mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-03 13:20:26 +02:00
* configure.in: add --disable-arrays option, probably temporary. * the following changes allow guile to be built with the array "module" omitted. some of this stuff is just tc7 type support, which wouldn't be needed if uniform array types were converted to smobs. * tag.c (scm_utag_bvect ... scm_utag_cvect): don't define unless HAVE_ARRAYS. (scm_tag): don't check array types unless HAVE_ARRAYS. * sort.c (scm_restricted_vector_sort_x, scm_sorted_p): remove the unused array types. * (scm_stable_sort, scm_sort): don't support vectors if not HAVE_ARRAYS. a bit excessive. * random.c (vector_scale, vector_sum_squares, scm_random_solid_sphere_x, scm_random_hollow_sphere_x, scm_random_normal_vector_x): don't define unless HAVE_ARRAYS. * gh_data.c (makvect, gh_chars2byvect, gh_shorts2svect, gh_longs2ivect, gh_ulongs2uvect, gh_floats2fvect, gh_doubles2dvect, gh_uniform_vector_length, gh_uniform_vector_ref): don't define unless HAVE_ARRAYS. (gh_scm2chars, gh_scm2shorts, gh_scm2longs, gh_scm2floats, gh_scm2doubles): don't check vector types if not HAVE_ARRAYS. * eq.c (scm_equal_p), eval.c (SCM_CEVAL), print.c (scm_iprin1), gc.c (scm_gc_mark, scm_gc_sweep), objects.c (scm_class_of): don't support the array types unless HAVE_ARRAYS is defined. * tags.h: make nine tc7 types conditional on HAVE_ARRAYS. * read.c (scm_lreadr): don't check for #* unless HAVE_ARRAYS is defined (this should use read-hash-extend). * ramap.c, unif.c: don't check whether ARRAYS is defined. * vectors.c (scm_vector_set_length_x): moved here from unif.c. call scm_uniform_element_size if HAVE_ARRAYS. vectors.h: prototype too. * unif.c (scm_uniform_element_size): new procedure. * init.c (scm_boot_guile_1): don't call scm_init_ramap or scm_init_unif unless HAVE_ARRAYS is defined. * __scm.h: don't define ARRAYS. * Makefile.am (EXTRA_libguile_la_SOURCES): unif.c and ramap.c moved here from libguile_la_SOURCES. * Makefile.am (ice9_sources): add arrays.scm. * boot-9.scm: load arrays.scm if 'array is provided. * arrays.scm: new file with stuff from boot-9.scm.
584 lines
15 KiB
C
584 lines
15 KiB
C
/* Copyright (C) 1999 Free Software Foundation, Inc.
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2, or (at your option)
|
||
* any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this software; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||
* Boston, MA 02111-1307 USA
|
||
*
|
||
* As a special exception, the Free Software Foundation gives permission
|
||
* for additional uses of the text contained in its release of GUILE.
|
||
*
|
||
* The exception is that, if you link the GUILE library with other files
|
||
* to produce an executable, this does not by itself cause the
|
||
* resulting executable to be covered by the GNU General Public License.
|
||
* Your use of that executable is in no way restricted on account of
|
||
* linking the GUILE library code into it.
|
||
*
|
||
* This exception does not however invalidate any other reasons why
|
||
* the executable file might be covered by the GNU General Public License.
|
||
*
|
||
* This exception applies only to the code released by the
|
||
* Free Software Foundation under the name GUILE. If you copy
|
||
* code from other Free Software Foundation releases into a copy of
|
||
* GUILE, as the General Public License permits, the exception does
|
||
* not apply to the code that you add in this way. To avoid misleading
|
||
* anyone as to the status of such modified files, you must delete
|
||
* this exception notice from them.
|
||
*
|
||
* If you write modifications of your own for GUILE, it is your choice
|
||
* whether to permit this exception to apply to your modifications.
|
||
* If you do not wish that, delete this exception notice. */
|
||
|
||
/* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
|
||
|
||
#include "_scm.h"
|
||
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include "genio.h"
|
||
#include "smob.h"
|
||
#include "numbers.h"
|
||
#include "feature.h"
|
||
|
||
#include "random.h"
|
||
|
||
|
||
/*
|
||
* A plugin interface for RNGs
|
||
*
|
||
* Using this interface, it is possible for the application to tell
|
||
* libguile to use a different RNG. This is desirable if it is
|
||
* necessary to use the same RNG everywhere in the application in
|
||
* order to prevent interference, if the application uses RNG
|
||
* hardware, or if the application has special demands on the RNG.
