mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
* libguile/integers.c (scm_integer_to_double_z): Doubles that can't be exactly represented as integers should round. (bignum_frexp_z): New helper. (scm_integer_from_mpz, scm_integer_from_double): New internal functions. * libguile/numbers.h: * libguile/numbers.c (scm_i_bigcmp, scm_i_dbl2big, scm_i_dbl2num): Remove unused internal functions. (scm_inexact_to_exact): Rework to avoid scm_i_dbl2big. (scm_bigequal): Move here, from eq.c. (scm_integer_to_double_z): Use the new helper. (scm_i_big2dbl): Use scm_integer_to_double_z.
2805 lines
60 KiB
C
2805 lines
60 KiB
C
/* Copyright 1995-2016,2018-2022
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of Guile.
|
||
|
||
Guile is free software: you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Guile is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with Guile. If not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <math.h>
|
||
#include <stdlib.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <verify.h>
|
||
|
||
#include "boolean.h"
|
||
#include "numbers.h"
|
||
#include "strings.h"
|
||
|
||
#include "integers.h"
|
||
|
||
/* Some functions that use GMP's mpn functions assume that a
|
||
non-negative fixnum will always fit in a 'mp_limb_t'. */
|
||
verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
|
||
|
||
#define NLIMBS_MAX (SSIZE_MAX / sizeof(mp_limb_t))
|
||
|
||
#ifndef NDEBUG
|
||
#define ASSERT(x) \
|
||
do { \
|
||
if (!(x)) \
|
||
{ \
|
||
fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
|
||
abort(); \
|
||
} \
|
||
} while (0)
|
||
#else
|
||
#define ASSERT(x) do { } while (0)
|
||
#endif
|
||
|
||
struct scm_bignum
|
||
{
|
||
scm_t_bits tag;
|
||
/* FIXME: In Guile 3.2, replace this union with just a "size" member.
|
||
Digits are always allocated inline. */
|
||
union {
|
||
mpz_t mpz;
|
||
struct {
|
||
int zero;
|
||
int size;
|
||
mp_limb_t *limbs;
|
||
} z;
|
||
} u;
|
||
mp_limb_t limbs[];
|
||
};
|
||
|
||
static int
|
||
bignum_size (struct scm_bignum *z)
|
||
{
|
||
return z->u.z.size;
|
||
}
|
||
|
||
static int
|
||
bignum_is_negative (struct scm_bignum *z)
|
||
{
|
||
return bignum_size (z) < 0;
|
||
}
|
||
|
||
static int
|
||
bignum_is_positive (struct scm_bignum *z)
|
||
{
|
||
return bignum_size (z) > 0;
|
||
}
|
||
|
||
static size_t
|
||
bignum_limb_count (struct scm_bignum *z)
|
||
{
|
||
return bignum_is_negative (z) ? -bignum_size (z) : bignum_size (z);
|
||
}
|
||
|
||
static mp_limb_t*
|
||
bignum_limbs (struct scm_bignum *z)
|
||
{
|
||
// FIXME: In the future we can just return z->limbs.
|
||
return z->u.z.limbs;
|
||
}
|
||
|
||
static inline unsigned long
|
||
long_magnitude (long l)
|
||
{
|
||
unsigned long mag = l;
|
||
return l < 0 ? ~mag + 1 : mag;
|
||
}
|
||
|
||
static inline long
|
||
negative_long (unsigned long mag)
|
||
{
|
||
ASSERT (mag <= (unsigned long) LONG_MIN);
|
||
return ~mag + 1;
|
||
}
|
||
|
||
static inline scm_t_bits
|
||
inum_magnitude (scm_t_inum i)
|
||
{
|
||
scm_t_bits mag = i;
|
||
if (i < 0)
|
||
mag = ~mag + 1;
|
||
return mag;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
allocate_bignum (size_t nlimbs)
|
||
{
|
||
ASSERT (nlimbs <= (size_t)INT_MAX);
|
||
ASSERT (nlimbs <= NLIMBS_MAX);
|
||
|
||
size_t size = sizeof (struct scm_bignum) + nlimbs * sizeof(mp_limb_t);
|
||
struct scm_bignum *z = scm_gc_malloc_pointerless (size, "bignum");
|
||
|
||
z->tag = scm_tc16_big;
|
||
|
||
z->u.z.zero = 0;
|
||
z->u.z.size = nlimbs;
|
||
z->u.z.limbs = z->limbs;
|
||
|
||
// _mp_alloc == 0 means GMP will never try to free this memory.
|
||
ASSERT (z->u.mpz[0]._mp_alloc == 0);
|
||
// Our "size" field should alias the mpz's _mp_size field.
|
||
ASSERT (z->u.mpz[0]._mp_size == nlimbs);
|
||
// Limbs are always allocated inline.
|
||
ASSERT (z->u.mpz[0]._mp_d == z->limbs);
|
||
|
||
// z->limbs left uninitialized.
