
// indicate the epoch at which it was last traced.
//
// Here is a diagram of the state transitions:
//
// ,----->Traced<-----.
// , | | .
// , v / .
// | Claimed |
// | ,-----/ \---. |
// | v v |
// Pending--------->Resolved
//
// Ephemerons are born in the traced state, for the current GC epoch.
//
// When the tracer sees an ephemeron E in the traced state it checks the
// epoch. If the epoch is up to date, E stays in the traced state and
// we are done.
//
// Otherwise, E transitions from traced to claimed. The thread that
// claims E is then responsible for resetting E's pending and resolved
// links, updating E's epoch, and tracing E's user-controlled chain
// link.
//
// If the claiming thread sees that E was already marked dead by a
// previous GC, or explicitly by the user, the ephemeron then
// transitions from back to traced, ready for the next epoch.
//
// If the claiming thread sees K to already be known to be live, then E
// is added to the global resolved set and E's state becomes resolved.
//
// Otherwise the claiming thread publishes K⇒E to the global pending
// ephemeron table, via the pending link, and E transitions to pending.
//
// A pending ephemeron is a link in a buckets-of-chains concurrent hash
// table. If its K is ever determined to be live, it becomes resolved,
// and is added to a global set of resolved ephemerons. At the end of
// GC, any ephemerons still pending are marked dead, transitioning their
// states to traced.
//
// Note that the claiming thread -- the one that publishes K⇒E to the
// global pending ephemeron table -- needs to re-check that K is still
// untraced after adding K⇒E to the pending table, and move to resolved
// if so.
//
// A resolved ephemeron needs its V to be traced. Incidentally its K
// also needs tracing, to relocate any forwarding pointer. The thread
// that pops an ephemeron from the resolved set is responsible for
// tracing and for moving E's state to traced.
//
// # Concurrency
//
// All operations on ephemerons are wait-free. Sometimes only one
// thread can make progress (for example for an ephemeron in the claimed
// state), but no thread will be stalled waiting on other threads to
// proceed.
//
// There is one interesting (from a concurrency point of view) data
// structure used by the implementation of ephemerons, the singly-linked
// list. Actually there are three of these; one is used as a stack and
// the other two is used as sets.
//
// The resolved set is implemented via a global `struct gc_ephemeron
// *resolved` variable. Resolving an ephemeron does an atomic push to
// this stack, via compare-and-swap (CAS); popping from the stack (also
// via CAS) yields an ephemeron for tracing. Ephemerons are added to
// the resolved set at most once per GC cycle, and the resolved set is
// empty outside of GC.
//
// The operations that are supported on atomic stacks are:
//
// push(LOC, E, OFFSET) -> void
//
// The user-visible chain link and the link for the pending ephemeron
// table are used to build atomic sets. In these you can add an
// ephemeron to the beginning of the list, traverse the list link by
// link to the end (indicated by NULL), and remove any list item.
// Removing a list node proceeds in two phases: one, you mark the node
// for removal, by changing the ephemeron's state; then, possibly on a
// subsequent traversal, any predecessor may forward its link past
// removed nodes. Because node values never change and nodes only go
// from live to dead, the live list tail can always be reached by any
// node, even from dead nodes.
//
// The operations that are supported on these atomic lists:
//
// push(LOC, E, OFFSET) -> void
// pop(LOC, OFFSET) -> ephemeron or null
// follow(LOC, OFFSET, STATE_OFFSET, LIVE_STATE) -> ephemeron or null
//
// These operations are all wait-free. The "push" operation is shared
// between stack and set use cases. "pop" is for stack-like use cases.
// The "follow" operation traverses a list, opportunistically eliding
// nodes that have been marked dead, atomically updating the location
// storing the next item.
//
// There are also accessors on ephemerons to their fields:
//
// key(E) -> value or null
// value(E) -> value or null
//
// These operations retrieve the key and value, respectively, provided
// that the ephemeron is not marked dead.