|
||
*
|
||
* Look in random.h and how the default generator is "plugged in" in
|
||
* scm_init_random().
|
||
*/
|
||
|
||
scm_rng scm_the_rng;
|
||
|
||
|
||
/*
|
||
* The prepackaged RNG
|
||
*
|
||
* This is the MWC (Multiply With Carry) random number generator
|
||
* described by George Marsaglia at the Department of Statistics and
|
||
* Supercomputer Computations Research Institute, The Florida State
|
||
* University (http://stat.fsu.edu/~geo).
|
||
*
|
||
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
|
||
* passes all tests in the DIEHARD test suite
|
||
* (http://stat.fsu.edu/~geo/diehard.html)
|
||
*/
|
||
|
||
#define A 2131995753UL
|
||
|
||
#if SIZEOF_LONG > 4
|
||
#if SIZEOF_INT > 4
|
||
#define LONG32 unsigned short
|
||
#else
|
||
#define LONG32 unsigned int
|
||
#endif
|
||
#define LONG64 unsigned long
|
||
#else
|
||
#define LONG32 unsigned long
|
||
#define LONG64 unsigned long long
|
||
#endif
|
||
|
||
#if SIZEOF_LONG > 4 || defined (HAVE_LONG_LONGS)
|
||
|
||
unsigned long
|
||
scm_i_uniform32 (scm_i_rstate *state)
|
||
{
|
||
LONG64 x = (LONG64) A * state->w + state->c;
|
||
LONG32 w = x & 0xffffffffUL;
|
||
state->w = w;
|
||
state->c = x >> 32L;
|
||
return w;
|
||
}
|
||
|
||
#else
|
||
|
||
/* ww This is a portable version of the same RNG without 64 bit
|
||
* * aa arithmetic.
|
||
* ----
|
||
* xx It is only intended to provide identical behaviour on
|
||
* xx platforms without 8 byte longs or long longs until
|
||
* xx someone has implemented the routine in assembler code.
|
||
* xxcc
|
||
* ----
|
||
* ccww
|
||
*/
|
||
|
||
#define L(x) ((x) & 0xffff)
|
||
#define H(x) ((x) >> 16)
|
||
|
||
unsigned long
|
||
scm_i_uniform32 (scm_i_rstate *state)
|
||
{
|
||
LONG32 x1 = L (A) * L (state->w);
|
||
LONG32 x2 = L (A) * H (state->w);
|
||
LONG32 x3 = H (A) * L (state->w);
|
||
LONG32 w = L (x1) + L (state->c);
|
||
LONG32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
|
||
LONG32 x4 = H (A) * H (state->w);
|
||
state->w = w = (L (m) << 16) + L (w);
|
||
state->c = H (x2) + H (x3) + x4 + H (m);
|
||
return w;
|
||
}
|
||
|
||
#endif
|
||
|
||
void
|
||
scm_i_init_rstate (scm_i_rstate *state, char *seed, int n)
|
||
{
|
||
LONG32 w = 0L;
|
||
LONG32 c = 0L;
|
||
int i, m;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
m = i % 8;
|
||
if (m < 4)
|
||
w += seed[i] << (8 * m);
|
||
else
|
||
c += seed[i] << (8 * (m - 4));
|
||
}
|
||
if ((w == 0 && c == 0) || (w == 0xffffffffUL && c == A - 1))
|
||
++c;
|
||
state->w = w;
|
||
state->c = c;
|
||
}
|
||
|
||
scm_i_rstate *
|
||
scm_i_copy_rstate (scm_i_rstate *state)
|
||
{
|
||
scm_rstate *new_state = malloc (scm_the_rng.rstate_size);
|
||
if (new_state == 0)
|
||
scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size),
|
||
(char *) SCM_NALLOC, "rstate");
|
||
return memcpy (new_state, state, scm_the_rng.rstate_size);
|
||
}
|
||
|
||
|
||
/*
|
||
* Random number library functions
|
||
*/
|
||
|
||
scm_rstate *
|
||
scm_c_make_rstate (char *seed, int n)
|
||
{
|
||
scm_rstate *state = malloc (scm_the_rng.rstate_size);
|
||
if (state == 0)
|
||
scm_wta (SCM_MAKINUM (scm_the_rng.rstate_size),
|
||
(char *) SCM_NALLOC,
|
||
"rstate");
|
||
state->reserved0 = 0;
|
||
scm_the_rng.init_rstate (state, seed, n);
|
||
return state;
|
||
}
|
||
|
||
scm_rstate *
|
||