|
||
return z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
negate_bignum (struct scm_bignum *z)
|
||
{
|
||
z->u.z.size = -z->u.z.size;
|
||
return z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
make_bignum_1 (int is_negative, mp_limb_t limb)
|
||
{
|
||
struct scm_bignum *z = allocate_bignum (1);
|
||
z->limbs[0] = limb;
|
||
return is_negative ? negate_bignum(z) : z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
ulong_to_bignum (unsigned long u)
|
||
{
|
||
return make_bignum_1 (0, u);
|
||
};
|
||
|
||
static struct scm_bignum *
|
||
long_to_bignum (long i)
|
||
{
|
||
if (i > 0)
|
||
return ulong_to_bignum (i);
|
||
|
||
return make_bignum_1 (1, long_magnitude (i));
|
||
};
|
||
|
||
static inline SCM
|
||
scm_from_bignum (struct scm_bignum *x)
|
||
{
|
||
return SCM_PACK (x);
|
||
}
|
||
|
||
static SCM
|
||
long_to_scm (long i)
|
||
{
|
||
if (SCM_FIXABLE (i))
|
||
return SCM_I_MAKINUM (i);
|
||
return scm_from_bignum (long_to_bignum (i));
|
||
}
|
||
|
||
static SCM
|
||
ulong_to_scm (unsigned long i)
|
||
{
|
||
if (SCM_POSFIXABLE (i))
|
||
return SCM_I_MAKINUM (i);
|
||
return scm_from_bignum (ulong_to_bignum (i));
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
clone_bignum (struct scm_bignum *z)
|
||
{
|
||
struct scm_bignum *ret = allocate_bignum (bignum_limb_count (z));
|
||
mpn_copyi (bignum_limbs (ret), bignum_limbs (z), bignum_limb_count (z));
|
||
return bignum_is_negative (z) ? negate_bignum (ret) : ret;
|
||
}
|
||
|
||
static void
|
||
alias_bignum_to_mpz (struct scm_bignum *z, mpz_ptr mpz)
|
||
{
|
||
// No need to clear this mpz.
|
||
mpz->_mp_alloc = 0;
|
||
mpz->_mp_size = bignum_size (z);
|
||
// Gotta be careful to keep z alive.
|
||
mpz->_mp_d = bignum_limbs (z);
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
make_bignum_from_mpz (mpz_srcptr mpz)
|
||
{
|
||
size_t nlimbs = mpz_size (mpz);
|
||
struct scm_bignum *ret = allocate_bignum (nlimbs);
|
||
mpn_copyi (bignum_limbs (ret), mpz_limbs_read (mpz), nlimbs);
|
||
return mpz_sgn (mpz) < 0 ? negate_bignum (ret) : ret;
|
||
}
|
||
|
||
static SCM
|
||
normalize_bignum (struct scm_bignum *z)
|
||
{
|
||
switch (bignum_size (z))
|
||
{
|
||
case -1:
|
||
if (bignum_limbs (z)[0] <= inum_magnitude (SCM_MOST_NEGATIVE_FIXNUM))
|
||
return SCM_I_MAKINUM (negative_long (bignum_limbs (z)[0]));
|
||
break;
|
||
case 0:
|
||
return SCM_INUM0;
|
||
case 1:
|
||
if (bignum_limbs (z)[0] <= SCM_MOST_POSITIVE_FIXNUM)
|
||
return SCM_I_MAKINUM (bignum_limbs (z)[0]);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return scm_from_bignum (z);
|
||
}
|
||
|
||
static SCM
|
||
take_mpz (mpz_ptr mpz)
|
||
{
|
||
struct scm_bignum *res = make_bignum_from_mpz (mpz);
|
||
mpz_clear (mpz);
|
||
return normalize_bignum (res);
|
||
}
|
||
|
||
static int
|
||
long_sign (long l)
|
||
{
|
||
if (l < 0) return -1;
|
||
if (l == 0) return 0;
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
bignum_cmp_long (struct scm_bignum *z, long l)
|
||
{
|
||
switch (bignum_size (z))
|
||
{
|
||
case -1:
|
||
if (l >= 0)
|
||
return -1;
|
||
return long_sign (long_magnitude (l) - bignum_limbs (z)[0]);
|
||
case 0:
|
||
return long_sign (l);
|
||
case 1:
|
||
if (l <= 0)
|
||
return 1;
|
||
return long_sign (bignum_limbs (z)[0] - (unsigned long) l);
|
||
default:
|
||
return long_sign (bignum_size (z));
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_from_mpz (mpz_srcptr mpz)
|
||
{
|
||
return normalize_bignum (make_bignum_from_mpz (mpz));
|
||
}
|
||
|
||
int
|
||
scm_is_integer_odd_i (scm_t_inum i)
|
||
{
|
||
return i & 1;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_odd_z (struct scm_bignum *z)
|
||
{
|
||
return bignum_limbs (z)[0] & 1;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_abs_i (scm_t_inum i)
|
||
{
|
||
if (i >= 0)
|
||
return SCM_I_MAKINUM (i);
|
||
|
||
return ulong_to_scm (long_magnitude (i));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_abs_z (struct scm_bignum *z)
|
||
{
|
||
if (!bignum_is_negative (z))
|
||
return scm_from_bignum (z);
|
||
|
||
return scm_from_bignum (negate_bignum (clone_bignum (z)));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (x < 0)
|
||
x = x - y + 1;
|
||
}
|
||
else if (y == 0)
|
||
scm_num_overflow ("floor-quotient");
|
||
else if (x > 0)
|
||
x = x - y - 1;
|
||
scm_t_inum q = x / y;
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (x == 0 || ((x < 0) == bignum_is_negative (y)))
|
||
return SCM_INUM0;
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-quotient");
|
||
else if (y == 1)
|
||
return scm_from_bignum (x);
|
||
|
||
mpz_t zx, q;
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_init (q);
|
||
if (y > 0)
|
||
mpz_fdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t zx, zy, q;
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_init (q);
|
||
mpz_fdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-remainder");
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r < 0) : (r > 0);
|
||
if (needs_adjustment)
|
||
r += y;
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (bignum_is_positive (y))
|
||
{
|
||
if (x < 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_sub_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
return take_mpz (r);
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
else if (x <= 0)
|
||
return SCM_I_MAKINUM (x);
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_add_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
return take_mpz (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-remainder");
|
||
else
|
||
{
|
||
scm_t_inum r;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
if (y > 0)
|
||
r = mpz_fdiv_ui (zx, y);
|
||
else
|
||
r = -mpz_cdiv_ui (zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t zx, zy, r;
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_init (r);
|
||
mpz_fdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r < 0) : (r > 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
r += y;
|
||
q--;
|
||
}
|
||
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_iz (scm_t_inum x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
if (bignum_is_positive (y))
|
||
{
|
||
if (x < 0)
|
||
{
|
||
mpz_t zy, r;
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_init (r);
|
||
mpz_sub_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = take_mpz (r);
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
else if (x <= 0)
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
else
|
||
{
|
||
mpz_t zy, r;
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_init (r);