////////////////////////////////////////////////////////////////////////
// Concurrent operations on ephemeron lists
////////////////////////////////////////////////////////////////////////
static void
ephemeron_list_push(struct gc_ephemeron **loc,
struct gc_ephemeron *head,
struct gc_ephemeron** (*get_next)(struct gc_ephemeron*)) {
struct gc_ephemeron *tail = atomic_load_explicit(loc, memory_order_acquire);
while (1) {
// There must be no concurrent readers of HEAD, a precondition that
// we ensure by only publishing HEAD to LOC at most once per cycle.
// Therefore we can use a normal store for the tail pointer.
*get_next(head) = tail;
if (atomic_compare_exchange_weak(loc, &tail, head))
break;
}
}
static struct gc_ephemeron*
ephemeron_list_pop(struct gc_ephemeron **loc,
struct gc_ephemeron** (*get_next)(struct gc_ephemeron*)) {
struct gc_ephemeron *head = atomic_load_explicit(loc, memory_order_acquire);
while (head) {
// Precondition: the result of get_next on an ephemeron is never
// updated concurrently; OK to load non-atomically.
struct gc_ephemeron *tail = *get_next(head);
if (atomic_compare_exchange_weak(loc, &head, tail))
break;
}
return head;
}
static struct gc_ephemeron*
ephemeron_list_follow(struct gc_ephemeron **loc,
struct gc_ephemeron** (*get_next)(struct gc_ephemeron*),
int (*is_live)(struct gc_ephemeron*)) {
struct gc_ephemeron *head = atomic_load_explicit(loc, memory_order_acquire);
while (1) {
struct gc_ephemeron *new_head = head;
// Skip past any dead nodes.
while (new_head && !is_live(new_head))
new_head = atomic_load_explicit(get_next(new_head), memory_order_acquire);
if (// If we didn't have to advance past any dead nodes, no need to
// update LOC.
(head == new_head)
// Otherwise if we succeed in updating LOC, we're done.
|| atomic_compare_exchange_strong(loc, &head, new_head)
// Someone else managed to advance LOC; that's fine too.
|| (head == new_head))
return new_head;
// Otherwise we lost a race; loop and retry.
}
}
////////////////////////////////////////////////////////////////////////
// The ephemeron object type
////////////////////////////////////////////////////////////////////////
#ifndef GC_EMBEDDER_EPHEMERON_HEADER
#error Embedder should define GC_EMBEDDER_EPHEMERON_HEADER
#endif
enum {
EPHEMERON_STATE_TRACED,
EPHEMERON_STATE_CLAIMED,
EPHEMERON_STATE_PENDING,
EPHEMERON_STATE_RESOLVED,
};
struct gc_ephemeron {
GC_EMBEDDER_EPHEMERON_HEADER
uint8_t state;
uint8_t is_dead;
unsigned epoch;
struct gc_ephemeron *chain;
struct gc_ephemeron *pending;
struct gc_ephemeron *resolved;
struct gc_ref key;
struct gc_ref value;
};
size_t gc_ephemeron_size(void) { return sizeof(struct gc_ephemeron); }
struct gc_edge gc_ephemeron_key_edge(struct gc_ephemeron *e) {
return gc_edge(&e->key);
}
struct gc_edge gc_ephemeron_value_edge(struct gc_ephemeron *e) {
return gc_edge(&e->value);
}
////////////////////////////////////////////////////////////////////////
// Operations on the user-controlled chain field
////////////////////////////////////////////////////////////////////////
static struct gc_ephemeron** ephemeron_chain(struct gc_ephemeron *e) {
return &e->chain;
}
static int ephemeron_is_dead(struct gc_ephemeron *e) {
return atomic_load_explicit(&e->is_dead, memory_order_acquire);
}
static int ephemeron_is_not_dead(struct gc_ephemeron *e) {
return !ephemeron_is_dead(e);
}
void gc_ephemeron_chain_push(struct gc_ephemeron **loc,
struct gc_ephemeron *e) {
ephemeron_list_push(loc, e, ephemeron_chain);
}