scm_c_default_rstate ()
|
||
{
|
||
SCM state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state, "*random-state* contains bogus random state", 0);
|
||
return SCM_RSTATE (state);
|
||
}
|
||
|
||
inline double
|
||
scm_c_uniform01 (scm_rstate *state)
|
||
{
|
||
double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
|
||
return ((x + (double) scm_the_rng.random_bits (state))
|
||
/ (double) 0xffffffffUL);
|
||
}
|
||
|
||
double
|
||
scm_c_normal01 (scm_rstate *state)
|
||
{
|
||
if (state->reserved0)
|
||
{
|
||
state->reserved0 = 0;
|
||
return state->reserved1;
|
||
}
|
||
else
|
||
{
|
||
double r, a, n;
|
||
|
||
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
|
||
a = 2.0 * M_PI * scm_c_uniform01 (state);
|
||
|
||
n = r * sin (a);
|
||
state->reserved1 = r * cos (a);
|
||
state->reserved0 = 1;
|
||
|
||
return n;
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_exp1 (scm_rstate *state)
|
||
{
|
||
return - log (scm_c_uniform01 (state));
|
||
}
|
||
|
||
unsigned char scm_masktab[256];
|
||
|
||
unsigned long
|
||
scm_c_random (scm_rstate *state, unsigned long m)
|
||
{
|
||
unsigned int r, mask;
|
||
mask = (m < 0x100
|
||
? scm_masktab[m]
|
||
: (m < 0x10000
|
||
? scm_masktab[m >> 8] << 8 | 0xff
|
||
: (m < 0x1000000
|
||
? scm_masktab[m >> 16] << 16 | 0xffff
|
||
: scm_masktab[m >> 24] << 24 | 0xffffff)));
|
||
while ((r = scm_the_rng.random_bits (state) & mask) >= m);
|
||
return r;
|
||
}
|
||
|
||
SCM
|
||
scm_c_random_bignum (scm_rstate *state, SCM m)
|
||
{
|
||
SCM b;
|
||
int i, nd;
|
||
LONG32 *bits, mask, w;
|
||
nd = SCM_NUMDIGS (m);
|
||
/* calculate mask for most significant digit */
|
||
#if SIZEOF_INT == 4
|
||
/* 16 bit digits */
|
||
if (nd & 1)
|
||
{
|
||
/* fix most significant 16 bits */
|
||
unsigned short s = SCM_BDIGITS (m)[nd - 1];
|
||
mask = s < 0x100 ? scm_masktab[s] : scm_masktab[s >> 8] << 8 | 0xff;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* fix most significant 32 bits */
|
||
#if SIZEOF_INT == 4
|
||
w = SCM_BDIGITS (m)[nd - 1] << 16 | SCM_BDIGITS (m)[nd - 2];
|
||
#else
|
||
w = SCM_BDIGITS (m)[nd - 1];
|
||
#endif
|
||
mask = (w < 0x10000
|
||
? (w < 0x100
|
||
? scm_masktab[w]
|
||
: scm_masktab[w >> 8] << 8 | 0xff)
|
||
: (w < 0x1000000
|
||
? scm_masktab[w >> 16] << 16 | 0xffff
|
||
: scm_masktab[w >> 24] << 24 | 0xffffff));
|
||
}
|
||
b = scm_mkbig (nd, 0);
|
||
bits = (LONG32 *) SCM_BDIGITS (b);
|
||
do
|
||
{
|
||
i = nd;
|
||
/* treat most significant digit specially */
|
||
#if SIZEOF_INT == 4
|
||
/* 16 bit digits */
|
||
if (i & 1)
|
||
{
|
||
((SCM_BIGDIG*) bits)[i - 1] = scm_the_rng.random_bits (state) & mask;
|
||
i /= 2;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* fix most significant 32 bits */
|
||
#if SIZEOF_INT == 4
|
||
w = scm_the_rng.random_bits (state) & mask;
|
||
((SCM_BIGDIG*) bits)[i - 2] = w & 0xffff;
|
||
((SCM_BIGDIG*) bits)[i - 1] = w >> 16;
|
||
i = i / 2 - 1;
|
||
#else
|
||
i /= 2;
|
||
bits[--i] = scm_the_rng.random_bits (state) & mask;
|
||
#endif
|
||
}
|
||
/* now fill up the rest of the bignum */
|
||
while (i)
|
||
bits[--i] = scm_the_rng.random_bits (state);
|
||
b = scm_normbig (b);
|
||
if (SCM_INUMP (b))
|
||
return b;
|
||
} while (scm_bigcomp (b, m) <= 0);
|
||
return b;
|
||
}
|
||
|
||
/*
|
||
* Scheme level representation of random states.