|
||
mpz_add_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_zi (struct scm_bignum *x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-divide");
|
||
|
||
mpz_t zx, q, r;
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
if (y > 0)
|
||
mpz_fdiv_qr_ui (q, r, zx, y);
|
||
else
|
||
{
|
||
mpz_cdiv_qr_ui (q, r, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_zz (struct scm_bignum *x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t zx, zy, q, r;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-quotient");
|
||
|
||
if (y > 0)
|
||
{
|
||
if (x >= 0)
|
||
x = x + y - 1;
|
||
}
|
||
else if (x < 0)
|
||
x = x + y + 1;
|
||
scm_t_inum q = x / y;
|
||
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (bignum_is_positive (y))
|
||
{
|
||
if (x > 0)
|
||
return SCM_INUM1;
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_INUM0;
|
||
}
|
||
else if (x >= 0)
|
||
return SCM_INUM0;
|
||
else
|
||
return SCM_INUM1;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-quotient");
|
||
else if (y == 1)
|
||
return scm_from_bignum (x);
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
if (y > 0)
|
||
mpz_cdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_fdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, zx, zy;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_cdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-remainder");
|
||
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r > 0) : (r < 0);
|
||
if (needs_adjustment)
|
||
r -= y;
|
||
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (bignum_is_positive (y))
|
||
{
|
||
if (x > 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_sub_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
return take_mpz (r);
|
||
}
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_INUM0;
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
else if (x >= 0)
|
||
return SCM_I_MAKINUM (x);
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_add_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
return take_mpz (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-remainder");
|
||
else
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
if (y > 0)
|
||
r = -mpz_cdiv_ui (zx, y);
|
||
else
|
||
r = mpz_fdiv_ui (zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t r, zx, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_cdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-divide");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
needs_adjustment = (r > 0);
|
||
else
|
||
needs_adjustment = (r < 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
r -= y;
|
||
q++;
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_iz (scm_t_inum x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
if (bignum_is_positive (y))
|
||
{
|
||
if (x > 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_sub_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
*qp = SCM_INUM1;
|
||
*rp = take_mpz (r);
|
||
}
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = SCM_INUM0;
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
else if (x >= 0)
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_add_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
*qp = SCM_INUM1;
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_zi (struct scm_bignum *x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-divide");
|
||
else
|
||
{
|
||
mpz_t q, r, zx;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
if (y > 0)
|
||
mpz_cdiv_qr_ui (q, r, zx, y);
|
||
else
|
||
{
|
||
mpz_fdiv_qr_ui (q, r, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_zz (struct scm_bignum *x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-quotient");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
return long_to_scm (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_INUM0;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-quotient");
|
||
else if (y == 1)
|
||
return scm_from_bignum (x);
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
if (y > 0)
|
||
mpz_tdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_tdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, zx, zy;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_tdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-remainder");
|
||
else
|
||
{
|
||
scm_t_inum q = x % y;
|
||
return long_to_scm (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_INUM0;
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-remainder");
|
||
else
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r = mpz_tdiv_ui (zx, (y > 0) ? y : -y) * mpz_sgn (zx);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t r, zx, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_tdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-divide");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_iz (scm_t_inum x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (y, -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = SCM_INUM0;
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_zi (struct scm_bignum *x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-divide");
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
if (y > 0)
|
||
r = mpz_tdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
r = mpz_tdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
r *= mpz_sgn (zx);
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_zz (struct scm_bignum *x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_tdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
static SCM
|
||
integer_centered_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, min_r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild. */
|
||
|
||
/* min_r will eventually become -abs(y)/2 */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for rr to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_sub_ui (q, q, 1);
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_add_ui (q, q, 1);
|
||
}
|
||
mpz_clear (r);
|
||
mpz_clear (min_r);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-quotient");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
q++;
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
q--;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
q++;
|
||
}
|
||
}
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
return integer_centered_quotient_zz (long_to_bignum (x),
|
||
y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-quotient");
|
||
else if (y == 1)
|
||
return scm_from_bignum (x);
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
