1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00
guile/module/language/tree-il/inlinable-exports.scm
Andy Wingo 60d852248f <lambda-case> must have list of optargs
Before, the optional args in a lambda-case could be #f or a list of
symbols.  However the list of symbols is entirely sufficient; no
optional args means a null list.  Change everywhere that produces
lambda-case, matches on lambda-case, and reads deserialized lambda-case.
2024-08-29 09:53:37 +02:00

875 lines
31 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; Attaching inlinable definitions of exported bindings to modules
;;; Copyright (C) 2021, 2022, 2024
;;; Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
(define-module (language tree-il inlinable-exports)
#:use-module (ice-9 control)
#:use-module (ice-9 match)
#:use-module (ice-9 binary-ports)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language tree-il fix-letrec)
#:use-module (language scheme compile-tree-il)
#:use-module ((srfi srfi-1) #:select (filter-map))
#:use-module (srfi srfi-9)
#:use-module (system syntax)
#:use-module (rnrs bytevectors)
#:export (inlinable-exports))
;;;
;;; Inlining, as implemented by peval, is the mother of all
;;; optimizations. It opens up space for other optimizations to work,
;;; such as constant folding, conditional branch folding, and so on.
;;;
;;; Inlining works naturally for lexical bindings. Inlining of
;;; top-level binding is facilitated by letrectification, which turns
;;; top-level definition sequences to letrec*. Here we facilitate
;;; inlining across module boundaries, so that module boundaries aren't
;;; necessarily optimization boundaries.
;;;
;;; The high-level idea is to attach a procedure to the module being
;;; compiled, which when called with a name of an export of that module
;;; will return a Tree-IL expression that can be copied into the use
;;; site. There are two parts: first we determine the set of inlinable
;;; bindings, and then we compile that mapping to a procedure and attach
;;; it to the program being compiled.
;;;
;;; Because we don't want inter-module inlining to inhibit intra-module
;;; inlining, this pass is designed to run late in the Tree-IL
;;; optimization pipeline -- after letrectification, after peval, and so
;;; on. Unfortunately this does mean that we have to sometimes
;;; pattern-match to determine higher-level constructs from lower-level
;;; residual code, for example to map back from
;;; module-ensure-local-variable! + %variable-set! to toplevel-define,
;;; as reduced by letrectification. Ah well.
;;;
;;; Ultimately we want to leave the decision to peval as to what to
;;; inline or not to inline, based on its size and effort counters. But
;;; still we do need to impose some limits -- there's no sense in
;;; copying a large constant from one module to another, for example.
;;; Similarly there's no sense in copying a very large procedure.
;;; Inspired by peval, we bound size growth via a counter that will
;;; abort an inlinable attempt if the term is too large.
;;;
;;; Note that there are some semantic limitations -- you wouldn't want
;;; to copy a mutable value, nor would you want to copy a closure with
;;; free variables.
;;;
;;; Once the set of inlinables is determined, we copy them and rename
;;; their lexicals. Any reference to an exported binding by lexical
;;; variable is rewritten in terms of a reference to the exported
;;; binding.
;;;
;;; The result is then compiled to a procedure, which internally has a
;;; small interpreter for a bytecode, along with a set of constants.
;;; The assumption is that most of the constants will be written to the
;;; object file anyway, so we aren't taking up more space there. Any
;;; non-immediate is built on demand, so we limit the impact of
;;; including inlinable definitions on load-time relocations,
;;; allocations, and heap space.
;;;
(define (compute-assigned-lexicals exp)
(define assigned-lexicals '())
(define (add-assigned-lexical! var)
(set! assigned-lexicals (cons var assigned-lexicals)))
((make-tree-il-folder)
exp
(lambda (exp)
(match exp
(($ <lexical-set> _ _ var _)
(add-assigned-lexical! var)
(values))
(_ (values))))
(lambda (exp)
(values)))
assigned-lexicals)
(define (compute-assigned-toplevels exp)
(define assigned-toplevels '())
(define (add-assigned-toplevel! mod name)
(set! assigned-toplevels (acons mod name assigned-toplevels)))
((make-tree-il-folder)
exp
(lambda (exp)
(match exp
(($ <toplevel-set> _ mod name _)
(add-assigned-toplevel! mod name)
(values))
(($ <module-set> src mod name public? exp)
(unless public?