|
||
*/
|
||
|
||
long scm_tc16_rstate;
|
||
|
||
static SCM
|
||
make_rstate (scm_rstate *state)
|
||
{
|
||
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
|
||
}
|
||
|
||
static scm_sizet
|
||
free_rstate (SCM rstate)
|
||
{
|
||
free (SCM_RSTATE (rstate));
|
||
return scm_the_rng.rstate_size;
|
||
}
|
||
|
||
/*
|
||
* Scheme level interface.
|
||
*/
|
||
|
||
SCM_GLOBAL_VCELL_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_makfrom0str ("URL:http://stat.fsu.edu/~geo/diehard.html")));
|
||
|
||
SCM_PROC (s_random, "random", 1, 1, 0, scm_random);
|
||
|
||
SCM
|
||
scm_random (SCM n, SCM state)
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state, SCM_ARG2, s_random);
|
||
if (SCM_INUMP (n))
|
||
{
|
||
unsigned long m = SCM_INUM (n);
|
||
SCM_ASSERT (m > 0, n, SCM_ARG1, s_random);
|
||
return SCM_MAKINUM (scm_c_random (SCM_RSTATE (state), m));
|
||
}
|
||
SCM_ASSERT (SCM_NIMP (n), n, SCM_ARG1, s_random);
|
||
if (SCM_REALP (n))
|
||
return scm_makdbl (SCM_REALPART (n) * scm_c_uniform01 (SCM_RSTATE (state)),
|
||
0.0);
|
||
SCM_ASSERT (SCM_TYP16 (n) == scm_tc16_bigpos, n, SCM_ARG1, s_random);
|
||
return scm_c_random_bignum (SCM_RSTATE (state), n);
|
||
}
|
||
|
||
SCM_PROC (s_copy_random_state, "copy-random-state", 0, 1, 0, scm_copy_random_state);
|
||
|
||
SCM
|
||
scm_copy_random_state (SCM state)
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG1,
|
||
s_copy_random_state);
|
||
return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
|
||
}
|
||
|
||
SCM_PROC (s_seed_to_random_state, "seed->random-state", 1, 0, 0, scm_seed_to_random_state);
|
||
|
||
SCM
|
||
scm_seed_to_random_state (SCM seed)
|
||
{
|
||
if (SCM_NUMBERP (seed))
|
||
seed = scm_number_to_string (seed, SCM_UNDEFINED);
|
||
SCM_ASSERT (SCM_NIMP (seed) && SCM_STRINGP (seed),
|
||
seed,
|
||
SCM_ARG1,
|
||
s_seed_to_random_state);
|
||
return make_rstate (scm_c_make_rstate (SCM_ROCHARS (seed),
|
||
SCM_LENGTH (seed)));
|
||
}
|
||
|
||
SCM_PROC (s_random_uniform, "random:uniform", 0, 1, 0, scm_random_uniform);
|
||
|
||
SCM
|
||
scm_random_uniform (SCM state)
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG1,
|
||
s_random_uniform);
|
||
return scm_makdbl (scm_c_uniform01 (SCM_RSTATE (state)), 0.0);
|
||
}
|
||
|
||
SCM_PROC (s_random_normal, "random:normal", 0, 1, 0, scm_random_normal);
|
||
|
||
SCM
|
||
scm_random_normal (SCM state)
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG1,
|
||
s_random_normal);
|
||
return scm_makdbl (scm_c_normal01 (SCM_RSTATE (state)), 0.0);
|
||
}
|
||
|
||
#ifdef HAVE_ARRAYS
|
||
|
||
static void
|
||
vector_scale (SCM v, double c)
|
||
{
|
||
int n = SCM_LENGTH (v);
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
SCM_REAL (SCM_VELTS (v)[n]) *= c;
|
||
else
|
||
while (--n >= 0)
|
||
((double *) SCM_VELTS (v))[n] *= c;
|
||
}
|
||
|
||
static double
|
||
vector_sum_squares (SCM v)
|
||
{
|
||
double x, sum = 0.0;
|
||
int n = SCM_LENGTH (v);
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
{
|
||
x = SCM_REAL (SCM_VELTS (v)[n]);
|
||
sum += x * x;
|
||
}
|
||
else
|
||
while (--n >= 0)
|
||
{
|
||
x = ((double *) SCM_VELTS (v))[n];
|
||
sum += x * x;
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
/* For the uniform distribution on the solid sphere, note that in
|
||
* this distribution the length r of the vector has cumulative
|
||
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
|
||
* generated as r=u^(1/n).