static struct gc_ephemeron* follow_chain(struct gc_ephemeron **loc) {
return ephemeron_list_follow(loc, ephemeron_chain, ephemeron_is_not_dead);
}
struct gc_ephemeron* gc_ephemeron_chain_head(struct gc_ephemeron **loc) {
return follow_chain(loc);
}
struct gc_ephemeron* gc_ephemeron_chain_next(struct gc_ephemeron *e) {
return follow_chain(ephemeron_chain(e));
}
void gc_ephemeron_mark_dead(struct gc_ephemeron *e) {
atomic_store_explicit(&e->is_dead, 1, memory_order_release);
}
////////////////////////////////////////////////////////////////////////
// Operations on the GC-managed pending link
////////////////////////////////////////////////////////////////////////
static struct gc_ephemeron** ephemeron_pending(struct gc_ephemeron *e) {
return &e->pending;
}
static uint8_t ephemeron_state(struct gc_ephemeron *e) {
return atomic_load_explicit(&e->state, memory_order_acquire);
}
static int ephemeron_is_pending(struct gc_ephemeron *e) {
return ephemeron_state(e) == EPHEMERON_STATE_PENDING;
}
static void push_pending(struct gc_ephemeron **loc, struct gc_ephemeron *e) {
ephemeron_list_push(loc, e, ephemeron_pending);
}
static struct gc_ephemeron* follow_pending(struct gc_ephemeron **loc) {
return ephemeron_list_follow(loc, ephemeron_pending, ephemeron_is_pending);
}
////////////////////////////////////////////////////////////////////////
// Operations on the GC-managed resolved link
////////////////////////////////////////////////////////////////////////
static struct gc_ephemeron** ephemeron_resolved(struct gc_ephemeron *e) {
return &e->resolved;
}
static void push_resolved(struct gc_ephemeron **loc, struct gc_ephemeron *e) {
ephemeron_list_push(loc, e, ephemeron_resolved);
}
static struct gc_ephemeron* pop_resolved(struct gc_ephemeron **loc) {
return ephemeron_list_pop(loc, ephemeron_resolved);
}
////////////////////////////////////////////////////////////////////////
// Access to the association
////////////////////////////////////////////////////////////////////////
struct gc_ref gc_ephemeron_key(struct gc_ephemeron *e) {
return ephemeron_is_dead(e) ? gc_ref_null() : e->key;
}
struct gc_ref gc_ephemeron_value(struct gc_ephemeron *e) {
return ephemeron_is_dead(e) ? gc_ref_null() : e->value;
}
////////////////////////////////////////////////////////////////////////
// Tracing ephemerons
////////////////////////////////////////////////////////////////////////
struct gc_pending_ephemerons {
struct gc_ephemeron* resolved;
size_t nbuckets;
double scale;
struct gc_ephemeron* buckets[0];
};
static const size_t MIN_PENDING_EPHEMERONS_SIZE = 32;
static size_t pending_ephemerons_byte_size(size_t nbuckets) {
return sizeof(struct gc_pending_ephemerons) +
sizeof(struct gc_ephemeron*) * nbuckets;
}
static struct gc_pending_ephemerons*
gc_make_pending_ephemerons(size_t byte_size) {
size_t nbuckets = byte_size / sizeof(struct gc_ephemeron*);
if (nbuckets < MIN_PENDING_EPHEMERONS_SIZE)
nbuckets = MIN_PENDING_EPHEMERONS_SIZE;
struct gc_pending_ephemerons *ret =
malloc(pending_ephemerons_byte_size(nbuckets));
if (!ret)
return NULL;
ret->resolved = NULL;
ret->nbuckets = nbuckets;
ret->scale = nbuckets / pow(2.0, sizeof(uintptr_t) * 8);
for (size_t i = 0; i < nbuckets; i++)
ret->buckets[i] = NULL;
return ret;
}
struct gc_pending_ephemerons*
gc_prepare_pending_ephemerons(struct gc_pending_ephemerons *state,
size_t target_byte_size, double slop) {
size_t existing =
state ? pending_ephemerons_byte_size(state->nbuckets) : 0;
slop += 1.0;
