mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-01 04:10:18 +02:00
* module/ice-9/boot-9.scm (find-versioned-module): Remove. Still had some bugs (e.g. for "." in the path and in finding compiled files), did too much computation and statting, and we don't really want to promote versioning. Nor do we want to hard-code a particular encoding of versions in the file-system. Perhaps the real way to do this is to be extensible somehow. (try-module-autoload): Just dispatch to primitive-load-path in all cases. * module/rnrs * module/rnrs.scm: * module/rnrs/arithmetic/bitwise.scm: * module/rnrs/arithmetic/fixnums.scm: * module/rnrs/arithmetic/flonums.scm: * module/rnrs/base.scm: * module/rnrs/conditions.scm: * module/rnrs/control.scm: * module/rnrs/enums.scm: * module/rnrs/eval.scm: * module/rnrs/exceptions.scm: * module/rnrs/files.scm: * module/rnrs/hashtables.scm: * module/rnrs/io/simple.scm: * module/rnrs/lists.scm: * module/rnrs/mutable-pairs.scm: * module/rnrs/mutable-strings.scm: * module/rnrs/programs.scm: * module/rnrs/r5rs.scm: * module/rnrs/records/inspection.scm: * module/rnrs/records/procedural.scm: * module/rnrs/records/syntactic.scm: * module/rnrs/sorting.scm: * module/rnrs/syntax-case.scm: * module/rnrs/unicode.scm: Move these files, eliding the "6/" infix, so that they are in the normal (unversioned) module path.
216 lines
6.5 KiB
Scheme
216 lines
6.5 KiB
Scheme
;;; flonums.scm --- The R6RS flonums arithmetic library
|
||
|
||
;; Copyright (C) 2010 Free Software Foundation, Inc.
|
||
;;
|
||
;; This library is free software; you can redistribute it and/or
|
||
;; modify it under the terms of the GNU Lesser General Public
|
||
;; License as published by the Free Software Foundation; either
|
||
;; version 3 of the License, or (at your option) any later version.
|
||
;;
|
||
;; This library is distributed in the hope that it will be useful,
|
||
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
;; Lesser General Public License for more details.
|
||
;;
|
||
;; You should have received a copy of the GNU Lesser General Public
|
||
;; License along with this library; if not, write to the Free Software
|
||
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
||
|
||
(library (rnrs arithmetic flonums (6))
|
||
(export flonum?
|
||
real->flonum
|
||
|
||
fl=? fl<? fl<=? fl>? fl>=?
|
||
|
||
flinteger? flzero? flpositive? flnegative? flodd? fleven? flfinite?
|
||
flinfinite? flnan?
|
||
|
||
flmax flmin
|
||
|
||
fl+ fl* fl- fl/
|
||
|
||
flabs
|
||
|
||
fldiv-and-mod
|
||
fldiv
|
||
flmod
|
||
fldiv0-and-mod0
|
||
fldiv0
|
||
flmod0
|
||
|
||
flnumerator
|
||
fldenominator
|
||
|
||
flfloor flceiling fltruncate flround
|
||
|
||
flexp fllog flsin flcos fltan flacos flasin flatan
|
||
|
||
flsqrt flexpt
|
||
|
||
&no-infinities
|
||
make-no-infinities-violation
|
||
no-infinities-violation?
|
||
|
||
&no-nans
|
||
make-no-nans-violation
|
||
no-nans-violation?
|
||
|
||
fixnum->flonum)
|
||
(import (ice-9 optargs)
|
||
(only (guile) inf?)