(add-assigned-toplevel! mod name))
(values))
(_ (values))))
(lambda (exp)
(values)))
assigned-toplevels)
;;; FIXME: Record all bindings in a module, to know whether a
;;; toplevel-ref is an import or not. If toplevel-ref to imported
;;; variable, transform to module-ref or primitive-ref. New pass before
;;; peval.
(define (compute-module-bindings exp)
(define assigned-lexicals (compute-assigned-lexicals exp))
(define assigned-toplevels (compute-assigned-toplevels exp))
(define module-definitions '())
(define lexicals (make-hash-table))
(define module-lexicals '())
(define variable-lexicals '())
(define binding-lexicals '())
(define binding-values '())
(define (add-module-definition! mod args)
(set! module-definitions (acons mod args module-definitions)))
(define (add-lexical! var val)
(unless (memq var assigned-lexicals)
(hashq-set! lexicals var val)))
(define (add-module-lexical! var mod)
(unless (memq var assigned-lexicals)
(set! module-lexicals (acons var mod module-lexicals))))
(define (add-variable-lexical! var mod name)
(unless (memq var assigned-lexicals)
(set! variable-lexicals (acons var (cons mod name) variable-lexicals))))
(define (add-binding-lexical! var mod name)
(unless (memq var assigned-lexicals)
(set! binding-lexicals (acons var (cons mod name) binding-lexicals))))
(define (add-binding-value! mod name val)
(set! binding-values (acons (cons mod name) val binding-values)))
(define (record-bindings! mod gensyms vals)
(for-each
(lambda (var val)
(add-lexical! var val)
(match val
(($ <call> _ ($ <module-ref> _ '(guile) 'define-module* #f)
(($ <const> _ mod) . args))
(add-module-definition! mod args)
(add-module-lexical! var mod))
(($ <primcall> _ 'current-module ())
(when mod
(add-module-lexical! var mod)))
(($ <primcall> _ 'module-ensure-local-variable!
(($ <lexical-ref> _ _ mod-var) ($ <const> _ name)))
(let ((mod (assq-ref module-lexicals mod-var)))
(when mod
(add-variable-lexical! var mod name))))
(_ #f)))
gensyms vals))
;; Thread a conservative idea of what the current module is through
;; the visit. Visiting an expression returns the name of the current
;; module when the expression completes, or #f if unknown. Record the
;; define-module* forms, if any, and note any assigned or
;; multiply-defined variables. Record definitions by matching
;; toplevel-define forms, but also by matching separate
;; module-ensure-local-variable! + %variable-set, as residualized by
;; letrectification.
(define (visit exp) (visit/mod exp #f))
(define (visit* exps)
(unless (null? exps)
(visit (car exps))
(visit* (cdr exps))))
(define (visit+ exps mod)
(match exps
(() mod)
((exp . exps)
(let lp ((mod' (visit/mod exp mod)) (exps exps))
(match exps
(() mod')
((exp . exps)
(lp (and (equal? mod' (visit/mod exp mod)) mod')
exps)))))))
(define (visit/mod exp mod)
(match exp
((or ($ <void>) ($ <const>) ($ <primitive-ref>) ($ <lexical-ref>)
($ <module-ref>) ($ <toplevel-ref>))
mod)
(($ <call> _ ($ <module-ref> _ '(guile) 'set-current-module #f)
(($ <lexical-ref> _ _ var)))
(assq-ref module-lexicals var))
(($ <primcall> src '%variable-set! (($ <lexical-ref> _ _ var)
val))
(match (assq-ref variable-lexicals var)
((mod . name)
(add-binding-value! mod name val)
;; Also record lexical for eta-expanded bindings.
