1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/srfi-60.c
Jan (janneke) Nieuwenhuizen 76950b4281 Support for x86_64-w64-mingw32.
On x86-64-MinGW the size of long is 4.  As long is used for
SCM_FIXNUM_BIT, that would mean incompatible .go files, and waste of
cell space.  So we would like to use long long, but the GMP interface
uses long.

To get around this, the x86-64-MinGW port now requires the use of
mini-GMP.  Mini-GMP has been changed to use intptr_t and uintptr_t.

Likewise, "integers.{h,c}" and "numbers.{h,c}" now use intptr_t instead
of scm_t_inum or long, and uintptr_t instead of unsigned long.

* configure.ac: When x86_64-w64-mingw32, require mini-GMP.
* libguile/mini-gmp.h: Use intptr_t instead of long, uintptr_t instead
of unsigned long throughout.
* libguile/mini-gmp.c: Likewise.
* libguile/scm.h (SCM_INTPTR_T_BIT): New define.
* libguile/numbers.h (SCM_FIXNUM_BIT): Use it.
* libguile/numbers.c (L1, UL1): New macros.  Use them thoughout instead
of 1L, 1UL.
(verify): Use SCM_INTPTR_T_BIT.
(verify): Use SCM_INTPTR_T_MAX and SCM_INTPTR_T_MIN.
(scm_from_inum): Remove macro.
Use intptr_t and uintptr_t instead of scm_t_inum or long, and unsigned
long.
* libguile/numbers.h (scm_from_intptr, scm_from_uintptr, scm_to_intptr,
scm_to_uintptr): New defines.
* libguile/integers.h: Use intptr_t and uintptr_t instead of scm_t_inum
and unsigned long.
* libguile/integers.c (L1) : New macro.  Use it thoughout instead of 1L.
Use intptr_t and uintptr_t instead of long and unsigned long.
(long_magnitude): Rename to...
(intptr_t_magnitude): ...this.  Use intptr_t, uintptr_t.
(negative_long): Rename to...
(negative_t_intptr): ...this.  Use uintptr_t, INTPTR_MIN.
(inum_magnitude): Use intptr_t.
(ulong_to_bignum): Rename to...
(uintptr_t_to_bignum): ...this.  Use uintptr_t.
(long_to_bignum): Rename to...
(intptr_t_to_bignum): ...this.  Use intptr_t.
(long_to_scm): Rename to...
(intptr_t_to_scm): ...this.  Use intptr_to_bignum.
(ulong_to_scm): Rename to...
(uintptr_t_to_scm): ...this.  Use uintptr_to_bignum.
(long_sign): Rename to..
(intptr_t_sign): ...this.  Use SCM_SIZEOF_INTPTR_T.
(bignum_cmp_long): Rename to...
(bignum_cmp_intptr_t): ...this.  Use uintptr_t.
* libguile/array-map.c (array_compare): Use uintptr_t instead of
unsigned long and intptr_t instead of long.
* libguile/arrays.c (make-shared-array): Use ssize_t instead of long.
* libguile/bytevectors.c (is_signed_int32, is_unsigned_int32)
[MINGW32 && __x86_64__]: Use ULL.
(twos_complement): Use uintptr_t instead of unsigned long.
* libguile/hash.c (JENKINS_LOOKUP3_HASHWORD2): Likewise.
(narrow_string_hash, wide_string_hash, scm_i_string_hash,
scm_i_locale_string_hash, scm_i_latin1_string_hash,
scm_i_utf8_string_hash, scm_i_struct_hash, scm_raw_ihashq,
scm_raw_ihash): Use and return uintptr_t instead of unsigned long.
(scm_hashv, scm_hash): Use SCM_UINTPTR_T_MAX.
* libguile/hash.h (scm_i_locale_string_hash, scm_i_latin1_string_hash,
scm_i_utf8_string_hash): update prototypes.
* libguile/scmsigs.c (sigaction): Use intptr_t instead of long.
* libguile/strings.c (scm_i_make_symbol, (scm_i_c_make_symbol): Use
uintptr_t instead of unsigned long.