/* Arrange for r to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed
|
||
bounds. */
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
if (r < -y / 2)
|
||
mpz_sub_ui (q, q, 1);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_neg (q, q);
|
||
if (r < y / 2)
|
||
mpz_add_ui (q, q, 1);
|
||
}
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
return integer_centered_quotient_zz (x, y);
|
||
}
|
||
|
||
static SCM
|
||
integer_centered_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t r, min_r, zx, zy;
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
|
||
/* min_r will eventually become -abs(y)/2 */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for r to initially be non-positive, because that simplifies
|
||
the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_r (r, zx, zy);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_add (r, r, zy);
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_r (r, zx, zy);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_clear (min_r);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-remainder");
|
||
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
r -= y;
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
r += y;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
r -= y;
|
||
}
|
||
}
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
return integer_centered_remainder_zz (long_to_bignum (x),
|
||
y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-remainder");
|
||
|
||
scm_t_inum r;
|
||
/* Arrange for r to initially be non-positive, because that simplifies
|
||
the test to see if it is within the needed bounds. */
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_ui (zx, y);
|
||
if (r < -y / 2)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_ui (zx, -y);
|
||
if (r < y / 2)
|
||
r -= y;
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
return integer_centered_remainder_zz (x, y);
|
||
}
|
||
|
||
static void
|
||
integer_centered_divide_zz (struct scm_bignum *x, struct scm_bignum *y,
|
||
SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, min_r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild */
|
||
|
||
/* min_r will eventually become -abs(y/2) */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for rr to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
{
|
||
mpz_sub_ui (q, q, 1);
|
||
mpz_add (r, r, zy);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
}
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_clear (min_r);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
{ q++; r -= y; }
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
{ q--; r += y; }
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
{ q--; r += y; }
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
{ q++; r -= y; }
|
||
}
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_iz (scm_t_inum x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_centered_divide_zz (long_to_bignum (x), y, qp, rp);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_zi (struct scm_bignum *x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-divide");
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
|
||
/* Arrange for r to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, y);
|
||
if (r < -y / 2)
|
||
{
|
||
mpz_sub_ui (q, q, 1);
|
||
r += y;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (r < y / 2)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
r -= y;
|
||
}
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_zz (struct scm_bignum *x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_centered_divide_zz (x, y, qp, rp);
|
||
}
|
||
|
||
static SCM
|
||
integer_round_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
scm_remember_upto_here_1 (x);
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
scm_remember_upto_here_1 (y);
|
||
|
||
if (needs_adjustment)
|
||
mpz_add_ui (q, q, 1);
|
||
|
||
mpz_clear (r);
|
||
mpz_clear (r2);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-quotient");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
q++;
|
||
else if (r2 <= -ay)
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
q++;
|
||
else if (r2 < -ay)
|
||
q--;
|
||
}
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
return integer_round_quotient_zz (long_to_bignum (x), y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-quotient");
|
||
if (y == 1)
|
||
return scm_from_bignum (x);
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
if (needs_adjustment)
|
||
mpz_add_ui (q, q, 1);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_mul_2exp (r, r, 1); /* r = 2*r */
|
||
|
||
cmp = mpz_cmpabs (r, zy);
|
||
mpz_clear (r);
|
||
scm_remember_upto_here_1 (y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
|
||
if (needs_adjustment)
|
||
mpz_add_ui (q, q, 1);
|
||
|
||
return take_mpz (q);
|
||
}
|
||
|
||
static SCM
|
||
integer_round_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
|
||
if (needs_adjustment)
|
||
mpz_sub (r, r, zy);
|
||
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_clear (q);
|
||
mpz_clear (r2);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-remainder");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
r -= y;
|
||
else if (r2 <= -ay)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
r -= y;
|
||
else if (r2 < -ay)
|
||
r += y;
|
||
}
|
||
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
return integer_round_remainder_zz (long_to_bignum (x), y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-remainder");
|
||
|
||
mpz_t q, zx;
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (q);
|
||
if (needs_adjustment)
|
||
r -= y;
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
return integer_round_remainder_zz (x, y);
|
||
}
|
||
|
||
static void
|
||
integer_round_divide_zz (struct scm_bignum *x, struct scm_bignum *y,
|
||
SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_clear (r2);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
{ q++; r -= y; }
|
||
else if (r2 <= -ay)
|
||
{ q--; r += y; }
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
{ q++; r -= y; }
|
||
else if (r2 < -ay)
|
||
{ q--; r += y; }
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_iz (scm_t_inum x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_round_divide_zz (long_to_bignum (x), y, qp, rp);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_zi (struct scm_bignum *x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-divide");
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (x, zx);
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