(match val
(($ <lambda> _ _
($ <lambda-case> _ req () #f #f () (arg ...)
($ <call> _
(and eta ($ <lexical-ref> _ _ var))
(($ <lexical-ref> _ _ arg) ...))
#f))
(add-binding-lexical! var mod name))
(($ <lambda> _ _
($ <lambda-case> _ req () (not #f) #f () (arg ...)
($ <primcall> _ 'apply
((and eta ($ <lexical-ref> _ _ var))
($ <lexical-ref> _ _ arg) ...))
#f))
(add-binding-lexical! var mod name))
(($ <lexical-ref> _ _ var)
(add-binding-lexical! var mod name))
(_ #f)))
(_ #f))
(visit/mod val mod))
(($ <call> _ proc args)
(visit proc)
(visit* args)
#f)
(($ <primcall> _ _ args)
;; There is no primcall that sets the current module.
(visit+ args mod))
(($ <conditional> src test consequent alternate)
(visit+ (list consequent alternate) (visit/mod test mod)))
(($ <lexical-set> src name gensym exp)
(visit/mod exp mod))
(($ <toplevel-set> src mod name exp)
(visit/mod exp mod))
(($ <module-set> src mod name public? exp)
(visit/mod exp mod))
(($ <toplevel-define> src mod name exp)
(add-binding-value! mod name exp)
(visit/mod exp mod))
(($ <lambda> src meta body)
(when body (visit body))
mod)
(($ <lambda-case> src req opt rest kw inits gensyms body alternate)
(visit* inits)
(visit body)
(when alternate (visit alternate))
(values))
(($ <seq> src head tail)
(visit/mod tail (visit/mod head mod)))
(($ <let> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <letrec> src in-order? names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <fix> src names gensyms vals body)
(record-bindings! mod gensyms vals)
(visit/mod body (visit+ vals mod)))
(($ <let-values> src exp body)
(visit/mod body (visit/mod exp mod))
#f)
(($ <prompt> src escape-only? tag body handler)
(visit tag)
(visit body)
(visit handler)
#f)
(($ <abort> src tag args tail)
(visit tag)
(visit* args)
(visit tail)
#f)))
(visit exp)
(values module-definitions lexicals binding-lexicals binding-values))
;; - define inlinable? predicate:
;; exported && declarative && only references public vars && not too big
;;
;; - public := exported from a module, at -O2 and less.
;; at -O3 and higher public just means defined in any module.
(define (inlinable-exp mod exports lexicals binding-lexicals exp)
(define fresh-var!
(let ((counter 0))
(lambda ()
(let ((name (string-append "t" (number->string counter))))
(set! counter (1+ counter))
(string->symbol name)))))
(define (fresh-vars vars)
(match vars
(() '())
((_ . vars) (cons (fresh-var!) (fresh-vars vars)))))
(define (add-bound-vars old new bound)
(match (vector old new)
(#(() ()) bound)
(#((old . old*) (new . new*))
(add-bound-vars old* new* (acons old new bound)))))
(let/ec return
(define (abort!) (return #f))
(define count!
;; Same as default operator size limit for peval.
(let ((counter 40))
(lambda ()
(set! counter (1- counter))
(when (zero? counter) (abort!)))))
(define (residualize-module-private-ref src mod' name)
;; TODO: At -O3, we could residualize a private
;; reference. But that could break peoples'
;; expectations.
(abort!))
(define (eta-reduce exp)
;; Undo the result of eta-expansion pass.
(match exp
(($ <lambda> _ _
($ <lambda-case> _ req () #f #f () (sym ...)
($ <call> _
(and eta ($ <lexical-ref>)) (($ <lexical-ref> _ _ sym) ...))