* libguile/strings.h (scm_i_make_symbol, (scm_i_c_make_symbol): Update
declacations.
* libguile/srfi-60.c: Use scm_to_uintptr, scm_from_intptr and variants
throughout.
* libguile/symbols.c (symbol-hash): Use scm_from_uintptr.

Co-authored-by: Mike Gran <spk121@yahoo.com>
Co-authored-by: Andy Wingo <wingo@pobox.com>
2022-11-10 10:33:49 -08:00

421 lines
12 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* srfi-60.c --- Integers as Bits
Copyright 2005-2006,2008,2010,2014,2018,2021,2022
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "boolean.h"
#include "eq.h"
#include "extensions.h"
#include "gsubr.h"
#include "integers.h"
#include "list.h"
#include "numbers.h"
#include "pairs.h"
#include "version.h"
#include "srfi-60.h"
SCM_DEFINE (scm_srfi60_log2_binary_factors, "log2-binary-factors", 1, 0, 0,
(SCM n),
"Return a count of how many factors of 2 are present in @var{n}.\n"
"This is also the bit index of the lowest 1 bit in @var{n}. If\n"
"@var{n} is 0, the return is @math{-1}.\n"
"\n"
"@example\n"
"(log2-binary-factors 6) @result{} 1\n"
"(log2-binary-factors -8) @result{} 3\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_log2_binary_factors
{
SCM ret = SCM_EOL;
if (SCM_I_INUMP (n))
return scm_integer_scan1_i (SCM_I_INUM (n));
else if (SCM_BIGP (n))
return scm_integer_scan1_z (scm_bignum (n));
else
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi60_copy_bit, "copy-bit", 3, 0, 0,
(SCM index, SCM n, SCM newbit),
"Return @var{n} with the bit at @var{index} set according to\n"
"@var{newbit}. @var{newbit} should be @code{#t} to set the bit\n"
"to 1, or @code{#f} to set it to 0. Bits other than at\n"
"@var{index} are unchanged in the return.\n"
"\n"
"@example\n"
"(copy-bit 1 #b0101 #t) @result{} 7\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_copy_bit
{
uintptr_t ii;
int bb;
ii = scm_to_uintptr_t (index);
bb = scm_to_bool (newbit);
if (SCM_I_INUMP (n))
{
if (scm_integer_logbit_ui (ii, SCM_I_INUM (n)) == bb)
return n;
}
else if (SCM_BIGP (n))
{
if (scm_integer_logbit_uz (ii, scm_bignum (n)) == bb)
return n;
}
else
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
return scm_logxor (n, ii == 0 ? SCM_INUM1 : scm_integer_lsh_iu (1, ii));
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi60_rotate_bit_field, "rotate-bit-field", 4, 0, 0,
(SCM n, SCM count, SCM start, SCM end),
"Return @var{n} with the bit field from @var{start} (inclusive)\n"
"to @var{end} (exclusive) rotated upwards by @var{count} bits.\n"
"\n"
"@var{count} can be positive or negative, and it can be more\n"
"than the field width (it'll be reduced modulo the width).\n"
"\n"
"@example\n"
"(rotate-bit-field #b0110 2 1 4) @result{} #b1010\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_rotate_bit_field
{
uintptr_t ss = scm_to_uintptr_t (start);
uintptr_t ee = scm_to_uintptr_t (end);
uintptr_t ww, cc;
SCM_ASSERT_RANGE (3, end, (ee >= ss));
ww = ee - ss;
/* we must avoid division by zero, and a field whose width is 0 or 1
will be left unchanged anyway, so in that case we set cc to 0. */
if (ww <= 1)
cc = 0;
else
cc = scm_to_uintptr_t (scm_modulo (count, scm_difference (end, start)));
mpz_t zn;
if (SCM_I_INUMP (n))
{
intptr_t nn = SCM_I_INUM (n);
if (ee <= SCM_INTPTR_T_BIT-1)
{