if (needs_adjustment)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
r -= y;
|
||
}
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_zz (struct scm_bignum *x, struct scm_bignum *y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_round_divide_zz (x, y, qp, rp);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
scm_t_inum u = x < 0 ? -x : x;
|
||
scm_t_inum v = y < 0 ? -y : y;
|
||
scm_t_inum result;
|
||
if (x == 0)
|
||
result = v;
|
||
else if (y == 0)
|
||
result = u;
|
||
else
|
||
{
|
||
int k = 0;
|
||
/* Determine a common factor 2^k */
|
||
while (((u | v) & 1) == 0)
|
||
{
|
||
k++;
|
||
u >>= 1;
|
||
v >>= 1;
|
||
}
|
||
/* Now, any factor 2^n can be eliminated */
|
||
if ((u & 1) == 0)
|
||
while ((u & 1) == 0)
|
||
u >>= 1;
|
||
else
|
||
while ((v & 1) == 0)
|
||
v >>= 1;
|
||
/* Both u and v are now odd. Subtract the smaller one
|
||
from the larger one to produce an even number, remove
|
||
more factors of two, and repeat. */
|
||
while (u != v)
|
||
{
|
||
if (u > v)
|
||
{
|
||
u -= v;
|
||
while ((u & 1) == 0)
|
||
u >>= 1;
|
||
}
|
||
else
|
||
{
|
||
v -= u;
|
||
while ((v & 1) == 0)
|
||
v >>= 1;
|
||
}
|
||
}
|
||
result = u << k;
|
||
}
|
||
return ulong_to_scm (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
scm_t_bits result;
|
||
if (y == 0)
|
||
return scm_integer_abs_z (x);
|
||
if (y < 0)
|
||
y = -y;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
result = mpz_gcd_ui (NULL, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return ulong_to_scm (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_gcd (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
SCM d = scm_integer_gcd_ii (x, y);
|
||
if (scm_is_eq (d, SCM_INUM0))
|
||
return d;
|
||
else
|
||
return scm_abs (scm_product (SCM_I_MAKINUM (x),
|
||
scm_quotient (SCM_I_MAKINUM (y), d)));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0) return SCM_INUM0;
|
||
if (y < 0) y = - y;
|
||
mpz_t result, zx;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_lcm_ui (result, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_lcm (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* shouldn't need to normalize b/c lcm of 2 bigs should be big */
|
||
return take_mpz (result);
|
||
}
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
SCM
|
||
scm_integer_logand_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x & y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logand_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
return SCM_INUM0;
|
||
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_and (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logand_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_and (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x | y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
return scm_from_bignum (x);
|
||
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_ior (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_ior (result, zy, zx);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x ^ y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_xor (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_xor (result, zy, zx);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return (x & y) ? 1 : 0;
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
return scm_is_eq (scm_integer_logand_zi (x, y), SCM_INUM0);
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
return scm_is_eq (scm_integer_logand_zz (x, y), SCM_INUM0);
|
||
}
|
||
|
||
int
|
||
scm_integer_logbit_ui (unsigned long index, scm_t_inum n)
|
||
{
|
||
if (index < SCM_LONG_BIT)
|
||
/* Assume two's complement representation. */
|
||
return (n >> index) & 1;
|
||
else
|
||
return n < 0;
|
||
}
|
||
|
||
int
|
||
scm_integer_logbit_uz (unsigned long index, struct scm_bignum *n)
|
||
{
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (n, zn);
|
||
int val = mpz_tstbit (zn, index);
|
||
scm_remember_upto_here_1 (n);
|
||
return val;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lognot_i (scm_t_inum n)
|
||
{
|
||
return SCM_I_MAKINUM (~n);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lognot_z (struct scm_bignum *n)
|
||
{
|
||
mpz_t result, zn;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (n, zn);
|
||
mpz_com (result, zn);
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
static void
|
||
integer_init_mpz (mpz_ptr z, SCM n)
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
mpz_init_set_si (z, SCM_I_INUM (n));
|
||
else
|
||
{
|
||
ASSERT (SCM_BIGP (n));
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (scm_bignum (n), zn);
|
||
mpz_init_set (z, zn);
|
||
scm_remember_upto_here_1 (n);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_modulo_expt_nnn (SCM n, SCM k, SCM m)
|
||
{
|
||
if (scm_is_eq (m, SCM_INUM0))
|
||
scm_num_overflow ("modulo-expt");
|
||
|
||
mpz_t n_tmp, k_tmp, m_tmp;
|
||
|
||
integer_init_mpz (n_tmp, n);
|
||
integer_init_mpz (k_tmp, k);
|
||
integer_init_mpz (m_tmp, m);
|
||
|
||
/* if the exponent K is negative, and we simply call mpz_powm, we
|
||
will get a divide-by-zero exception when an inverse 1/n mod m
|
||
doesn't exist (or is not unique). Since exceptions are hard to
|
||
handle, we'll attempt the inversion "by hand" -- that way, we get
|
||
a simple failure code, which is easy to handle. */
|
||
|
||
if (-1 == mpz_sgn (k_tmp))
|
||
{
|
||
if (!mpz_invert (n_tmp, n_tmp, m_tmp))
|
||
{
|
||
mpz_clear (n_tmp);
|
||
mpz_clear (k_tmp);
|
||
mpz_clear (m_tmp);
|
||
|
||
scm_num_overflow ("modulo-expt");
|
||
}
|
||
mpz_neg (k_tmp, k_tmp);
|
||
}
|
||
|
||
mpz_powm (n_tmp, n_tmp, k_tmp, m_tmp);
|
||
|
||
if (mpz_sgn (m_tmp) < 0 && mpz_sgn (n_tmp) != 0)
|
||
mpz_add (n_tmp, n_tmp, m_tmp);
|
||
|
||
mpz_clear (m_tmp);
|
||
mpz_clear (k_tmp);
|
||
|
||
return take_mpz (n_tmp);
|
||
}
|
||
|
||
/* Efficiently compute (N * 2^COUNT), where N is an exact integer, and
|
||
COUNT > 0. */
|
||
SCM
|
||
scm_integer_lsh_iu (scm_t_inum n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
/* Left shift of count >= SCM_I_FIXNUM_BIT-1 will almost[*] always
|
||
overflow a non-zero fixnum. For smaller shifts we check the
|
||
bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
|
||
all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
|
||
Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 - count)".
|
||
|
||
[*] There's one exception:
|
||
(-1) << SCM_I_FIXNUM_BIT-1 == SCM_MOST_NEGATIVE_FIXNUM */
|
||
|
||
if (n == 0)
|
||
return SCM_I_MAKINUM (n);
|
||
else if (count < SCM_I_FIXNUM_BIT-1 &&
|
||