if (existing * slop > target_byte_size && existing < target_byte_size * slop)
return state;
struct gc_pending_ephemerons *new_state =
gc_make_pending_ephemerons(target_byte_size);
if (!new_state)
return state;
free(state);
return new_state;
}
static struct gc_ephemeron**
pending_ephemeron_bucket(struct gc_pending_ephemerons *state,
struct gc_ref ref) {
uintptr_t hash = hash_address(gc_ref_value(ref));
size_t idx = hash * state->scale;
GC_ASSERT(idx < state->nbuckets);
return &state->buckets[idx];
}
static void
add_pending_ephemeron(struct gc_pending_ephemerons *state,
struct gc_ephemeron *e) {
struct gc_ephemeron **bucket = pending_ephemeron_bucket(state, e->key);
atomic_store_explicit(&e->state, EPHEMERON_STATE_PENDING,
memory_order_release);
push_pending(bucket, e);
}
static void maybe_resolve_ephemeron(struct gc_pending_ephemerons *state,
struct gc_ephemeron *e) {
uint8_t expected = EPHEMERON_STATE_PENDING;
if (atomic_compare_exchange_strong(&e->state, &expected,
EPHEMERON_STATE_RESOLVED))
push_resolved(&state->resolved, e);
}
// Precondition: OBJ has already been copied to tospace, but OBJ is a
// fromspace ref.
void gc_resolve_pending_ephemerons(struct gc_ref obj, struct gc_heap *heap) {
struct gc_pending_ephemerons *state = gc_heap_pending_ephemerons(heap);
struct gc_ephemeron **bucket = pending_ephemeron_bucket(state, obj);
for (struct gc_ephemeron *link = follow_pending(bucket);
link;
link = follow_pending(&link->pending)) {
if (gc_ref_value(obj) == gc_ref_value(link->key)) {
gc_visit_ephemeron_key(gc_ephemeron_key_edge(link), heap);
// PENDING -> RESOLVED, if it was pending.
maybe_resolve_ephemeron(state, link);
}
}
}
void gc_trace_ephemeron(struct gc_ephemeron *e,
void (*visit)(struct gc_edge edge, struct gc_heap *heap,
void *visit_data),
struct gc_heap *heap,
void *trace_data) {
unsigned epoch = gc_heap_ephemeron_trace_epoch(heap);
uint8_t expected = EPHEMERON_STATE_TRACED;
// TRACED[_] -> CLAIMED[_].
if (!atomic_compare_exchange_strong(&e->state, &expected,
EPHEMERON_STATE_CLAIMED))
return;
if (e->epoch == epoch) {
// CLAIMED[epoch] -> TRACED[epoch].
atomic_store_explicit(&e->state, EPHEMERON_STATE_TRACED,
memory_order_release);
return;
}
// CLAIMED[!epoch] -> CLAIMED[epoch].
e->epoch = epoch;
e->pending = NULL;
e->resolved = NULL;
// Trace chain successors, eliding any intermediate dead links. Note
// that there is a race between trace-time evacuation of the next link
// in the chain and any mutation of that link pointer by the mutator
// (which can only be to advance the chain forward past dead links).
// Collectors using this API have to eliminate this race, for example
// by not evacuating while the mutator is running.
follow_chain(&e->chain);
visit(gc_edge(&e->chain), heap, trace_data);
// Similarly there is a race between the mutator marking an ephemeron
// as dead and here; the consequence would be that we treat an
// ephemeron as live when it's not, but only for this cycle. No big
// deal.
if (atomic_load_explicit(&e->is_dead, memory_order_acquire)) {
// CLAIMED[epoch] -> TRACED[epoch].
atomic_store_explicit(&e->state, EPHEMERON_STATE_TRACED,
memory_order_release);
return;
}
// If K is live, trace V and we are done.
if (gc_visit_ephemeron_key(gc_ephemeron_key_edge(e), heap)) {
visit(gc_ephemeron_value_edge(e), heap, trace_data);
// CLAIMED[epoch] -> TRACED[epoch].
atomic_store_explicit(&e->state, EPHEMERON_STATE_TRACED,
memory_order_release);
return;
}
// Otherwise K is not yet traced, so we don't know if it is live.