/* Everything fits within a intptr_t. To avoid undefined
behavior when shifting negative numbers, we do all
operations using unsigned values, and then convert to
signed at the end. */
uintptr_t unn = nn;
uintptr_t below = unn & ((1UL << ss) - 1); /* below start */
uintptr_t above = unn & ~((1UL << ee) - 1); /* above end */
uintptr_t fmask = ((1UL << ww) - 1) << ss; /* field mask */
uintptr_t ff = unn & fmask; /* field */
uintptr_t uresult = (above
| ((ff << cc) & fmask)
| ((ff >> (ww-cc)) & fmask)
| below);
intptr_t result;
if (uresult > INTPTR_MAX)
/* The high bit is set in uresult, so the result is
negative. We have to handle the conversion to signed
integer carefully, to avoid undefined behavior. First we
compute ~uresult, equivalent to (ULONG_MAX - uresult),
which will be between 0 and LONG_MAX (inclusive): exactly
the set of numbers that can be represented as both intptr_t
and uintptr_p and thus convertible between them. We
cast that difference to a signed long and then substract
it from -1. */
result = -1 - (intptr_t) ~uresult;
else
result = (intptr_t) uresult;
return scm_from_intptr_t (result);
}
else
{
/* if there's no movement, avoid creating a bignum. */
if (cc == 0)
return n;
mpz_init_set_si (zn, nn);
}
}
else if (SCM_BIGP (n))
{
/* if there's no movement, avoid creating a new bignum. */
if (cc == 0)
return n;
scm_integer_init_set_mpz_z (scm_bignum (n), zn);
}
else
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
mpz_t tmp, r;
mpz_init (tmp);
mpz_init_set_si (r, 0);
/* portion above end */
mpz_fdiv_q_2exp (r, zn, ee);
mpz_mul_2exp (r, r, ee);
/* field high part, width-count bits from start go to start+count */
mpz_fdiv_q_2exp (tmp, zn, ss);
mpz_fdiv_r_2exp (tmp, tmp, ww - cc);
mpz_mul_2exp (tmp, tmp, ss + cc);
mpz_ior (r, r, tmp);
/* field low part, count bits from end-count go to start */
mpz_fdiv_q_2exp (tmp, zn, ee - cc);
mpz_fdiv_r_2exp (tmp, tmp, cc);
mpz_mul_2exp (tmp, tmp, ss);
mpz_ior (r, r, tmp);
/* portion below start */
mpz_fdiv_r_2exp (tmp, zn, ss);
mpz_ior (r, r, tmp);
mpz_clear (zn);
mpz_clear (tmp);
/* bits moved around might leave us in range of an inum */
SCM ret = scm_from_mpz (r);
mpz_clear (r);
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi60_reverse_bit_field, "reverse-bit-field", 3, 0, 0,
(SCM n, SCM start, SCM end),
"Return @var{n} with the bits between @var{start} (inclusive) to\n"
"@var{end} (exclusive) reversed.\n"
"\n"
"@example\n"
"(reverse-bit-field #b101001 2 4) @result{} #b100101\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_reverse_bit_field
{
intptr_t ss = scm_to_intptr_t (start);
intptr_t ee = scm_to_intptr_t (end);
intptr_t swaps = (ee - ss) / 2; /* number of swaps */
mpz_t b;
if (SCM_I_INUMP (n))
{
intptr_t nn = SCM_I_INUM (n);
if (ee <= SCM_INTPTR_T_BIT-1)
{
/* all within a intptr_t */
intptr_t smask = 1L << ss;
intptr_t emask = 1L << (ee-1);
for ( ; swaps > 0; swaps--)
{
intptr_t sbit = nn & smask;
intptr_t ebit = nn & emask;
nn ^= sbit ^ (ebit ? smask : 0) /* zap sbit, put ebit value */
^ ebit ^ (sbit ? emask : 0); /* zap ebit, put sbit value */
smask <<= 1;
emask >>= 1;
}
return scm_from_intptr_t (nn);
}
else
{
/* avoid creating a new bignum if reversing only 0 or 1 bits */
if (ee - ss <= 1)
return n;
mpz_init_set_si (b, nn);
}