((scm_t_bits) (SCM_SRS (n, (SCM_I_FIXNUM_BIT-1 - count)) + 1)
|
||
<= 1))
|
||
return SCM_I_MAKINUM (n < 0 ? -(-n << count) : (n << count));
|
||
else
|
||
{
|
||
mpz_t result;
|
||
mpz_init_set_si (result, n);
|
||
mpz_mul_2exp (result, result, count);
|
||
return take_mpz (result);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lsh_zu (struct scm_bignum *n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
mpz_t result, zn;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (n, zn);
|
||
mpz_mul_2exp (result, zn, count);
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
/* Efficiently compute floor (N / 2^COUNT), where N is an exact integer
|
||
and COUNT > 0. */
|
||
SCM
|
||
scm_integer_floor_rsh_iu (scm_t_inum n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
if (count >= SCM_I_FIXNUM_BIT)
|
||
return (n >= 0 ? SCM_INUM0 : SCM_I_MAKINUM (-1));
|
||
else
|
||
return SCM_I_MAKINUM (SCM_SRS (n, count));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_rsh_zu (struct scm_bignum *n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
mpz_t result, zn;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (n, zn);
|
||
mpz_fdiv_q_2exp (result, zn, count);
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
/* Efficiently compute round (N / 2^COUNT), where N is an exact integer
|
||
and COUNT > 0. */
|
||
SCM
|
||
scm_integer_round_rsh_iu (scm_t_inum n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
if (count >= SCM_I_FIXNUM_BIT)
|
||
return SCM_INUM0;
|
||
else
|
||
{
|
||
scm_t_inum q = SCM_SRS (n, count);
|
||
|
||
if (0 == (n & (1L << (count-1))))
|
||
return SCM_I_MAKINUM (q); /* round down */
|
||
else if (n & ((1L << (count-1)) - 1))
|
||
return SCM_I_MAKINUM (q + 1); /* round up */
|
||
else
|
||
return SCM_I_MAKINUM ((~1L) & (q + 1)); /* round to even */
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_rsh_zu (struct scm_bignum *n, unsigned long count)
|
||
{
|
||
ASSERT (count > 0);
|
||
mpz_t q, zn;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (n, zn);
|
||
mpz_fdiv_q_2exp (q, zn, count);
|
||
if (mpz_tstbit (zn, count-1)
|
||
&& (mpz_odd_p (q) || mpz_scan1 (zn, 0) < count-1))
|
||
mpz_add_ui (q, q, 1);
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
#define MIN(A, B) ((A) <= (B) ? (A) : (B))
|
||
|
||
SCM
|
||
scm_integer_bit_extract_i (scm_t_inum n, unsigned long start,
|
||
unsigned long bits)
|
||
{
|
||
/* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
|
||
SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "n". */
|
||
n = SCM_SRS (n, MIN (start, SCM_I_FIXNUM_BIT-1));
|
||
|
||
if (n < 0 && bits >= SCM_I_FIXNUM_BIT)
|
||
{
|
||
/* Since we emulate two's complement encoded numbers, this special
|
||
case requires us to produce a result that has more bits than
|
||
can be stored in a fixnum. */
|
||
mpz_t result;
|
||
mpz_init_set_si (result, n);
|
||
mpz_fdiv_r_2exp (result, result, bits);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
/* mask down to requisite bits */
|
||
bits = MIN (bits, SCM_I_FIXNUM_BIT);
|
||
return SCM_I_MAKINUM (n & ((1L << bits) - 1));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_bit_extract_z (struct scm_bignum *n, unsigned long start, unsigned long bits)
|
||
{
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (n, zn);
|
||
|
||
if (bits == 1)
|
||
{
|
||
int bit = mpz_tstbit (zn, start);
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_I_MAKINUM (bit);
|
||
}
|
||
|
||
/* ENHANCE-ME: It'd be nice not to allocate a new bignum when
|
||
bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
|
||
such bits into a ulong. */
|
||
mpz_t result;
|
||
mpz_init (result);
|
||
mpz_fdiv_q_2exp (result, zn, start);
|
||
mpz_fdiv_r_2exp (result, result, bits);
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
static const char scm_logtab[] = {
|
||
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
|
||
};
|
||
|
||
SCM
|
||
scm_integer_logcount_i (scm_t_inum n)
|
||
{
|
||
unsigned long c = 0;
|
||
if (n < 0)
|
||
n = -1 - n;
|
||
while (n)
|
||
{
|
||
c += scm_logtab[15 & n];
|
||
n >>= 4;
|
||
}
|
||
return SCM_I_MAKINUM (c);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logcount_z (struct scm_bignum *n)
|
||
{
|
||
unsigned long count;
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (n, zn);
|
||
if (mpz_sgn (zn) >= 0)
|
||
count = mpz_popcount (zn);
|
||
else
|
||
{
|
||
mpz_t z_negative_one;
|
||
mpz_init_set_si (z_negative_one, -1);
|
||
count = mpz_hamdist (zn, z_negative_one);
|
||
mpz_clear (z_negative_one);
|
||
}
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_from_ulong (count);
|
||
}
|
||
|
||
static const char scm_ilentab[] = {
|
||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
|
||
};
|
||
|
||
SCM
|
||
scm_integer_length_i (scm_t_inum n)
|
||
{
|
||
unsigned long c = 0;
|
||
unsigned int l = 4;
|
||
if (n < 0)
|
||
n = -1 - n;
|
||
while (n)
|
||
{
|
||
c += 4;
|
||
l = scm_ilentab [15 & n];
|
||
n >>= 4;
|
||
}
|
||
return SCM_I_MAKINUM (c - 4 + l);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_length_z (struct scm_bignum *n)
|
||
{
|
||
/* mpz_sizeinbase looks at the absolute value of negatives, whereas we
|
||
want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
|
||
1 too big, so check for that and adjust. */
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (n, zn);
|
||
size_t size = mpz_sizeinbase (zn, 2);
|
||
/* If negative and no 0 bits above the lowest 1, adjust result. */
|
||
if (mpz_sgn (zn) < 0 && mpz_scan0 (zn, mpz_scan1 (zn, 0)) == ULONG_MAX)
|
||
size--;
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_from_size_t (size);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_to_string_i (scm_t_inum n, int base)
|
||
{
|
||
// FIXME: Use mpn_get_str instead.
|
||
char num_buf [SCM_INTBUFLEN];
|
||
size_t length = scm_iint2str (n, base, num_buf);
|
||
return scm_from_latin1_stringn (num_buf, length);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_to_string_z (struct scm_bignum *n, int base)
|
||
{
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (n, zn);
|
||
char *str = mpz_get_str (NULL, base, zn);
|
||
scm_remember_upto_here_1 (n);
|
||
size_t len = strlen (str);
|
||
void (*freefunc) (void *, size_t);
|
||
mp_get_memory_functions (NULL, NULL, &freefunc);
|
||
SCM ret = scm_from_latin1_stringn (str, len);
|
||
freefunc (str, len + 1);
|
||
return ret;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_equal_ir (scm_t_inum x, double y)
|
||
{
|
||
/* On a 32-bit system an inum fits a double, we can cast the inum
|
||
to a double and compare.