#f))
eta)
(($ <lambda> _ _
($ <lambda-case> _ req () (not #f) #f () (sym ...)
($ <primcall> _ 'apply
((and eta ($ <lexical-ref>)) ($ <lexical-ref> _ _ sym) ...))
#f))
eta)
(_ exp)))
(let copy ((exp (eta-reduce exp)) (bound '()) (in-lambda? #f))
(define (recur exp) (copy exp bound in-lambda?))
(count!)
(match exp
((or ($ <void>) ($ <primitive-ref>) ($ <module-ref>))
exp)
(($ <const> src val)
(match val
;; Don't copy values that could be "too big".
((? string?) exp) ; Oddly, (array? "") => #t.
((or (? pair?) (? syntax?) (? array?))
(abort!))
(_ exp)))
(($ <lexical-ref> src name var)
(cond
;; Rename existing lexicals.
((assq-ref bound var)
=> (lambda (var)
(make-lexical-ref src name var)))
;; A free variable reference to a lambda, outside a lambda.
;; Could be the lexical-ref residualized by letrectification.
;; Copy and rely on size limiter to catch runaways.
((and (not in-lambda?) (lambda? (hashq-ref lexicals var)))
(recur (hashq-ref lexicals var)))
((not in-lambda?)
;; No advantage to "inline" a toplevel to another toplevel.
(abort!))
;; Some letrectified toplevels will be bound to lexical
;; variables, but unless the module has sealed private
;; bindings, there may be an associated top-level variable
;; as well.
((assq-ref binding-lexicals var)
=> (match-lambda
((mod' . name)
(cond
((and (equal? mod' mod) (assq-ref exports name))
=> (lambda (public-name)
(make-module-ref src mod public-name #t)))
(else
(residualize-module-private-ref src mod' name))))))
;; A free variable reference. If it's in the program at this
;; point, that means that peval didn't see fit to copy it, so
;; there's no point in trying to do so here.
(else (abort!))))
(($ <toplevel-ref> src mod' name)
(cond
;; Rewrite private references to exported bindings into public
;; references. Peval can decide whether to continue inlining
;; or not.
((and (equal? mod mod') (assq-ref exports name))
=> (lambda (public-name)
(make-module-ref src mod public-name #t)))
(else
(residualize-module-private-ref src mod' name))))
(($ <call> src proc args)
(unless in-lambda? (abort!))
(make-call src (recur proc) (map recur args)))
(($ <primcall> src name args)
(unless in-lambda? (abort!))
(make-primcall src name (map recur args)))
(($ <conditional> src test consequent alternate)
(unless in-lambda? (abort!))
(make-conditional src (recur test)
(recur consequent) (recur alternate)))
(($ <lexical-set> src name var exp)
(unless in-lambda? (abort!))
(cond
((assq-ref bound var)
=> (lambda (var)
(make-lexical-set src name var (recur exp))))
(else
(abort!))))
((or ($ <toplevel-set>)
($ <module-set>)
($ <toplevel-define>))
(abort!))
(($ <lambda> src meta body)
;; Remove any lengthy docstring.
(let ((meta (filter-map (match-lambda
(('documentation . _) #f)
(pair pair))
meta)))
(make-lambda src meta (and body (copy body bound #t)))))
(($ <lambda-case> src req opt rest kw inits vars body alternate)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-lambda-case src req opt rest
(match kw
(#f #f)
((aok? . kws)
(cons aok?
(map
(match-lambda
((kw name var)
(list kw name (assq-ref bound var))))
kws))))
(map recur* inits)
vars*
(recur* body)
(and alternate (recur alternate)))))
(($ <seq> src head tail)
(unless in-lambda? (abort!))
(make-seq src (recur head) (recur tail)))
(($ <let> src names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-let src names vars* (map recur vals) (recur* body))))
(($ <letrec> src in-order? names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-letrec src in-order? names vars* (map recur* vals)
(recur* body))))
(($ <fix> src names vars vals body)
(unless in-lambda? (abort!))