}
else if (SCM_BIGP (n))
{
/* avoid creating a new bignum if reversing only 0 or 1 bits */
if (ee - ss <= 1)
return n;
scm_integer_init_set_mpz_z (scm_bignum (n), b);
}
else
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
ee--;
for ( ; swaps > 0; swaps--)
{
int sbit = mpz_tstbit (b, ss);
int ebit = mpz_tstbit (b, ee);
if (sbit ^ ebit)
{
/* the two bits are different, flip them */
if (sbit)
{
mpz_clrbit (b, ss);
mpz_setbit (b, ee);
}
else
{
mpz_setbit (b, ss);
mpz_clrbit (b, ee);
}
}
ss++;
ee--;
}
SCM ret = scm_integer_from_mpz (b);
mpz_clear (b);
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi60_integer_to_list, "integer->list", 1, 1, 0,
(SCM n, SCM len),
"Return bits from @var{n} in the form of a list of @code{#t} for\n"
"1 and @code{#f} for 0. The least significant @var{len} bits\n"
"are returned, and the first list element is the most\n"
"significant of those bits. If @var{len} is not given, the\n"
"default is @code{(integer-length @var{n})} (@pxref{Bitwise\n"
"Operations}).\n"
"\n"
"@example\n"
"(integer->list 6) @result{} (#t #t #f)\n"
"(integer->list 1 4) @result{} (#f #f #f #t)\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_integer_to_list
{
SCM ret = SCM_EOL;
uintptr_t ll;
if (SCM_UNBNDP (len))
len = scm_integer_length (n);
ll = scm_to_uintptr_t (len);
if (SCM_I_INUMP (n))
{
intptr_t nn = SCM_I_INUM (n);
for (uintptr_t i = 0; i < ll; i++)
ret = scm_cons (scm_from_bool (scm_integer_logbit_ui (i, nn)), ret);
}
else if (SCM_BIGP (n))
{
struct scm_bignum *nn = scm_bignum (n);
for (uintptr_t i = 0; i < ll; i++)
ret = scm_cons (scm_from_bool (scm_integer_logbit_uz (i, nn)), ret);
}
else
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi60_list_to_integer, "list->integer", 1, 0, 0,
(SCM lst),
"Return an integer formed bitwise from the given @var{lst} list\n"
"of booleans. Each boolean is @code{#t} for a 1 and @code{#f}\n"
"for a 0. The first element becomes the most significant bit in\n"
"the return.\n"
"\n"
"@example\n"
"(list->integer '(#t #f #t #f)) @result{} 10\n"
"@end example")
#define FUNC_NAME s_scm_srfi60_list_to_integer
{
intptr_t len;
/* strip high zero bits from lst; after this the length tells us whether
an inum or bignum is required */
while (scm_is_pair (lst) && scm_is_false (SCM_CAR (lst)))
lst = SCM_CDR (lst);
SCM_VALIDATE_LIST_COPYLEN (SCM_ARG1, lst, len);
if (len <= SCM_I_FIXNUM_BIT - 1)
{
/* fits an inum (a positive inum) */
intptr_t n = 0;
while (scm_is_pair (lst))
{
n <<= 1;
if (! scm_is_false (SCM_CAR (lst)))
n++;
lst = SCM_CDR (lst);
}
return SCM_I_MAKINUM (n);
}
else
{
mpz_t z;
mpz_init (z);
while (scm_is_pair (lst))
{
len--;
if (! scm_is_false (SCM_CAR (lst)))
mpz_setbit (z, len);
lst = SCM_CDR (lst);
}
SCM ret = scm_from_mpz (z);
mpz_clear (z);
return ret;
}
}
#undef FUNC_NAME
/* note: don't put "scm_srfi60_list_to_integer" arg on its own line, a
newline breaks the snarfer */
SCM_REGISTER_PROC (s_srfi60_booleans_to_integer, "booleans->integer", 0, 0, 1, scm_srfi60_list_to_integer);
void
scm_register_srfi_60 (void)
{
scm_c_register_extension ("libguile-" SCM_EFFECTIVE_VERSION,
"scm_init_srfi_60",
(scm_t_extension_init_func)scm_init_srfi_60, NULL);
}
void
scm_init_srfi_60 (void)
{
#ifndef SCM_MAGIC_SNARFER
#include "srfi-60.x"
#endif
}