// Publish the ephemeron to a global table.
struct gc_pending_ephemerons *state = gc_heap_pending_ephemerons(heap);
// CLAIMED[epoch] -> PENDING.
add_pending_ephemeron(state, e);
// Given an ephemeron E×K⇒V, there is a race between marking K and E.
// One thread could go to mark E and see that K is unmarked, so we get
// here. Meanwhile another thread could go to mark K and not see E in
// the global table yet. Therefore after publishing E, we have to
// check the mark on K again.
if (gc_visit_ephemeron_key(gc_ephemeron_key_edge(e), heap))
// K visited by another thread while we published E; PENDING ->
// RESOLVED, if still PENDING.
maybe_resolve_ephemeron(state, e);
}
void
gc_scan_pending_ephemerons(struct gc_pending_ephemerons *state,
struct gc_heap *heap, size_t shard,
size_t nshards) {
GC_ASSERT(shard < nshards);
size_t start = state->nbuckets * 1.0 * shard / nshards;
size_t end = state->nbuckets * 1.0 * (shard + 1) / nshards;
for (size_t idx = start; idx < end; idx++) {
for (struct gc_ephemeron *e = follow_pending(&state->buckets[idx]);
e;
e = follow_pending(&e->pending)) {
if (gc_visit_ephemeron_key(gc_ephemeron_key_edge(e), heap))
// PENDING -> RESOLVED, if PENDING.
maybe_resolve_ephemeron(state, e);
}
}
}
int
gc_pop_resolved_ephemerons(struct gc_heap *heap,
void (*visit)(struct gc_edge edge,
struct gc_heap *heap,
void *visit_data),
void *trace_data) {
struct gc_pending_ephemerons *state = gc_heap_pending_ephemerons(heap);
struct gc_ephemeron *resolved = atomic_exchange(&state->resolved, NULL);
if (!resolved)
return 0;
for (; resolved; resolved = resolved->resolved) {
visit(gc_ephemeron_value_edge(resolved), heap, trace_data);
// RESOLVED -> TRACED.
atomic_store_explicit(&resolved->state, EPHEMERON_STATE_TRACED,
memory_order_release);
}
return 1;
}
void
gc_sweep_pending_ephemerons(struct gc_pending_ephemerons *state,
size_t shard, size_t nshards) {
GC_ASSERT(shard < nshards);
size_t start = state->nbuckets * 1.0 * shard / nshards;
size_t end = state->nbuckets * 1.0 * (shard + 1) / nshards;
for (size_t idx = start; idx < end; idx++) {
struct gc_ephemeron **bucket = &state->buckets[idx];
for (struct gc_ephemeron *e = follow_pending(bucket);
e;
e = follow_pending(&e->pending)) {
// PENDING -> TRACED, but dead.
atomic_store_explicit(&e->is_dead, 1, memory_order_release);
atomic_store_explicit(&e->state, EPHEMERON_STATE_TRACED,
memory_order_release);
}
atomic_store_explicit(bucket, NULL, memory_order_release);
}
}
////////////////////////////////////////////////////////////////////////
// Allocation & initialization
////////////////////////////////////////////////////////////////////////
void gc_ephemeron_init_internal(struct gc_heap *heap,
struct gc_ephemeron *ephemeron,
struct gc_ref key, struct gc_ref value) {
// Caller responsible for any write barrier, though really the
// assumption is that the ephemeron is younger than the key and the
// value.
ephemeron->state = EPHEMERON_STATE_TRACED;
ephemeron->is_dead = 0;
ephemeron->epoch = gc_heap_ephemeron_trace_epoch(heap) - 1;
ephemeron->chain = NULL;
ephemeron->pending = NULL;
ephemeron->resolved = NULL;
ephemeron->key = key;
ephemeron->value = value;
}