|
||
(rnrs arithmetic fixnums (6))
|
||
(rnrs base (6))
|
||
(rnrs conditions (6))
|
||
(rnrs exceptions (6))
|
||
(rnrs lists (6))
|
||
(rnrs r5rs (6)))
|
||
|
||
(define (flonum? obj) (and (number? obj) (inexact? obj)))
|
||
(define (assert-flonum . args)
|
||
(or (for-all flonum? args) (raise (make-assertion-violation))))
|
||
(define (assert-iflonum . args)
|
||
(or (for-all (lambda (i) (and (flonum? i) (integer? i))) args)
|
||
(raise (make-assertion-violation))))
|
||
|
||
(define (real->flonum x)
|
||
(or (real? x) (raise (make-assertion-violation)))
|
||
(exact->inexact x))
|
||
|
||
(define (fl=? . args) (apply assert-flonum args) (apply = args))
|
||
(define (fl<? . args) (apply assert-flonum args) (apply < args))
|
||
(define (fl<=? . args) (apply assert-flonum args) (apply <= args))
|
||
(define (fl>? . args) (apply assert-flonum args) (apply > args))
|
||
(define (fl>=? . args) (apply assert-flonum args) (apply >= args))
|
||
|
||
(define (flinteger? fl) (assert-flonum fl) (integer? fl))
|
||
(define (flzero? fl) (assert-flonum fl) (zero? fl))
|
||
(define (flpositive? fl) (assert-flonum fl) (positive? fl))
|
||
(define (flnegative? fl) (assert-flonum fl) (negative? fl))
|
||
(define (flodd? ifl) (assert-iflonum ifl) (odd? ifl))
|
||
(define (fleven? ifl) (assert-iflonum ifl) (even? ifl))
|
||
(define (flfinite? fl) (assert-flonum fl) (not (inf? fl)))
|
||
(define (flinfinite? fl) (assert-flonum fl) (inf? fl))
|
||
(define (flnan? fl) (assert-flonum fl) (nan? fl))
|
||
|
||
(define (flmax fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply max flargs)))
|
||
|
||
(define (flmin fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply min flargs)))
|
||
|
||
(define (fl+ fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply + flargs)))
|
||
|
||
(define (fl* fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply * flargs)))
|
||
|
||
(define (fl- fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply - flargs)))
|
||
|
||
(define (fl/ fl1 . args)
|
||
(let ((flargs (cons fl1 args)))
|
||
(apply assert-flonum flargs)
|
||
(apply / flargs)))
|
||
|
||
(define (flabs fl) (assert-flonum fl) (abs fl))
|
||
|
||
(define (fldiv-and-mod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(call-with-values (lambda () (div-and-mod fx1 fx2))
|
||
(lambda (div mod) (values (exact->inexact div)
|
||
(exact->inexact mod))))))
|
||
|
||
(define (fldiv fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(exact->inexact (quotient fx1 fx2))))
|
||
|
||
(define (flmod fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(exact->inexact (modulo fx1 fx2))))
|
||
|
||
(define (fldiv0-and-mod0 fl1 fl2)
|
||
(assert-iflonum fl1 fl2)
|
||
(if (zero? fl2) (raise (make-assertion-violation)))
|
||
(let* ((fx1 (inexact->exact fl1))
|
||
(fx2 (inexact->exact fl2)))
|
||
(call-with-values (lambda () (div0-and-mod0 fx1 fx2))
|
||
(lambda (q r) (values (real->flonum q) (real->flonum r))))))
|
||
|
||
(define (fldiv0 fl1 fl2)
|
||
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) q)))
|
||
|
||
(define (flmod0 fl1 fl2)
|
||
(call-with-values (lambda () (fldiv0-and-mod0 fl1 fl2)) (lambda (q r) r)))
|
||
|
||
(define (flnumerator fl)
|
||
(assert-flonum fl)
|
||
(case fl
|
||
((+inf.0) +inf.0)
|
||
((-inf.0) -inf.0)
|
||
(else (numerator fl))))
|
||
|
||
(define (fldenominator fl)
|
||
(assert-flonum fl)
|
||
(case fl
|
||
((+inf.0) 1.0)
|
||
((-inf.0) 1.0)
|
||
(else (denominator fl))))
|
||
|
||
(define (flfloor fl) (assert-flonum fl) (floor fl))
|
||
(define (flceiling fl) (assert-flonum fl) (ceiling fl))
|
||
(define (fltruncate fl) (assert-flonum fl) (truncate fl))
|
||
(define (flround fl) (assert-flonum fl) (round fl))
|
||
|
||
(define (flexp fl) (assert-flonum fl) (exp fl))
|
||
(define* (fllog fl #:optional fl2)
|
||
(assert-flonum fl)
|
||
(cond ((fl=? fl -inf.0) +nan.0)
|
||
(fl2 (begin (assert-flonum fl2) (/ (log fl) (log fl2))))
|
||
(else (log fl))))
|
||
|
||
(define (flsin fl) (assert-flonum fl) (sin fl))
|
||
(define (flcos fl) (assert-flonum fl) (cos fl))
|
||
(define (fltan fl) (assert-flonum fl) (tan fl))
|
||
(define (flasin fl) (assert-flonum fl) (asin fl))
|
||
(define (flacos fl) (assert-flonum fl) (acos fl))
|
||
(define* (flatan fl #:optional fl2)
|
||
(assert-flonum fl)
|
||
(if fl2 (begin (assert-flonum fl2) (atan fl fl2)) (atan fl)))
|
||
|
||
(define (flsqrt fl) (assert-flonum fl) (sqrt fl))
|
||
(define (flexpt fl1 fl2) (assert-flonum fl1 fl2) (expt fl1 fl2))
|
||
|
||
(define-condition-type &no-infinities
|
||
&implementation-restriction
|
||
make-no-infinities-violation
|
||
no-infinities-violation?)
|
||
|
||
(define-condition-type &no-nans
|
||
&implementation-restriction
|
||
make-no-nans-violation
|
||
no-nans-violation?)
|
||
|
||
(define (fixnum->flonum fx)
|
||
(or (fixnum? fx) (raise (make-assertion-violation)))
|
||
(exact->inexact fx))
|
||
)
|