1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-04 11:10:27 +02:00
guile/src/pcc.c
Andy Wingo 675d8d649a Rework gc_call_without_gc to allow reentrancy
Rename to gc_deactivate_for_call / gc_reactivate_for_call
2025-05-15 11:26:27 +02:00

1407 lines
48 KiB
C

#include <pthread.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include "gc-api.h"
#define GC_IMPL 1
#include "gc-internal.h"
#include "background-thread.h"
#include "copy-space.h"
#include "debug.h"
#include "field-set.h"
#include "gc-align.h"
#include "gc-inline.h"
#include "gc-platform.h"
#include "gc-trace.h"
#include "gc-tracepoint.h"
#include "heap-sizer.h"
#include "large-object-space.h"
#if GC_PARALLEL
#include "parallel-tracer.h"
#else
#include "serial-tracer.h"
#endif
#include "spin.h"
#include "pcc-attrs.h"
struct gc_heap {
#if GC_GENERATIONAL
struct copy_space new_space;
struct copy_space old_space;
#else
struct copy_space mono_space;
#endif
struct large_object_space large_object_space;
struct gc_extern_space *extern_space;
#if GC_GENERATIONAL
struct gc_field_set remembered_set;
#endif
size_t large_object_pages;
pthread_mutex_t lock;
pthread_cond_t collector_cond;
pthread_cond_t mutator_cond;
size_t size;
size_t total_allocated_bytes_at_last_gc;
int collecting;
#if GC_GENERATIONAL
int is_minor_collection;
size_t per_processor_nursery_size;
size_t nursery_size;
#endif
size_t processor_count;
size_t max_active_mutator_count;
int check_pending_ephemerons;
#if GC_GENERATIONAL
struct gc_pending_ephemerons *nursery_pending_ephemerons;
#endif
struct gc_pending_ephemerons *pending_ephemerons;
struct gc_finalizer_state *finalizer_state;
size_t mutator_count;
size_t paused_mutator_count;
size_t inactive_mutator_count;
struct gc_heap_roots *roots;
struct gc_mutator *mutators;
long count;
struct gc_tracer tracer;
double pending_ephemerons_size_factor;
double pending_ephemerons_size_slop;
struct gc_background_thread *background_thread;
struct gc_heap_sizer sizer;
struct gc_event_listener event_listener;
void *event_listener_data;
void* (*allocation_failure)(struct gc_heap *, size_t);
};
#define HEAP_EVENT(heap, event, ...) do { \
(heap)->event_listener.event((heap)->event_listener_data, ##__VA_ARGS__); \
GC_TRACEPOINT(event, ##__VA_ARGS__); \
} while (0)
#define MUTATOR_EVENT(mut, event, ...) do { \
(mut)->heap->event_listener.event((mut)->event_listener_data, \
##__VA_ARGS__); \
GC_TRACEPOINT(event, ##__VA_ARGS__); \
} while (0)
struct gc_mutator {
struct copy_space_allocator allocator;
#if GC_GENERATIONAL
struct gc_field_set_writer logger;
#endif
struct gc_heap *heap;
struct gc_mutator_roots *roots;
void *event_listener_data;
struct gc_mutator *next;
struct gc_mutator *prev;
int active;
};
struct gc_trace_worker_data {
#if GC_GENERATIONAL
struct copy_space_allocator new_allocator;
struct copy_space_allocator old_allocator;
struct gc_field_set_writer logger;
#else
struct copy_space_allocator allocator;
#endif
};
static inline struct copy_space* heap_mono_space(struct gc_heap *heap) {
#if GC_GENERATIONAL
GC_CRASH();
#else
return &heap->mono_space;
#endif
}
static inline struct copy_space* heap_new_space(struct gc_heap *heap) {
#if GC_GENERATIONAL
return &heap->new_space;
#else
GC_CRASH();
#endif
}
static inline struct copy_space* heap_old_space(struct gc_heap *heap) {
#if GC_GENERATIONAL
return &heap->old_space;
#else
GC_CRASH();
#endif
}
static inline struct gc_field_set* heap_remembered_set(struct gc_heap *heap) {
#if GC_GENERATIONAL
return &heap->remembered_set;
#else
GC_CRASH();
#endif
}
static inline struct copy_space_allocator*
trace_worker_mono_space_allocator(struct gc_trace_worker_data *data) {
#if GC_GENERATIONAL
GC_CRASH();
#else
return &data->allocator;
#endif
}
static inline struct copy_space_allocator*
trace_worker_new_space_allocator(struct gc_trace_worker_data *data) {
#if GC_GENERATIONAL
return &data->new_allocator;
#else
GC_CRASH();
#endif
}
static inline struct copy_space_allocator*
trace_worker_old_space_allocator(struct gc_trace_worker_data *data) {
#if GC_GENERATIONAL
return &data->old_allocator;
#else
GC_CRASH();
#endif
}
static inline struct gc_field_set_writer*
trace_worker_field_logger(struct gc_trace_worker_data *data) {
#if GC_GENERATIONAL
return &data->logger;
#else
GC_CRASH();
#endif
}
static inline struct gc_field_set_writer*
mutator_field_logger(struct gc_mutator *mut) {
#if GC_GENERATIONAL
return &mut->logger;
#else
GC_CRASH();
#endif
}
static int is_minor_collection(struct gc_heap *heap) {
#if GC_GENERATIONAL
return heap->is_minor_collection;
#else
GC_CRASH();
#endif
}
static inline struct copy_space* heap_allocation_space(struct gc_heap *heap) {
return GC_GENERATIONAL ? heap_new_space(heap) : heap_mono_space(heap);
}
static inline struct copy_space* heap_resizable_space(struct gc_heap *heap) {
return GC_GENERATIONAL ? heap_old_space(heap) : heap_mono_space(heap);
}
static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) {
return &heap->large_object_space;
}
static inline struct gc_extern_space* heap_extern_space(struct gc_heap *heap) {
return heap->extern_space;
}
static inline struct gc_heap* mutator_heap(struct gc_mutator *mutator) {
return mutator->heap;
}
struct gc_heap* gc_mutator_heap(struct gc_mutator *mutator) {
return mutator_heap(mutator);
}
uintptr_t gc_small_object_nursery_low_address(struct gc_heap *heap) {
if (GC_GENERATIONAL)
return copy_space_low_aligned_address(heap_new_space(heap));
GC_CRASH();
}
uintptr_t gc_small_object_nursery_high_address(struct gc_heap *heap) {
if (GC_GENERATIONAL)
return copy_space_high_aligned_address(heap_new_space(heap));
GC_CRASH();
}
static void
gc_trace_worker_call_with_data(void (*f)(struct gc_tracer *tracer,