|
||
*/
|
||
SCM_PROC (s_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0, scm_random_solid_sphere_x);
|
||
|
||
SCM
|
||
scm_random_solid_sphere_x (SCM v, SCM state)
|
||
{
|
||
SCM_ASSERT (SCM_NIMP (v)
|
||
&& (SCM_VECTORP (v) || SCM_TYP7 (v) == scm_tc7_dvect),
|
||
v, SCM_ARG1, s_random_solid_sphere_x);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG2,
|
||
s_random_solid_sphere_x);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale (v,
|
||
pow (scm_c_uniform01 (SCM_RSTATE (state)),
|
||
1.0 / SCM_LENGTH (v))
|
||
/ sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
SCM_PROC (s_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0, scm_random_hollow_sphere_x);
|
||
|
||
SCM
|
||
scm_random_hollow_sphere_x (SCM v, SCM state)
|
||
{
|
||
SCM_ASSERT (SCM_NIMP (v)
|
||
&& (SCM_VECTORP (v) || SCM_TYP7 (v) == scm_tc7_dvect),
|
||
v, SCM_ARG1, s_random_solid_sphere_x);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG2,
|
||
s_random_hollow_sphere_x);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale (v, 1 / sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
SCM_PROC (s_random_normal_vector_x, "random:normal-vector!", 1, 1, 0, scm_random_normal_vector_x);
|
||
|
||
SCM
|
||
scm_random_normal_vector_x (SCM v, SCM state)
|
||
{
|
||
int n;
|
||
SCM_ASSERT (SCM_NIMP (v)
|
||
&& (SCM_VECTORP (v) || SCM_TYP7 (v) == scm_tc7_dvect),
|
||
v, SCM_ARG1, s_random_solid_sphere_x);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG2,
|
||
s_random_normal_vector_x);
|
||
n = SCM_LENGTH (v);
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
SCM_VELTS (v)[n] = scm_makdbl (scm_c_normal01 (SCM_RSTATE (state)), 0.0);
|
||
else
|
||
while (--n >= 0)
|
||
((double *) SCM_VELTS (v))[n] = scm_c_normal01 (SCM_RSTATE (state));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
#endif /* HAVE_ARRAYS */
|
||
|
||
SCM_PROC (s_random_exp, "random:exp", 0, 1, 0, scm_random_exp);
|
||
|
||
SCM
|
||
scm_random_exp (SCM state)
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_CDR (scm_var_random_state);
|
||
SCM_ASSERT (SCM_NIMP (state) && SCM_RSTATEP (state),
|
||
state,
|
||
SCM_ARG1,
|
||
s_random_exp);
|
||
return scm_makdbl (scm_c_exp1 (SCM_RSTATE (state)), 0.0);
|
||
}
|
||
|
||
void
|
||
scm_init_random ()
|
||
{
|
||
int i, m;
|
||
/* plug in default RNG */
|
||
scm_rng rng =
|
||
{
|
||
sizeof (scm_i_rstate),
|
||
(unsigned long (*)()) scm_i_uniform32,
|
||
(void (*)()) scm_i_init_rstate,
|
||
(scm_rstate *(*)()) scm_i_copy_rstate
|
||
};
|
||
scm_the_rng = rng;
|
||
|
||
scm_tc16_rstate = scm_make_smob_type_mfpe ("random-state", 0,
|
||
NULL, free_rstate, NULL, NULL);
|
||
|
||
for (m = 1; m <= 0x100; m <<= 1)
|
||
for (i = m >> 1; i < m; ++i)
|
||
scm_masktab[i] = m - 1;
|
||
|
||
#include "random.x"
|
||
|
||
/* Check that the assumptions about bits per bignum digit are correct. */
|
||
#if SIZEOF_INT == 4
|
||
m = 16;
|
||
#else
|
||
m = 32;
|
||
#endif
|
||
if (m != SCM_BITSPERDIG)
|
||
{
|
||
fprintf (stderr, "Internal inconsistency: Confused about bignum digit size in random.c\n");
|
||
exit (1);
|
||
}
|
||
|
||
scm_add_feature ("random");
|
||
}
|