1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/module/srfi/srfi-1.scm
Ludovic Courtès 7f593bc7f9 SRFI-1: Rewrite split-at' and split-at!' in Scheme.
This partially reverts commit bb560b9c16
(Tue Mar 15 2005).

* module/srfi/srfi-1.scm (out-of-range, split-at, split-at!): New
  procedures.

* libguile/srfi-1.c (scm_srfi1_split_at, scm_srfi1_split_at_x): Remove.
* libguile/srfi-1.h (scm_srfi1_split_at, scm_srfi1_split_at_x): Ditto.
2010-10-08 15:25:56 +02:00

861 lines
22 KiB
Scheme
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; srfi-1.scm --- List Library
;; Copyright (C) 2001, 2002, 2003, 2004, 2005, 2006, 2009, 2010 Free Software Foundation, Inc.
;;
;; This library is free software; you can redistribute it and/or
;; modify it under the terms of the GNU Lesser General Public
;; License as published by the Free Software Foundation; either
;; version 3 of the License, or (at your option) any later version.
;;
;; This library is distributed in the hope that it will be useful,
;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;; Lesser General Public License for more details.
;;
;; You should have received a copy of the GNU Lesser General Public
;; License along with this library; if not, write to the Free Software
;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Author: Martin Grabmueller <mgrabmue@cs.tu-berlin.de>
;;; Date: 2001-06-06
;;; Commentary:
;; This is an implementation of SRFI-1 (List Library).
;;
;; All procedures defined in SRFI-1, which are not already defined in
;; the Guile core library, are exported. The procedures in this
;; implementation work, but they have not been tuned for speed or
;; memory usage.
;;
;; This module is fully documented in the Guile Reference Manual.
;;; Code:
(define-module (srfi srfi-1)
:export (
;;; Constructors
;; cons <= in the core
;; list <= in the core
xcons
;; cons* <= in the core
;; make-list <= in the core
list-tabulate
list-copy
circular-list
;; iota ; Extended.
;;; Predicates
proper-list?
circular-list?
dotted-list?
;; pair? <= in the core
;; null? <= in the core
null-list?
not-pair?
list=
;;; Selectors
;; car <= in the core
;; cdr <= in the core
;; caar <= in the core
;; cadr <= in the core
;; cdar <= in the core
;; cddr <= in the core
;; caaar <= in the core
;; caadr <= in the core
;; cadar <= in the core
;; caddr <= in the core
;; cdaar <= in the core
;; cdadr <= in the core
;; cddar <= in the core
;; cdddr <= in the core
;; caaaar <= in the core
;; caaadr <= in the core
;; caadar <= in the core
;; caaddr <= in the core
;; cadaar <= in the core
;; cadadr <= in the core
;; caddar <= in the core
;; cadddr <= in the core
;; cdaaar <= in the core
;; cdaadr <= in the core
;; cdadar <= in the core
;; cdaddr <= in the core
;; cddaar <= in the core
;; cddadr <= in the core
;; cdddar <= in the core
;; cddddr <= in the core
;; list-ref <= in the core
first
second
third
fourth
fifth
sixth
seventh
eighth
ninth
tenth
car+cdr
take
drop
take-right
drop-right
take!
drop-right!
split-at
split-at!
last
;; last-pair <= in the core
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
;; length <= in the core
length+
;; append <= in the core
;; append! <= in the core
concatenate
concatenate!
;; reverse <= in the core
;; reverse! <= in the core
append-reverse
append-reverse!
zip
unzip1
unzip2
unzip3
unzip4
unzip5
count
;;; Fold, unfold & map
fold
fold-right
pair-fold
pair-fold-right
reduce
reduce-right
unfold
unfold-right
;; map ; Extended.
;; for-each ; Extended.
append-map
append-map!
map!
;; map-in-order ; Extended.
pair-for-each
filter-map
;;; Filtering & partitioning
;; filter <= in the core
partition
remove
;; filter! <= in the core
partition!
remove!
;;; Searching
find
find-tail
take-while
take-while!
drop-while
span
span!
break
break!
any
every
;; list-index ; Extended.
;; member ; Extended.
;; memq <= in the core
;; memv <= in the core
;;; Deletion
;; delete ; Extended.
;; delete! ; Extended.
delete-duplicates
delete-duplicates!
;;; Association lists
;; assoc ; Extended.
;; assq <= in the core
;; assv <= in the core
alist-cons
alist-copy
alist-delete
alist-delete!
;;; Set operations on lists
lset<=
lset=
lset-adjoin
lset-union
lset-intersection
lset-difference
lset-xor
lset-diff+intersection
lset-union!
lset-intersection!
lset-difference!
lset-xor!
lset-diff+intersection!
;;; Primitive side-effects
;; set-car! <= in the core
;; set-cdr! <= in the core
)
:re-export (cons list cons* make-list pair? null?
car cdr caar cadr cdar cddr
caaar caadr cadar caddr cdaar cdadr cddar cdddr
caaaar caaadr caadar caaddr cadaar cadadr caddar cadddr
cdaaar cdaadr cdadar cdaddr cddaar cddadr cdddar cddddr
list-ref last-pair length append append! reverse reverse!
filter filter! memq memv assq assv set-car! set-cdr!)