|
||
|
||
But on a 64-bit system an inum is bigger than a double and casting
|
||
it to a double (call that dx) will round. Although dxx will not in
|
||
general be equal to x, dx will always be an integer and within a
|
||
factor of 2 of x, so if dx==y, we know that y is an integer and
|
||
fits in scm_t_signed_bits. So we cast y to scm_t_signed_bits and
|
||
compare with plain x.
|
||
|
||
An alternative (for any size system actually) would be to check y
|
||
is an integer (with floor) and is in range of an inum (compare
|
||
against appropriate powers of 2) then test x==(scm_t_inum)y. It's
|
||
just a matter of which casts/comparisons might be fastest or
|
||
easiest for the cpu. */
|
||
return (double) x == y
|
||
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1 || x == (scm_t_inum) y);
|
||
}
|
||
|
||
int
|
||
scm_is_integer_equal_ic (scm_t_inum x, double real, double imag)
|
||
{
|
||
return imag == 0.0 && scm_is_integer_equal_ir (x, real);
|
||
}
|
||
|
||
int
|
||
scm_is_integer_equal_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t zx, zy;
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
int cmp = mpz_cmp (zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return 0 == cmp;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_equal_zr (struct scm_bignum *x, double y)
|
||
{
|
||
if (isnan (y))
|
||
return 0;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
int cmp = mpz_cmp_d (zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return 0 == cmp;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_equal_zc (struct scm_bignum *x, double real, double imag)
|
||
{
|
||
return imag == 0.0 && scm_is_integer_equal_zr (x, real);
|
||
}
|
||
|
||
int
|
||
scm_is_integer_less_than_ir (scm_t_inum x, double y)
|
||
{
|
||
/* We can safely take the ceiling of y without changing the
|
||
result of x<y, given that x is an integer. */
|
||
y = ceil (y);
|
||
|
||
/* In the following comparisons, it's important that the right
|
||
hand side always be a power of 2, so that it can be
|
||
losslessly converted to a double even on 64-bit
|
||
machines. */
|
||
if (y >= (double) (SCM_MOST_POSITIVE_FIXNUM+1))
|
||
return 1;
|
||
else if (!(y > (double) SCM_MOST_NEGATIVE_FIXNUM))
|
||
/* The condition above is carefully written to include the
|
||
case where y==NaN. */
|
||
return 0;
|
||
else
|
||
/* y is a finite integer that fits in an inum. */
|
||
return x < (scm_t_inum) y;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_less_than_ri (double x, scm_t_inum y)
|
||
{
|
||
/* We can safely take the floor of x without changing the
|
||
result of x<y, given that y is an integer. */
|
||
x = floor (x);
|
||
|
||
/* In the following comparisons, it's important that the right
|
||
hand side always be a power of 2, so that it can be
|
||
losslessly converted to a double even on 64-bit
|
||
machines. */
|
||
if (x < (double) SCM_MOST_NEGATIVE_FIXNUM)
|
||
return 1;
|
||
else if (!(x < (double) (SCM_MOST_POSITIVE_FIXNUM+1)))
|
||
/* The condition above is carefully written to include the
|
||
case where x==NaN. */
|
||
return 0;
|
||
else
|
||
/* x is a finite integer that fits in an inum. */
|
||
return (scm_t_inum) x < y;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_less_than_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t zx, zy;
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
int cmp = mpz_cmp (zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return cmp < 0;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_less_than_zr (struct scm_bignum *x, double y)
|
||
{
|
||
if (isnan (y))
|
||
return 0;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
int cmp = mpz_cmp_d (zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return cmp < 0;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_less_than_rz (double x, struct scm_bignum *y)
|
||
{
|
||
if (isnan (x))
|
||
return 0;
|
||
mpz_t zy;
|
||
alias_bignum_to_mpz (y, zy);
|
||
int cmp = mpz_cmp_d (zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
return cmp > 0;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_positive_z (struct scm_bignum *x)
|
||
{
|
||
return bignum_is_positive (x);
|
||
}
|
||
|
||
int
|
||
scm_is_integer_negative_z (struct scm_bignum *x)
|
||
{
|
||
return bignum_is_negative (x);
|
||
}
|
||
|
||
#if SCM_ENABLE_MINI_GMP
|
||
static double
|
||
mpz_get_d_2exp (long *exp, mpz_srcptr z)
|
||
{
|
||
double signif = mpz_get_d (z);
|
||
int iexp;
|
||
signif = frexp (signif, &iexp);
|
||
*exp = iexp;
|
||
return signif;
|
||
}
|
||
#endif
|
||
|
||
static double
|
||
bignum_frexp (struct scm_bignum *x, long *exp)
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
|
||
size_t bits = mpz_sizeinbase (zx, 2);
|
||
ASSERT (bits != 0);
|
||
size_t shift = 0;
|
||
if (bits > DBL_MANT_DIG)
|
||
{
|
||
shift = bits - DBL_MANT_DIG;
|
||
SCM xx = scm_integer_round_rsh_zu (x, shift);
|
||
if (SCM_I_INUMP (xx))
|
||
{
|
||
int expon;
|
||
double signif = frexp (SCM_I_INUM (xx), &expon);
|
||
*exp = expon + shift;
|
||
return signif;
|
||
}
|
||
x = scm_bignum (xx);
|
||
alias_bignum_to_mpz (x, zx);
|
||
}
|
||
|
||
double significand = mpz_get_d_2exp (exp, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
*exp += shift;
|
||
return significand;
|
||
}
|
||
|
||
double
|
||
scm_integer_to_double_z (struct scm_bignum *x)
|
||
{
|
||
long exponent;
|
||
double significand = bignum_frexp (x, &exponent);
|
||
return ldexp (significand, exponent);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_from_double (double val)
|
||
{
|
||
if (!isfinite (val))
|
||
scm_out_of_range ("inexact->exact", scm_from_double (val));
|
||
|
||
if (((double) INT64_MIN) <= val && val <= ((double) INT64_MAX))
|
||
return scm_from_int64 (val);
|
||
|
||
mpz_t result;
|
||
mpz_init_set_d (result, val);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_add_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return long_to_scm (x + y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_add_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
return scm_from_bignum (x);
|
||
|
||
mpz_t result, zx;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
if (y < 0)
|
||
{
|
||
mpz_sub_ui (result, zx, - y);
|
||
scm_remember_upto_here_1 (x);
|
||
// FIXME: We know that if X is negative, no need to check if
|
||
// result is fixable.