struct gc_heap *heap,
struct gc_trace_worker *worker,
struct gc_trace_worker_data *data),
struct gc_tracer *tracer,
struct gc_heap *heap,
struct gc_trace_worker *worker) {
struct gc_trace_worker_data data;
if (GC_GENERATIONAL) {
copy_space_allocator_init(trace_worker_new_space_allocator(&data));
copy_space_allocator_init(trace_worker_old_space_allocator(&data));
gc_field_set_writer_init(trace_worker_field_logger(&data),
heap_remembered_set(heap));
} else {
copy_space_allocator_init(trace_worker_mono_space_allocator(&data));
}
f(tracer, heap, worker, &data);
if (GC_GENERATIONAL) {
copy_space_allocator_finish(trace_worker_new_space_allocator(&data),
heap_new_space(heap));
copy_space_allocator_finish(trace_worker_old_space_allocator(&data),
heap_old_space(heap));
gc_field_set_writer_release_buffer(trace_worker_field_logger(&data));
} else {
copy_space_allocator_finish(trace_worker_mono_space_allocator(&data),
heap_mono_space(heap));
}
}
static int new_space_contains_addr(struct gc_heap *heap, uintptr_t addr) {
return copy_space_contains_address_aligned(heap_new_space(heap), addr);
}
static int new_space_contains(struct gc_heap *heap, struct gc_ref ref) {
return new_space_contains_addr(heap, gc_ref_value(ref));
}
static int old_space_contains(struct gc_heap *heap, struct gc_ref ref) {
return copy_space_contains(heap_old_space(heap), ref);
}
static int remember_edge_to_survivor_object(struct gc_heap *heap,
struct gc_edge edge) {
GC_ASSERT(!new_space_contains_addr(heap, gc_edge_address(edge)));
GC_ASSERT(new_space_contains(heap, gc_edge_ref(edge)));
if (copy_space_contains_edge(heap_old_space(heap), edge))
return copy_space_remember_edge(heap_old_space(heap), edge);
struct gc_ref large_object =
large_object_space_object_containing_edge(heap_large_object_space(heap),
edge);
if (!gc_ref_is_null(large_object))
return large_object_space_remember_edge(heap_large_object_space(heap),
large_object, edge);
return 0;
}
static inline int edge_is_from_survivor(struct gc_heap *heap,
struct gc_edge edge) {
// Currently only the copy-space has survivors. (A survivor is a live object
// which stays in the nursery after collection). If lospace gains a survivor
// stage, we would need to augment this check.
GC_ASSERT(is_minor_collection(heap));
return copy_space_contains_edge_aligned(heap_new_space(heap), edge);
}
static inline int forward(struct copy_space *src_space,
struct copy_space *dst_space,
struct gc_edge edge,
struct gc_ref ref,
struct copy_space_allocator *dst_alloc) {
switch (copy_space_forward(src_space, dst_space, edge, ref, dst_alloc)) {
case COPY_SPACE_FORWARD_UPDATED:
return 0;
case COPY_SPACE_FORWARD_EVACUATED:
return 1;
case COPY_SPACE_FORWARD_FAILED:
// If space is really tight and reordering of objects during evacuation
// resulted in more end-of-block fragmentation and thus block use than
// before collection started, we can actually run out of memory while
// collecting. We should probably attempt to expand the heap here, at
// least by a single block; it's better than the alternatives. For now,
// abort.
fprintf(stderr, "Out of memory\n");
GC_CRASH();
break;
default:
GC_CRASH();
}
}
static inline int do_minor_trace(struct gc_heap *heap, struct gc_edge edge,
struct gc_ref ref,
struct gc_trace_worker_data *data) {
// Trace EDGE for a minor GC. We only need to trace edges to young objects.
// Young objects are either in the nursery copy space, or in the large object
// space.
if (GC_LIKELY(new_space_contains(heap, ref))) {
struct copy_space *new_space = heap_new_space(heap);
struct copy_space *old_space = heap_old_space(heap);
// We are visiting an edge into newspace. Either the edge's target will be
// promoted to oldspace, or it will stay in newspace as a survivor.
//
// After the scavenge, we need to preserve the invariant that all old-to-new
// edges are part of the remembered set. So depending on where the edge
// comes from and where the object moves to, we may need to add or remove
// the edge from the remembered set. Concretely:
//
// | survivor dst | promoted dst
// ----------------+------------------+-----------------
// survivor src | nothing | nothing
// | |
// promoted src | log edge | nothing
// | |
// oldspace src | nothing | clear log
// | |
// root src | nothing | nothing
//
// However, clearing a logged field usually isn't possible, as it's not easy
// to go from field address to position in a field set, so instead we lazily
// remove old->old edges from the field set during the next minor GC. (Or,
// we will anyway; for now we ignore them.) So really we only need to log
// promoted-to-survivor edges.
//
// However however, it is hard to distinguish between edges from promoted
// objects and edges from old objects, so we mostly just rely on an
// idempotent "log if unlogged" operation instead.
if (!copy_space_should_promote(new_space, ref)) {
// Try to leave the object in newspace as a survivor. If the edge is from
// a promoted object, we will need to add it to the remembered set.
if (!edge_is_from_survivor(heap, edge)
&& remember_edge_to_survivor_object(heap, edge)) {
// Log the edge even though in rare conditions the referent could end up
// being promoted by us (if we run out of newspace) or a remote
// evacuation thread (if they run out of newspace).
gc_field_set_writer_add_edge(trace_worker_field_logger(data), edge);
}
switch (copy_space_forward(new_space, new_space, edge, ref,
trace_worker_new_space_allocator(data))) {
case COPY_SPACE_FORWARD_UPDATED:
return 0;
case COPY_SPACE_FORWARD_EVACUATED:
return 1;
case COPY_SPACE_FORWARD_FAILED:
// Ran out of newspace! Fall through to promote instead.
break;
default:
GC_CRASH();
}
}
// Promote the object.