(let* ((vars* (fresh-vars vars))
(bound (add-bound-vars vars vars* bound)))
(define (recur* exp) (copy exp bound #t))
(make-fix src names vars* (map recur* vals)
(recur* body))))
(($ <let-values> src exp body)
(unless in-lambda? (abort!))
(make-let-values src (recur exp) (recur body)))
(($ <prompt> src escape-only? tag body handler)
(unless in-lambda? (abort!))
(make-prompt src escape-only?
(recur tag) (recur body) (recur handler)))
(($ <abort> src tag args tail)
(unless in-lambda? (abort!))
(make-abort src (recur tag) (map recur args) (recur tail)))))))
(define (compute-inlinable-bindings exp)
"Traverse @var{exp}, extracting module-level definitions."
(define-values (modules lexicals binding-lexicals bindings)
(compute-module-bindings exp))
(define (kwarg-ref args kw kt kf)
(let lp ((args args))
(match args
(() (kf))
((($ <const> _ (? keyword? kw')) val . args)
(if (eq? kw' kw)
(kt val)
(lp args)))
((_ _ . args)
(lp args)))))
(define (kwarg-ref/const args kw kt kf)
(kwarg-ref args kw
(lambda (exp)
(match exp
(($ <const> _ val') (kt val'))
(_ (kf))))
kf))
(define (has-constant-initarg? args kw val)
(kwarg-ref/const args kw
(lambda (val')
(equal? val val'))
(lambda () #f)))
;; Collect declarative modules defined once in this compilation unit.
(define modules-with-inlinable-exports
(let lp ((defs modules) (not-inlinable '()) (inlinable '()))
(match defs
(() inlinable)
(((mod . args) . defs)
(cond ((member mod not-inlinable)
(lp defs not-inlinable inlinable))
((or (assoc mod defs) ;; doubly defined?
(not (has-constant-initarg? args #:declarative? #t)))
(lp defs (cons mod not-inlinable) inlinable))
(else
(lp defs not-inlinable (cons mod inlinable))))))))
;; Omit multiply-defined bindings, and definitions not in declarative
;; modules.
(define non-declarative-definitions
(let lp ((bindings bindings) (non-declarative '()))
(match bindings
(() non-declarative)
((((and mod+name (mod . name)) . val) . bindings)
(cond
((member mod+name non-declarative)
(lp bindings non-declarative))
((or (assoc mod+name bindings)
(not (member mod modules-with-inlinable-exports)))
(lp bindings (cons mod+name non-declarative)))
(else
(lp bindings non-declarative)))))))
(define exports
(map (lambda (module)
(define args (assoc-ref modules module))
;; Return list of (PRIVATE-NAME . PUBLIC-NAME) pairs.
(define (extract-exports kw)
(kwarg-ref/const args kw
(lambda (val)
(map (match-lambda
((and pair (private . public)) pair)
(name (cons name name)))
val))
(lambda () '())))
(cons module
(append (extract-exports #:exports)
(extract-exports #:replacements))))
modules-with-inlinable-exports))
;; Compute ((PRIVATE-NAME . PUBLIC-NAME) . VALUE) pairs for each
;; module with inlinable bindings, for exported bindings only.
(define inlinable-candidates
(map
(lambda (module)
(define name-pairs (assoc-ref exports module))
(define (name-pair private-name)
(assq private-name name-pairs))
(cons module
(filter-map
(match-lambda
(((and mod+name (mod . name)) . val)
(and (equal? module mod)
(not (member mod+name non-declarative-definitions))
(and=> (name-pair name)
(lambda (pair) (cons pair val))))))
bindings)))
modules-with-inlinable-exports))
(define inlinables
(filter-map
(match-lambda
((mod . exports)
(let ((name-pairs (map car exports)))
(match (filter-map
(match-lambda
(((private . public) . val)
(match (inlinable-exp mod name-pairs lexicals
binding-lexicals val)
(#f #f)
(val (cons public val)))))
exports)
(() #f)
(exports (cons mod exports))))))
inlinable-candidates))
inlinables)
(define (put-uleb port val)
(let lp ((val val))
(let ((next (ash val -7)))
(if (zero? next)
(put-u8 port val)
(begin
(put-u8 port (logior #x80 (logand val #x7f)))
(lp next))))))
(define (known-vtable vtable)
(define-syntax-rule (tree-il-case vt ...)