|
||
return take_mpz (result);
|
||
}
|
||
else
|
||
{
|
||
mpz_add_ui (result, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
// FIXME: We know that if X is positive, no need to check if
|
||
// result is fixable.
|
||
return take_mpz (result);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_add_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_add (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
// FIXME: We know that if X and Y have the same sign, no need to check
|
||
// if result is fixable.
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_negate_i (scm_t_inum x)
|
||
{
|
||
return long_to_scm (-x);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_negate_z (struct scm_bignum *x)
|
||
{
|
||
/* Must normalize here because -SCM_MOST_NEGATIVE_FIXNUM is a bignum,
|
||
but negating that gives a fixnum. */
|
||
return normalize_bignum (negate_bignum (clone_bignum (x)));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_sub_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
// Assumes that -INUM_MIN can fit in a scm_t_inum, even if that
|
||
// scm_t_inum is not fixable, and that scm_integer_add_ii can handle
|
||
// scm_t_inum inputs outside the fixable range.
|
||
return scm_integer_add_ii (x, -y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_sub_iz (scm_t_inum x, struct scm_bignum *y)
|
||
{
|
||
return scm_integer_add_zi (negate_bignum (clone_bignum (y)), x);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_sub_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
// Assumes that -INUM_MIN can fit in a scm_t_inum, even if that
|
||
// scm_t_inum is not fixable, and that scm_integer_add_ii can handle
|
||
// scm_t_inum inputs outside the fixable range.
|
||
return scm_integer_add_zi (x, -y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_sub_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
return scm_integer_add_zz (x, negate_bignum (clone_bignum (y)));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_mul_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
#if SCM_I_FIXNUM_BIT < 32
|
||
int64_t k = x * (int64_t) y;
|
||
if (SCM_FIXABLE (k))
|
||
return SCM_I_MAKINUM (k);
|
||
#else
|
||
if (x == 0)
|
||
return SCM_INUM0;
|
||
scm_t_inum ax = (x > 0) ? x : -x;
|
||
scm_t_inum ay = (y > 0) ? y : -y;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / ax >= ay)
|
||
return SCM_I_MAKINUM (x * y);
|
||
#endif
|
||
|
||
// FIXME: Use mpn_mul with two-limb result to avoid allocating.
|
||
return scm_integer_mul_zi (long_to_bignum (x), y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_mul_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
switch (y)
|
||
{
|
||
case -1:
|
||
return scm_integer_negate_z (x);
|
||
case 0:
|
||
return SCM_INUM0;
|
||
case 1:
|
||
return scm_from_bignum (x);
|
||
default:
|
||
{
|
||
mpz_t result, zx;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
mpz_mul_si (result, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (result);
|
||
}
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_mul_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
mpz_mul (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
int
|
||
scm_is_integer_divisible_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
ASSERT (y != 0);
|
||
return (x % y) == 0;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_divisible_zi (struct scm_bignum *x, scm_t_inum y)
|
||
{
|
||
ASSERT (y != 0);
|
||
switch (y)
|
||
{
|
||
case -1:
|
||
case 1:
|
||
return 1;
|
||
default:
|
||
{
|
||
scm_t_inum abs_y = y < 0 ? -y : y;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (x, zx);
|
||
int divisible = mpz_divisible_ui_p (zx, abs_y);
|
||
scm_remember_upto_here_1 (x);
|
||
return divisible;
|
||
}
|
||
}
|
||
}
|
||
|
||
int
|
||
scm_is_integer_divisible_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t zx, zy;
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
int divisible_p = mpz_divisible_p (zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return divisible_p;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_exact_quotient_ii (scm_t_inum n, scm_t_inum d)
|
||
{
|
||
return scm_integer_truncate_quotient_ii (n, d);
|
||
}
|
||
|
||
/* Return the exact integer q such that n = q*d, for exact integers n
|
||
and d, where d is known in advance to divide n evenly (with zero
|
||
remainder). For large integers, this can be computed more
|
||
efficiently than when the remainder is unknown. */
|
||
SCM
|
||
scm_integer_exact_quotient_zi (struct scm_bignum *n, scm_t_inum d)
|
||
{
|
||
if (SCM_UNLIKELY (d == 0))
|
||
scm_num_overflow ("quotient");
|
||
else if (SCM_UNLIKELY (d == 1))
|
||
return scm_from_bignum (n);
|
||
|
||
mpz_t q, zn;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (n, zn);
|
||
if (d > 0)
|
||
mpz_divexact_ui (q, zn, d);
|
||
else
|
||
{
|
||
mpz_divexact_ui (q, zn, -d);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (n);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_exact_quotient_zz (struct scm_bignum *n, struct scm_bignum *d)
|
||
{
|
||
mpz_t q, zn, zd;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (n, zn);
|
||
alias_bignum_to_mpz (d, zd);
|
||
|
||
mpz_divexact (q, zn, zd);
|
||
scm_remember_upto_here_2 (n, d);
|
||
return take_mpz (q);
|
||
}
|
||
|