return forward(new_space, old_space, edge, ref,
trace_worker_old_space_allocator(data));
} else {
// Note that although the target of the edge might not be in lospace, this
// will do what we want and return 1 if and only if ref is was a young
// object in lospace.
return large_object_space_mark(heap_large_object_space(heap), ref);
}
}
static inline int do_trace(struct gc_heap *heap, struct gc_edge edge,
struct gc_ref ref,
struct gc_trace_worker_data *data) {
if (GC_GENERATIONAL) {
if (GC_LIKELY(is_minor_collection(heap)))
return do_minor_trace(heap, edge, ref, data);
// Major trace: promote all copyspace objects to oldgen.
struct copy_space *new_space = heap_new_space(heap);
struct copy_space *old_space = heap_old_space(heap);
if (new_space_contains(heap, ref))
return forward(new_space, old_space, edge, ref,
trace_worker_old_space_allocator(data));
if (old_space_contains(heap, ref))
return forward(old_space, old_space, edge, ref,
trace_worker_old_space_allocator(data));
} else {
if (GC_LIKELY(copy_space_contains(heap_mono_space(heap), ref)))
return forward(heap_mono_space(heap), heap_mono_space(heap),
edge, ref,
trace_worker_mono_space_allocator(data));
}
// Fall through for objects in large or extern spaces.
if (large_object_space_contains_with_lock(heap_large_object_space(heap), ref))
return large_object_space_mark(heap_large_object_space(heap), ref);
else
return gc_extern_space_visit(heap_extern_space(heap), edge, ref);
}
static inline int trace_edge(struct gc_heap *heap, struct gc_edge edge,
struct gc_trace_worker *worker) {
struct gc_ref ref = gc_edge_ref(edge);
if (gc_ref_is_null(ref) || gc_ref_is_immediate(ref))
return 0;
struct gc_trace_worker_data *data = gc_trace_worker_data(worker);
int is_new = do_trace(heap, edge, ref, data);
if (is_new &&
GC_UNLIKELY(atomic_load_explicit(&heap->check_pending_ephemerons,
memory_order_relaxed)))
gc_resolve_pending_ephemerons(ref, heap);
return is_new;
}
int gc_visit_ephemeron_key(struct gc_edge edge, struct gc_heap *heap) {
struct gc_ref ref = gc_edge_ref(edge);
GC_ASSERT(!gc_ref_is_null(ref));
if (gc_ref_is_immediate(ref))
return 1;
GC_ASSERT(gc_ref_is_heap_object(ref));
if (GC_GENERATIONAL) {
if (new_space_contains(heap, ref))
return copy_space_forward_if_traced(heap_new_space(heap), edge, ref);
if (old_space_contains(heap, ref))
return is_minor_collection(heap) ||
copy_space_forward_if_traced(heap_old_space(heap), edge, ref);
} else {
if (copy_space_contains(heap_mono_space(heap), ref))
return copy_space_forward_if_traced(heap_mono_space(heap), edge, ref);
}
if (large_object_space_contains_with_lock(heap_large_object_space(heap), ref))
return large_object_space_is_marked(heap_large_object_space(heap), ref);
GC_CRASH();
}
static int mutators_are_stopping(struct gc_heap *heap) {
return atomic_load_explicit(&heap->collecting, memory_order_relaxed);
}
static inline void heap_lock(struct gc_heap *heap) {
pthread_mutex_lock(&heap->lock);
}
static inline void heap_unlock(struct gc_heap *heap) {
pthread_mutex_unlock(&heap->lock);
}
// with heap lock
static inline int all_mutators_stopped(struct gc_heap *heap) {
return heap->mutator_count ==
heap->paused_mutator_count + heap->inactive_mutator_count;
}
// with heap lock
static void maybe_increase_max_active_mutator_count(struct gc_heap *heap) {
size_t active_mutators = heap->mutator_count - heap->inactive_mutator_count;
if (active_mutators > heap->max_active_mutator_count)
heap->max_active_mutator_count = active_mutators;
}
static void add_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
mut->heap = heap;
mut->event_listener_data =
heap->event_listener.mutator_added(heap->event_listener_data);
copy_space_allocator_init(&mut->allocator);
if (GC_GENERATIONAL)
gc_field_set_writer_init(mutator_field_logger(mut),
heap_remembered_set(heap));
heap_lock(heap);
// We have no roots. If there is a GC currently in progress, we have
// nothing to add. Just wait until it's done.
while (mutators_are_stopping(heap))
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
mut->next = mut->prev = NULL;
mut->active = 1;
struct gc_mutator *tail = heap->mutators;
if (tail) {
mut->next = tail;
tail->prev = mut;
}
heap->mutators = mut;
heap->mutator_count++;
maybe_increase_max_active_mutator_count(heap);
heap_unlock(heap);
}
static void remove_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
copy_space_allocator_finish(&mut->allocator, heap_allocation_space(heap));
if (GC_GENERATIONAL)
gc_field_set_writer_release_buffer(mutator_field_logger(mut));
MUTATOR_EVENT(mut, mutator_removed);
mut->heap = NULL;
heap_lock(heap);
heap->mutator_count--;
mut->active = 0;
if (mut->next)
mut->next->prev = mut->prev;
if (mut->prev)
mut->prev->next = mut->next;
else
heap->mutators = mut->next;
// We have no roots. If there is a GC stop currently in progress,
// maybe tell the controller it can continue.
if (mutators_are_stopping(heap) && all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
heap_unlock(heap);
}
void gc_mutator_set_roots(struct gc_mutator *mut,
struct gc_mutator_roots *roots) {
mut->roots = roots;
}
void gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) {
heap->roots = roots;
}
void gc_heap_set_extern_space(struct gc_heap *heap,
struct gc_extern_space *space) {
heap->extern_space = space;
}
static inline void tracer_visit(struct gc_edge edge, struct gc_heap *heap,
void *trace_data) GC_ALWAYS_INLINE;
static inline void
tracer_visit(struct gc_edge edge, struct gc_heap *heap, void *trace_data) {
struct gc_trace_worker *worker = trace_data;
if (trace_edge(heap, edge, worker))
gc_trace_worker_enqueue(worker, gc_edge_ref(edge));
}
static inline int
trace_remembered_edge(struct gc_edge edge, struct gc_heap *heap,
void *trace_data) {
GC_ASSERT(is_minor_collection(heap));
tracer_visit(edge, heap, trace_data);
// Return 1 if the edge should be kept in the remset, which is the
// case only for new objects that survive the minor GC, and only the
// nursery copy space has survivors.
if (new_space_contains(heap, gc_edge_ref(edge)))
return 1; // Keep edge in remset.