(cond
((eq? vtable vt) (values '(language tree-il) 'vt))
...
(else (values #f #f))))
(tree-il-case <void>
<const>
<primitive-ref>
<lexical-ref>
<lexical-set>
<module-ref>
<module-set>
<toplevel-ref>
<toplevel-set>
<toplevel-define>
<conditional>
<call>
<primcall>
<seq>
<lambda>
<lambda-case>
<let>
<letrec>
<fix>
<let-values>
<prompt>
<abort>))
(define-record-type <encoding>
(%make-encoding constants vtables pair-code vector-code symbol-code next-code)
encoding?
(constants constants)
(vtables vtables)
(pair-code pair-code set-pair-code!)
(vector-code vector-code set-vector-code!)
(symbol-code symbol-code set-symbol-code!)
(next-code next-code set-next-code!))
(define (make-encoding)
(%make-encoding (make-hash-table) (make-hash-table) #f #f #f 0))
(define (vtable-nfields vtable)
(define vtable-index-size 5) ; FIXME: pull from struct.h
(struct-ref/unboxed vtable vtable-index-size))
(define (build-encoding! term encoding)
(define (next-code!)
(let ((code (next-code encoding)))
(set-next-code! encoding (1+ code))
code))
(define (intern-constant! x)
(unless (hash-ref (constants encoding) x)
(hash-set! (constants encoding) x (next-code!))))
(define (intern-vtable! x)
(unless (hashq-ref (vtables encoding) x)
(hashq-set! (vtables encoding) x (next-code!))))
(define (ensure-pair-code!)
(unless (pair-code encoding)
(set-pair-code! encoding (next-code!))))
(define (ensure-vector-code!)
(unless (vector-code encoding)
(set-vector-code! encoding (next-code!))))
(define (ensure-symbol-code!)
(unless (symbol-code encoding)
(set-symbol-code! encoding (next-code!))))
(let visit ((term term))
(cond
((pair? term)
(ensure-pair-code!)
(visit (car term))
(visit (cdr term)))
((vector? term)
(ensure-vector-code!)
(visit (vector-length term))
(let lp ((i 0))
(when (< i (vector-length term))
(visit (vector-ref term i))
(lp (1+ i)))))
((symbol? term)
(ensure-symbol-code!)
(visit (symbol->string term)))
((struct? term)
(let ((vtable (struct-vtable term)))
(unless (known-vtable vtable)
(error "struct of unknown type" term))
(intern-vtable! vtable)
(let ((nfields (vtable-nfields vtable)))
(let lp ((i 0))
(when (< i nfields)
(visit (struct-ref term i))
(lp (1+ i)))))))
(else
(intern-constant! term)))))
(define (compute-decoder encoding)
(define (pair-clause code)
`((eq? code ,code)
(let* ((car (lp))
(cdr (lp)))
(cons car cdr))))
(define (vector-clause code)
`((eq? code ,code)
(let* ((len (lp))
(v (make-vector len)))
(let init ((i 0))
(when (< i len)
(vector-set! v i (lp))
(init (1+ i))))
v)))
(define (symbol-clause code)
`((eq? code ,code)
(string->symbol (lp))))
(define (vtable-clause vtable code)
(call-with-values (lambda () (known-vtable vtable))
(lambda (mod name)
(let ((fields (map (lambda (i) (string->symbol (format #f "f~a" i)))
(iota (vtable-nfields vtable)))))
`((eq? code ,code)
(let* (,@(map (lambda (field) `(,field (lp))) fields))
(make-struct/simple (@ ,mod ,name) ,@fields)))))))
(define (constant-clause constant code)
`((eq? code ,code) ',constant))
(define (map-encodings f table)
(map (match-lambda
((value . code) (f value code)))
(sort (hash-map->list cons table)
(match-lambda*
(((_ . code1) (_ . code2)) (< code1 code2))))))
`(lambda (bv)
(define pos 0)
(define (next-u8!)