// Otherwise remove field-logging bit and return 0 to indicate that
// the remembered field set should remove this edge.
if (copy_space_contains_edge(heap_old_space(heap), edge))
copy_space_forget_edge(heap_old_space(heap), edge);
else
large_object_space_forget_edge(heap_large_object_space(heap), edge);
return 0;
}
static inline void trace_one(struct gc_ref ref, struct gc_heap *heap,
struct gc_trace_worker *worker) {
#ifdef DEBUG
if (GC_GENERATIONAL) {
if (new_space_contains(heap, ref))
GC_ASSERT_EQ(copy_space_object_region(ref),
heap_new_space(heap)->active_region);
else if (old_space_contains(heap, ref))
GC_ASSERT_EQ(copy_space_object_region(ref),
heap_old_space(heap)->active_region);
} else {
if (copy_space_contains(heap_mono_space(heap), ref))
GC_ASSERT_EQ(copy_space_object_region(ref),
heap_mono_space(heap)->active_region);
}
#endif
gc_trace_object(ref, tracer_visit, heap, worker, NULL);
}
static inline void trace_root(struct gc_root root, struct gc_heap *heap,
struct gc_trace_worker *worker) {
switch (root.kind) {
case GC_ROOT_KIND_HEAP:
gc_trace_heap_roots(root.heap->roots, tracer_visit, heap, worker);
break;
case GC_ROOT_KIND_MUTATOR:
gc_trace_mutator_roots(root.mutator->roots, tracer_visit, heap, worker);
break;
case GC_ROOT_KIND_RESOLVED_EPHEMERONS:
gc_trace_resolved_ephemerons(root.resolved_ephemerons, tracer_visit,
heap, worker);
break;
case GC_ROOT_KIND_EDGE:
tracer_visit(root.edge, heap, worker);
break;
case GC_ROOT_KIND_EDGE_BUFFER:
gc_field_set_visit_edge_buffer(heap_remembered_set(heap), root.edge_buffer,
trace_remembered_edge, heap, worker);
break;
default:
GC_CRASH();
}
}
static void request_mutators_to_stop(struct gc_heap *heap) {
GC_ASSERT(!mutators_are_stopping(heap));
atomic_store_explicit(&heap->collecting, 1, memory_order_relaxed);
}
static void allow_mutators_to_continue(struct gc_heap *heap) {
GC_ASSERT(mutators_are_stopping(heap));
GC_ASSERT(all_mutators_stopped(heap));
heap->paused_mutator_count--;
atomic_store_explicit(&heap->collecting, 0, memory_order_relaxed);
GC_ASSERT(!mutators_are_stopping(heap));
pthread_cond_broadcast(&heap->mutator_cond);
}
static void heap_reset_large_object_pages(struct gc_heap *heap, size_t npages) {
size_t previous = heap->large_object_pages;
heap->large_object_pages = npages;
GC_ASSERT(npages <= previous);
size_t bytes = (previous - npages) <<
heap_large_object_space(heap)->page_size_log2;
copy_space_reacquire_memory(heap_resizable_space(heap), bytes);
}
static void wait_for_mutators_to_stop(struct gc_heap *heap) {
heap->paused_mutator_count++;
while (!all_mutators_stopped(heap))
pthread_cond_wait(&heap->collector_cond, &heap->lock);
}
static enum gc_collection_kind
pause_mutator_for_collection(struct gc_heap *heap,
struct gc_mutator *mut) GC_NEVER_INLINE;
static enum gc_collection_kind
pause_mutator_for_collection(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(mutators_are_stopping(heap));
GC_ASSERT(!all_mutators_stopped(heap));
MUTATOR_EVENT(mut, mutator_stopping);
MUTATOR_EVENT(mut, mutator_stopped);
heap->paused_mutator_count++;
if (all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
enum gc_collection_kind collection_kind = GC_COLLECTION_MINOR;
do {
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
// is_minor_collection is reset before requesting mutators to stop, so this
// will pick up either whether the last collection was minor, or whether the
// next one will be minor.
if (!GC_GENERATIONAL || !is_minor_collection(heap))
collection_kind = GC_COLLECTION_COMPACTING;
} while (mutators_are_stopping(heap));
heap->paused_mutator_count--;
MUTATOR_EVENT(mut, mutator_restarted);
return collection_kind;
}
static void resize_heap(struct gc_heap *heap, size_t new_size) {
if (new_size == heap->size)
return;
DEBUG("------ resizing heap\n");
DEBUG("------ old heap size: %zu bytes\n", heap->size);
DEBUG("------ new heap size: %zu bytes\n", new_size);
if (new_size < heap->size)
copy_space_shrink(heap_resizable_space(heap), heap->size - new_size);
else
copy_space_expand(heap_resizable_space(heap), new_size - heap->size);
heap->size = new_size;
HEAP_EVENT(heap, heap_resized, new_size);
}
static size_t heap_nursery_size(struct gc_heap *heap) {
#if GC_GENERATIONAL
return heap->nursery_size;
#else
GC_CRASH();
#endif
}
static void heap_set_nursery_size(struct gc_heap *heap, size_t size) {
#if GC_GENERATIONAL
GC_ASSERT(size);
heap->nursery_size = size;
#else
GC_CRASH();
#endif
}
static size_t heap_nursery_size_for_mutator_count(struct gc_heap *heap,
size_t count) {
#if GC_GENERATIONAL
return heap->per_processor_nursery_size * count;
#else
GC_CRASH();
#endif
}
static void resize_nursery(struct gc_heap *heap, size_t size) {
size_t prev_size = heap_nursery_size(heap);
if (size < prev_size)
copy_space_shrink(heap_new_space(heap), prev_size - size);
else
copy_space_reacquire_memory(heap_new_space(heap), size - prev_size);
heap_set_nursery_size(heap, size);
}
static void resize_nursery_for_active_mutator_count(struct gc_heap *heap,
size_t count) {
if (count > heap->processor_count)
count = heap->processor_count;
size_t prev_size = heap_nursery_size(heap);
size_t size = heap_nursery_size_for_mutator_count(heap, count);
// If there were more mutator processors this cycle than in the previous,
// increase the nursery size. Otherwise shrink, but with an exponential decay
// factor.
if (size < prev_size)
size = (prev_size + size) / 2;
resize_nursery(heap, size);
}
static void resize_for_active_mutator_count(struct gc_heap *heap) {
size_t mutators = heap->max_active_mutator_count;
GC_ASSERT(mutators);
heap->max_active_mutator_count = 1;
maybe_increase_max_active_mutator_count(heap);
if (GC_GENERATIONAL)
resize_nursery_for_active_mutator_count(heap, mutators);
}
static void visit_root_edge(struct gc_edge edge, struct gc_heap *heap,
void *unused) {
gc_tracer_add_root(&heap->tracer, gc_root_edge(edge));
}
static void add_roots(struct gc_heap *heap, int is_minor_gc) {
for (struct gc_mutator *mut = heap->mutators; mut; mut = mut->next)
gc_tracer_add_root(&heap->tracer, gc_root_mutator(mut));
gc_tracer_add_root(&heap->tracer, gc_root_heap(heap));
gc_visit_finalizer_roots(heap->finalizer_state, visit_root_edge, heap, NULL);
if (is_minor_gc)
gc_field_set_add_roots(heap_remembered_set(heap), &heap->tracer);
}
static void
clear_remembered_set(struct gc_heap *heap) {
gc_field_set_clear(heap_remembered_set(heap), NULL, NULL);
large_object_space_clear_remembered_edges(heap_large_object_space(heap));
}
static void resolve_ephemerons_lazily(struct gc_heap *heap) {
atomic_store_explicit(&heap->check_pending_ephemerons, 0,
memory_order_release);
}
static void resolve_ephemerons_eagerly(struct gc_heap *heap) {
atomic_store_explicit(&heap->check_pending_ephemerons, 1,
memory_order_release);
gc_scan_pending_ephemerons(gc_heap_pending_ephemerons(heap), heap, 0, 1);
}
static void trace_resolved_ephemerons(struct gc_heap *heap) {
for (struct gc_ephemeron *resolved = gc_pop_resolved_ephemerons(heap);
resolved;
resolved = gc_pop_resolved_ephemerons(heap)) {
gc_tracer_add_root(&heap->tracer, gc_root_resolved_ephemerons(resolved));
gc_tracer_trace(&heap->tracer);
}
}
static void resolve_finalizers(struct gc_heap *heap) {
for (size_t priority = 0;
priority < gc_finalizer_priority_count();
priority++) {
if (gc_resolve_finalizers(heap->finalizer_state, priority,
visit_root_edge, heap, NULL)) {
gc_tracer_trace(&heap->tracer);
trace_resolved_ephemerons(heap);
}
}
gc_notify_finalizers(heap->finalizer_state, heap);
}
static void sweep_ephemerons(struct gc_heap *heap) {
return gc_sweep_pending_ephemerons(gc_heap_pending_ephemerons(heap), 0, 1);
}
static int
heap_can_minor_gc(struct gc_heap *heap) {
if (!GC_GENERATIONAL) return 0;
// Invariant: the oldgen always has enough free space to accomodate promoted
// objects from the nursery. This is a precondition for minor GC of course,
// but it is also a post-condition: after potentially promoting all nursery
// objects, we still need an additional nursery's worth of space in oldgen to
// satisfy the invariant. We ensure the invariant by only doing minor GC if
// the copy space can allocate as many bytes as the nursery, which is already
// twice the allocatable size because of the copy reserve.
struct copy_space *new_space = heap_new_space(heap);
struct copy_space *old_space = heap_old_space(heap);
size_t nursery_size = heap_nursery_size(heap);
return copy_space_can_allocate(old_space, nursery_size) >= nursery_size;
}
static enum gc_collection_kind
determine_collection_kind(struct gc_heap *heap,
enum gc_collection_kind requested) {
if (requested == GC_COLLECTION_MINOR && heap_can_minor_gc(heap))
return GC_COLLECTION_MINOR;
return GC_COLLECTION_COMPACTING;
}
static void
copy_spaces_start_gc(struct gc_heap *heap, int is_minor_gc) {
if (GC_GENERATIONAL) {
copy_space_flip(heap_new_space(heap));
if (!is_minor_gc)
copy_space_flip(heap_old_space(heap));
} else {
copy_space_flip(heap_mono_space(heap));
}
}
static void
copy_spaces_finish_gc(struct gc_heap *heap, int is_minor_gc) {
if (GC_GENERATIONAL) {
copy_space_finish_gc(heap_new_space(heap), is_minor_gc);
if (!is_minor_gc)
copy_space_finish_gc(heap_old_space(heap), 0);
} else {
GC_ASSERT(!is_minor_gc);
copy_space_finish_gc(heap_mono_space(heap), 0);
}
}
static size_t
copy_spaces_allocated_bytes(struct gc_heap *heap)
{
return GC_GENERATIONAL
? (heap_new_space(heap)->allocated_bytes_at_last_gc +
heap_old_space(heap)->allocated_bytes_at_last_gc)
: heap_mono_space(heap)->allocated_bytes_at_last_gc;
}
static int
resolve_pending_large_allocation_and_compute_success(struct gc_heap *heap,
int is_minor_gc) {
struct copy_space *space = heap_resizable_space(heap);
ssize_t deficit = copy_space_page_out_blocks_until_memory_released(space);
if (is_minor_gc)
return 1;
if (deficit <= 0)
return copy_space_can_allocate(space, gc_allocator_large_threshold());
deficit = align_up(deficit, COPY_SPACE_BLOCK_SIZE);
if (heap->sizer.policy == GC_HEAP_SIZE_FIXED)
return 0;
resize_heap(heap, heap->size + deficit);
return 1;
}
static int
collect(struct gc_mutator *mut,
enum gc_collection_kind requested_kind) GC_NEVER_INLINE;
static int
collect(struct gc_mutator *mut, enum gc_collection_kind requested_kind) {
struct gc_heap *heap = mutator_heap(mut);
struct large_object_space *lospace = heap_large_object_space(heap);
struct gc_extern_space *exspace = heap_extern_space(heap);
uint64_t start_ns = gc_platform_monotonic_nanoseconds();
MUTATOR_EVENT(mut, mutator_cause_gc);
DEBUG("start collect #%ld:\n", heap->count);
HEAP_EVENT(heap, requesting_stop);
request_mutators_to_stop(heap);
HEAP_EVENT(heap, waiting_for_stop);
wait_for_mutators_to_stop(heap);