(let ((u8 (bytevector-u8-ref bv pos)))
(set! pos (1+ pos))
u8))
(define (next-uleb!)
,(if (< (next-code encoding) #x80)
;; No need for uleb decoding in this case.
'(next-u8!)
;; FIXME: We have a maximum code length and probably we
;; should just inline the corresponding decoder instead of
;; looping.
'(let lp ((n 0) (shift 0))
(let ((b (next-u8!)))
(if (zero? (logand b #x80))
(logior (ash b shift) n)
(lp (logior (ash (logxor #x80 b) shift) n)
(+ shift 7)))))))
(let lp ()
(let ((code (next-uleb!)))
(cond
,@(if (pair-code encoding)
(list (pair-clause (pair-code encoding)))
'())
,@(if (vector-code encoding)
(list (vector-clause (vector-code encoding)))
'())
,@(if (symbol-code encoding)
(list (symbol-clause (symbol-code encoding)))
'())
,@(map-encodings vtable-clause (vtables encoding))
,@(map-encodings constant-clause (constants encoding))
(else (error "bad code" code)))))))
(define (encode term encoding)
(call-with-output-bytevector
(lambda (port)
(define (put x) (put-uleb port x))
(let visit ((term term))
(cond
((pair? term)
(put (pair-code encoding))
(visit (car term))
(visit (cdr term)))
((vector? term)
(put (vector-code encoding))
(visit (vector-length term))
(let lp ((i 0))
(when (< i (vector-length term))
(visit (vector-ref term i))
(lp (1+ i)))))
((symbol? term)
(put (symbol-code encoding))
(visit (symbol->string term)))
((struct? term)
(let* ((vtable (struct-vtable term))
(nfields (vtable-nfields vtable)))
(put (hashq-ref (vtables encoding) vtable))
(let lp ((i 0))
(when (< i nfields)
(visit (struct-ref term i))
(lp (1+ i))))))
(else
(put (hash-ref (constants encoding) term))))))))
(define (compute-encoding bindings)
(let ((encoding (make-encoding)))
(for-each (match-lambda
((name . expr) (build-encoding! expr encoding)))
bindings)
(let ((encoded (map (match-lambda
((name . expr) (cons name (encode expr encoding))))
bindings)))
`(lambda (name)
(define decode ,(compute-decoder encoding))
(cond
,@(map (match-lambda
((name . bv)
`((eq? name ',name) (decode ,bv))))
encoded)
(else #f))))))
(define encoding-module (current-module))
(define (compile-inlinable-exports bindings)
(let ((exp (compute-encoding bindings)))
(fix-letrec
(expand-primitives
(resolve-primitives
(compile-tree-il exp encoding-module '())
encoding-module)))))
(define (attach-inlinables exp inlinables)
(post-order
(lambda (exp)
(match exp
(($ <call> src (and proc ($ <module-ref> _ '(guile) 'define-module* #f))
((and m ($ <const> _ mod)) . args))
(cond
((assoc-ref inlinables mod)
=> (lambda (bindings)
(let ((inlinables (compile-inlinable-exports bindings)))
(make-call src proc
(cons* m
(make-const #f #:inlinable-exports)
inlinables
args)))))
(else exp)))
(exp exp)))
exp))
(define (inlinable-exports exp)
(attach-inlinables exp (compute-inlinable-bindings exp)))