HEAP_EVENT(heap, mutators_stopped);
enum gc_collection_kind gc_kind =
determine_collection_kind(heap, requested_kind);
int is_minor_gc =
#if GC_GENERATIONAL
heap->is_minor_collection =
#endif
GC_GENERATIONAL ? gc_kind == GC_COLLECTION_MINOR : 0;
HEAP_EVENT(heap, prepare_gc, gc_kind);
uint64_t *counter_loc = &heap->total_allocated_bytes_at_last_gc;
copy_space_add_to_allocation_counter(heap_allocation_space(heap),
counter_loc);
large_object_space_add_to_allocation_counter(lospace, counter_loc);
copy_spaces_start_gc(heap, is_minor_gc);
large_object_space_start_gc(lospace, is_minor_gc);
gc_extern_space_start_gc(exspace, is_minor_gc);
resolve_ephemerons_lazily(heap);
gc_tracer_prepare(&heap->tracer);
add_roots(heap, is_minor_gc);
HEAP_EVENT(heap, roots_traced);
gc_tracer_trace(&heap->tracer);
HEAP_EVENT(heap, heap_traced);
resolve_ephemerons_eagerly(heap);
trace_resolved_ephemerons(heap);
HEAP_EVENT(heap, ephemerons_traced);
resolve_finalizers(heap);
HEAP_EVENT(heap, finalizers_traced);
sweep_ephemerons(heap);
gc_tracer_release(&heap->tracer);
copy_spaces_finish_gc(heap, is_minor_gc);
large_object_space_finish_gc(lospace, is_minor_gc);
gc_extern_space_finish_gc(exspace, is_minor_gc);
if (GC_GENERATIONAL && !is_minor_gc)
clear_remembered_set(heap);
heap->count++;
resize_for_active_mutator_count(heap);
heap_reset_large_object_pages(heap, lospace->live_pages_at_last_collection);
size_t live_size = (copy_spaces_allocated_bytes(heap) +
large_object_space_size_at_last_collection(lospace));
uint64_t pause_ns = gc_platform_monotonic_nanoseconds() - start_ns;
HEAP_EVENT(heap, live_data_size, live_size);
gc_heap_sizer_on_gc(heap->sizer, heap->size, live_size, pause_ns,
resize_heap);
int success =
resolve_pending_large_allocation_and_compute_success(heap, is_minor_gc);
HEAP_EVENT(heap, restarting_mutators);
allow_mutators_to_continue(heap);
return success;
}
static int trigger_collection(struct gc_mutator *mut,
enum gc_collection_kind requested_kind) {
struct gc_heap *heap = mutator_heap(mut);
copy_space_allocator_finish(&mut->allocator, heap_allocation_space(heap));
if (GC_GENERATIONAL)
gc_field_set_writer_release_buffer(mutator_field_logger(mut));
heap_lock(heap);
int prev_kind = -1;
int success = 1;
while (mutators_are_stopping(heap))
prev_kind = pause_mutator_for_collection(heap, mut);
if (prev_kind < (int)requested_kind)
success = collect(mut, requested_kind);
heap_unlock(heap);
return success;
}
void gc_collect(struct gc_mutator *mut, enum gc_collection_kind kind) {
trigger_collection(mut, kind);
}
int gc_heap_contains(struct gc_heap *heap, struct gc_ref ref) {
GC_ASSERT(gc_ref_is_heap_object(ref));
return (GC_GENERATIONAL
? (new_space_contains(heap, ref) || old_space_contains(heap, ref))
: copy_space_contains(heap_mono_space(heap), ref))
|| large_object_space_contains(heap_large_object_space(heap), ref);
}
static void* allocate_large(struct gc_mutator *mut, size_t size) {
struct gc_heap *heap = mutator_heap(mut);
struct large_object_space *space = heap_large_object_space(heap);
struct copy_space *copy_space = heap_resizable_space(heap);
size_t npages = large_object_space_npages(space, size);
size_t page_bytes = npages << space->page_size_log2;
copy_space_request_release_memory(copy_space, page_bytes);
if (copy_space_page_out_blocks_until_memory_released(copy_space) > 0
&& !trigger_collection(mut, GC_COLLECTION_COMPACTING)) {
copy_space_maybe_reacquire_memory(copy_space, page_bytes);
return heap->allocation_failure(heap, size);
}
atomic_fetch_add(&heap->large_object_pages, npages);
void *ret = large_object_space_alloc(space, npages, GC_TRACE_PRECISELY);
if (!ret) {
perror("weird: we have the space but mmap didn't work");
GC_CRASH();
}
return ret;
}
void* gc_allocate_slow(struct gc_mutator *mut, size_t size,
enum gc_allocation_kind kind) {
if (GC_UNLIKELY(kind != GC_ALLOCATION_TAGGED
&& kind != GC_ALLOCATION_TAGGED_POINTERLESS)) {
fprintf(stderr, "pcc collector cannot make allocations of kind %d\n",
(int)kind);
GC_CRASH();
}
GC_ASSERT(size > 0); // allocating 0 bytes would be silly
if (size > gc_allocator_large_threshold())
return allocate_large(mut, size);
struct gc_ref ret;
while (1) {
ret = copy_space_allocate(&mut->allocator,
heap_allocation_space(mutator_heap(mut)),
size);
if (!gc_ref_is_null(ret))
break;
if (trigger_collection(mut, GC_COLLECTION_MINOR))
continue;
return mutator_heap(mut)->allocation_failure(mutator_heap(mut), size);
}
return gc_ref_heap_object(ret);
}
void gc_pin_object(struct gc_mutator *mut, struct gc_ref ref) {
GC_CRASH();
}
int gc_object_is_old_generation_slow(struct gc_mutator *mut,
struct gc_ref obj) {
if (!GC_GENERATIONAL)
return 0;
struct gc_heap *heap = mutator_heap(mut);
if (copy_space_contains(heap_new_space(heap), obj))
return 0;
if (copy_space_contains(heap_old_space(heap), obj))
return 1;
struct large_object_space *lospace = heap_large_object_space(heap);
if (large_object_space_contains(lospace, obj))
return large_object_space_is_survivor(lospace, obj);
return 0;
}
void gc_write_barrier_slow(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) {
GC_ASSERT(!gc_ref_is_null(new_val));
if (!GC_GENERATIONAL) return;
if (gc_object_is_old_generation_slow(mut, new_val))
return;
struct gc_heap *heap = mutator_heap(mut);
if ((obj_size <= gc_allocator_large_threshold())
? copy_space_remember_edge(heap_old_space(heap), edge)
: large_object_space_remember_edge(heap_large_object_space(heap),
obj, edge))
gc_field_set_writer_add_edge(mutator_field_logger(mut), edge);
}
int* gc_safepoint_flag_loc(struct gc_mutator *mut) {
return &mutator_heap(mut)->collecting;
}
void gc_safepoint_slow(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut);
copy_space_allocator_finish(&mut->allocator, heap_allocation_space(heap));
if (GC_GENERATIONAL)
gc_field_set_writer_release_buffer(mutator_field_logger(mut));
heap_lock(heap);
while (mutators_are_stopping(mutator_heap(mut)))
pause_mutator_for_collection(heap, mut);
heap_unlock(heap);
}
void gc_safepoint_signal_inhibit(struct gc_mutator *mut) { GC_CRASH(); }
void gc_safepoint_signal_reallow(struct gc_mutator *mut) { GC_CRASH(); }
struct gc_ephemeron* gc_allocate_ephemeron(struct gc_mutator *mut) {
return gc_allocate(mut, gc_ephemeron_size(), GC_ALLOCATION_TAGGED);
}
void gc_ephemeron_init(struct gc_mutator *mut, struct gc_ephemeron *ephemeron,
struct gc_ref key, struct gc_ref value) {
gc_ephemeron_init_internal(mutator_heap(mut), ephemeron, key, value);
}
struct gc_ref
gc_ephemeron_swap_value(struct gc_mutator *mut, struct gc_ephemeron *e,
struct gc_ref ref) {
gc_write_barrier(mut, gc_ref_from_heap_object(e), gc_ephemeron_size(),
gc_ephemeron_value_edge(e), ref);
return gc_ephemeron_swap_value_internal(e, ref);
}
struct gc_pending_ephemerons *gc_heap_pending_ephemerons(struct gc_heap *heap) {
#if GC_GENERATIONAL
if (is_minor_collection(heap))
return heap->nursery_pending_ephemerons;
#endif
return heap->pending_ephemerons;
}
unsigned gc_heap_ephemeron_trace_epoch(struct gc_heap *heap) {
return heap->count;
}
struct gc_finalizer* gc_allocate_finalizer(struct gc_mutator *mut) {
return gc_allocate(mut, gc_finalizer_size(), GC_ALLOCATION_TAGGED);
}
void gc_finalizer_attach(struct gc_mutator *mut, struct gc_finalizer *finalizer,
unsigned priority, struct gc_ref object,
struct gc_ref closure) {
gc_finalizer_init_internal(finalizer, object, closure);
gc_finalizer_attach_internal(mutator_heap(mut)->finalizer_state,
finalizer, priority);
// No write barrier.
}
struct gc_finalizer* gc_pop_finalizable(struct gc_mutator *mut) {
return gc_finalizer_state_pop(mutator_heap(mut)->finalizer_state);
}
void gc_set_finalizer_callback(struct gc_heap *heap,
gc_finalizer_callback callback) {
gc_finalizer_state_set_callback(heap->finalizer_state, callback);
}
static int
heap_do_prepare_pending_ephemerons(struct gc_heap *heap,
struct gc_pending_ephemerons **loc,
size_t size) {
size_t target = size * heap->pending_ephemerons_size_factor;
double slop = heap->pending_ephemerons_size_slop;
return !!(*loc = gc_prepare_pending_ephemerons(*loc, target, slop));
}
static int heap_prepare_pending_ephemerons(struct gc_heap *heap) {
return heap_do_prepare_pending_ephemerons(heap, &heap->pending_ephemerons,
heap->size)
#if GC_GENERATIONAL
&& heap_do_prepare_pending_ephemerons(heap,
&heap->nursery_pending_ephemerons,
heap->per_processor_nursery_size * 2)
#endif
;
}
struct gc_options {
struct gc_common_options common;
};
int gc_option_from_string(const char *str) {
return gc_common_option_from_string(str);
}
struct gc_options* gc_allocate_options(void) {
struct gc_options *ret = malloc(sizeof(struct gc_options));
gc_init_common_options(&ret->common);
return ret;
}
int gc_options_set_int(struct gc_options *options, int option, int value) {
return gc_common_options_set_int(&options->common, option, value);
}
int gc_options_set_size(struct gc_options *options, int option,
size_t value) {
return gc_common_options_set_size(&options->common, option, value);
}
int gc_options_set_double(struct gc_options *options, int option,
double value) {
return gc_common_options_set_double(&options->common, option, value);
}
int gc_options_parse_and_set(struct gc_options *options, int option,
const char *value) {
return gc_common_options_parse_and_set(&options->common, option, value);
}
// with heap lock
static uint64_t allocation_counter(struct gc_heap *heap) {
uint64_t ret = heap->total_allocated_bytes_at_last_gc;
copy_space_add_to_allocation_counter(heap_allocation_space(heap), &ret);
large_object_space_add_to_allocation_counter(heap_large_object_space(heap),
&ret);
return ret;
}
uint64_t gc_allocation_counter(struct gc_heap *heap) {
pthread_mutex_lock(&heap->lock);
uint64_t ret = allocation_counter(heap);
pthread_mutex_unlock(&heap->lock);
return ret;
}
static uint64_t allocation_counter_from_thread(struct gc_heap *heap) {
if (pthread_mutex_trylock(&heap->lock)) return 0;
uint64_t ret = allocation_counter(heap);
pthread_mutex_unlock(&heap->lock);
return ret;
}
static void set_heap_size_from_thread(struct gc_heap *heap, size_t size) {
if (pthread_mutex_trylock(&heap->lock)) return;
resize_heap(heap, size);
pthread_mutex_unlock(&heap->lock);
}
static void* allocation_failure(struct gc_heap *heap, size_t size) {
fprintf(stderr, "ran out of space, heap size %zu\n", heap->size);
GC_CRASH();
return NULL;
}
void gc_heap_set_allocation_failure_handler(struct gc_heap *heap,
void* (*handler)(struct gc_heap*,
size_t)) {
heap->allocation_failure = handler;
}
static int heap_init(struct gc_heap *heap, const struct gc_options *options) {
// *heap is already initialized to 0.
if (GC_GENERATIONAL)
gc_field_set_init(heap_remembered_set(heap));
pthread_mutex_init(&heap->lock, NULL);
pthread_cond_init(&heap->mutator_cond, NULL);
pthread_cond_init(&heap->collector_cond, NULL);
heap->size = options->common.heap_size;
heap->processor_count = gc_platform_processor_count();
// max_active_mutator_count never falls below 1 after this point.
heap->max_active_mutator_count = 1;
#if GC_GENERATIONAL
// We should add an option to set this, but for now, 2 MB per processor.
heap->per_processor_nursery_size = 2 * 1024 * 1024;
#endif
if (!gc_tracer_init(&heap->tracer, heap, options->common.parallelism))
GC_CRASH();
heap->pending_ephemerons_size_factor = 0.005;
heap->pending_ephemerons_size_slop = 0.5;
if (!heap_prepare_pending_ephemerons(heap))
GC_CRASH();
heap->finalizer_state = gc_make_finalizer_state();
if (!heap->finalizer_state)
GC_CRASH();
heap->background_thread = gc_make_background_thread();
heap->sizer = gc_make_heap_sizer(heap, &options->common,
allocation_counter_from_thread,
set_heap_size_from_thread,
heap->background_thread);
heap->allocation_failure = allocation_failure;
return 1;
}
int gc_init(const struct gc_options *options, struct gc_stack_addr stack_base,
struct gc_heap **heap, struct gc_mutator **mut,
struct gc_event_listener event_listener,
void *event_listener_data) {
GC_ASSERT_EQ(gc_allocator_small_granule_size(), GC_ALIGNMENT);
GC_ASSERT_EQ(gc_allocator_large_threshold(), GC_LARGE_OBJECT_THRESHOLD);
GC_ASSERT_EQ(0, offsetof(struct gc_mutator, allocator));
GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(),
offsetof(struct copy_space_allocator, hp));
GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(),
offsetof(struct copy_space_allocator, limit));
if (GC_GENERATIONAL) {
GC_ASSERT_EQ(gc_write_barrier_field_table_alignment(),
COPY_SPACE_SLAB_SIZE);
GC_ASSERT_EQ(gc_write_barrier_field_table_offset(),
offsetof(struct copy_space_slab, blocks));
}
*heap = calloc(1, sizeof(struct gc_heap));
if (!*heap) GC_CRASH();
if (!heap_init(*heap, options))
GC_CRASH();
(*heap)->event_listener = event_listener;
(*heap)->event_listener_data = event_listener_data;
HEAP_EVENT(*heap, init, (*heap)->size);
{
uint32_t flags = 0;
if (options->common.parallelism > 1)
flags |= COPY_SPACE_ATOMIC_FORWARDING;
if (GC_GENERATIONAL) {
size_t nursery_size =
heap_nursery_size_for_mutator_count(*heap, (*heap)->processor_count);
heap_set_nursery_size(*heap, nursery_size);
if (!copy_space_init(heap_new_space(*heap), nursery_size,
flags | COPY_SPACE_ALIGNED,
(*heap)->background_thread)) {
free(*heap);
*heap = NULL;
return 0;
}
// Initially dimension the nursery for one mutator.
resize_nursery(*heap, heap_nursery_size_for_mutator_count(*heap, 1));
if (!copy_space_init(heap_old_space(*heap), (*heap)->size,
flags | COPY_SPACE_HAS_FIELD_LOGGING_BITS,
(*heap)->background_thread)) {
free(*heap);
*heap = NULL;
return 0;
}
} else {
if (!copy_space_init(heap_mono_space(*heap), (*heap)->size, flags,
(*heap)->background_thread)) {
free(*heap);
*heap = NULL;
return 0;
}
}
}
if (!large_object_space_init(heap_large_object_space(*heap), *heap,
(*heap)->background_thread))
GC_CRASH();
*mut = calloc(1, sizeof(struct gc_mutator));
if (!*mut) GC_CRASH();
add_mutator(*heap, *mut);
gc_background_thread_start((*heap)->background_thread);
return 1;
}
struct gc_mutator* gc_init_for_thread(struct gc_stack_addr stack_base,
struct gc_heap *heap) {
struct gc_mutator *ret = calloc(1, sizeof(struct gc_mutator));
if (!ret)
GC_CRASH();
add_mutator(heap, ret);
return ret;
}
void gc_finish_for_thread(struct gc_mutator *mut) {
remove_mutator(mutator_heap(mut), mut);
free(mut);
}
static void deactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(mut->next == NULL);
GC_ASSERT(mut->active);
copy_space_allocator_finish(&mut->allocator, heap_allocation_space(heap));
if (GC_GENERATIONAL)
gc_field_set_writer_release_buffer(mutator_field_logger(mut));
heap_lock(heap);
heap->inactive_mutator_count++;
mut->active = 0;
if (all_mutators_stopped(heap))
pthread_cond_signal(&heap->collector_cond);
heap_unlock(heap);
}
static void reactivate_mutator(struct gc_heap *heap, struct gc_mutator *mut) {
GC_ASSERT(!mut->active);
heap_lock(heap);
while (mutators_are_stopping(heap))
pthread_cond_wait(&heap->mutator_cond, &heap->lock);
mut->active = 1;
heap->inactive_mutator_count--;
maybe_increase_max_active_mutator_count(heap);
heap_unlock(heap);
}
void* gc_deactivate_for_call(struct gc_mutator *mut,
void* (*f)(struct gc_mutator*, void*),
void *data) {
struct gc_heap *heap = mutator_heap(mut);
deactivate_mutator(heap, mut);
void *ret = f(mut, data);
reactivate_mutator(heap, mut);
return ret;
}
void* gc_reactivate_for_call(struct gc_mutator *mut,
void* (*f)(struct gc_mutator*, void*),
void *data) {
struct gc_heap *heap = mutator_heap(mut);
int reactivate = !mut->active;
if (reactivate)
reactivate_mutator(heap, mut);
void *ret = f(mut, data);
if (reactivate)
deactivate_mutator(heap, mut);
return ret;
}