:replace (iota map for-each map-in-order list-copy list-index member
delete delete! assoc)
)
(cond-expand-provide (current-module) '(srfi-1))
;; Load the compiled primitives from the shared library.
;;
(load-extension (string-append "libguile-" (effective-version))
"scm_init_srfi_1")
;;; Constructors
(define (xcons d a)
"Like `cons', but with interchanged arguments. Useful mostly when passed to
higher-order procedures."
(cons a d))
;; internal helper, similar to (scsh utilities) check-arg.
(define (check-arg-type pred arg caller)
(if (pred arg)
arg
(scm-error 'wrong-type-arg caller
"Wrong type argument: ~S" (list arg) '())))
(define (out-of-range proc arg)
(scm-error 'out-of-range proc
"Value out of range: ~A" (list arg) (list arg)))
;; the srfi spec doesn't seem to forbid inexact integers.
(define (non-negative-integer? x) (and (integer? x) (>= x 0)))
(define (list-tabulate n init-proc)
"Return an N-element list, where each list element is produced by applying the
procedure INIT-PROC to the corresponding list index. The order in which
INIT-PROC is applied to the indices is not specified."
(check-arg-type non-negative-integer? n "list-tabulate")
(let lp ((n n) (acc '()))
(if (<= n 0)
acc
(lp (- n 1) (cons (init-proc (- n 1)) acc)))))
(define (circular-list elt1 . elts)
(set! elts (cons elt1 elts))
(set-cdr! (last-pair elts) elts)
elts)
(define* (iota count #:optional (start 0) (step 1))
(check-arg-type non-negative-integer? count "iota")
(let lp ((n 0) (acc '()))
(if (= n count)
(reverse! acc)
(lp (+ n 1) (cons (+ start (* n step)) acc)))))
;;; Predicates
(define (proper-list? x)
(list? x))
(define (circular-list? x)
(if (not-pair? x)
#f
(let lp ((hare (cdr x)) (tortoise x))
(if (not-pair? hare)
#f
(let ((hare (cdr hare)))
(if (not-pair? hare)
#f
(if (eq? hare tortoise)
#t
(lp (cdr hare) (cdr tortoise)))))))))
(define (dotted-list? x)
(cond
((null? x) #f)
((not-pair? x) #t)
(else
(let lp ((hare (cdr x)) (tortoise x))
(cond
((null? hare) #f)
((not-pair? hare) #t)
(else
(let ((hare (cdr hare)))
(cond
((null? hare) #f)
((not-pair? hare) #t)
((eq? hare tortoise) #f)
(else
(lp (cdr hare) (cdr tortoise)))))))))))
(define (null-list? x)
(cond
((proper-list? x)
(null? x))
((circular-list? x)
#f)
(else
(error "not a proper list in null-list?"))))
(define (not-pair? x)
"Return #t if X is not a pair, #f otherwise.
This is shorthand notation `(not (pair? X))' and is supposed to be used for
end-of-list checking in contexts where dotted lists are allowed."
(not (pair? x)))
(define (list= elt= . rest)
(define (lists-equal a b)
(let lp ((a a) (b b))
(cond ((null? a)
(null? b))
((null? b)
#f)
(else
(and (elt= (car a) (car b))
(lp (cdr a) (cdr b)))))))
(or (null? rest)
(let lp ((lists rest))
(or (null? (cdr lists))
(and (lists-equal (car lists) (cadr lists))
(lp (cdr lists)))))))
;;; Selectors
(define first car)
(define second cadr)
(define third caddr)
(define fourth cadddr)
(define (fifth x) (car (cddddr x)))
(define (sixth x) (cadr (cddddr x)))
(define (seventh x) (caddr (cddddr x)))
(define (eighth x) (cadddr (cddddr x)))
(define (ninth x) (car (cddddr (cddddr x))))
(define (tenth x) (cadr (cddddr (cddddr x))))
(define (car+cdr x)
"Return two values, the `car' and the `cdr' of PAIR."
(values (car x) (cdr x)))
(define take list-head)
(define drop list-tail)
(define (take! lst i)
"Linear-update variant of `take'."
(if (= i 0)
'()
(let ((tail (drop lst (- i 1))))
(set-cdr! tail '())
lst)))
(define (drop-right! lst i)
"Linear-update variant of `drop-right'."
(let ((tail (drop lst i)))
(if (null? tail)
'()
(let loop ((prev lst)
(tail (cdr tail)))
(if (null? tail)
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
lst)
(loop (cdr prev)
(cdr tail)))))))
(define (split-at lst i)
"Return two values, a list of the elements before index I in LST, and
a list of those after."
(if (< i 0)
(out-of-range 'split-at i)
(let lp ((l lst) (n i) (acc '()))
(if (<= n 0)
(values (reverse! acc) l)
(lp (cdr l) (- n 1) (cons (car l) acc))))))
(define (split-at! lst i)
"Linear-update variant of `split-at'."
(cond ((< i 0)
(out-of-range 'split-at! i))
((= i 0)
(values '() lst))
(else
(let lp ((l lst) (n (- i 1)))
(if (<= n 0)
(let ((tmp (cdr l)))
(set-cdr! l '())
(values lst tmp))
(lp (cdr l) (- n 1)))))))
(define (last pair)
"Return the last element of the non-empty, finite list PAIR."
(car (last-pair pair)))
;;; Miscelleneous: length, append, concatenate, reverse, zip & count
(define (zip clist1 . rest)
(let lp ((l (cons clist1 rest)) (acc '()))
(if (any null? l)
(reverse! acc)
(lp (map1 cdr l) (cons (map1 car l) acc)))))
(define (unzip1 l)
(map1 first l))
(define (unzip2 l)
(values (map1 first l) (map1 second l)))
(define (unzip3 l)
(values (map1 first l) (map1 second l) (map1 third l)))
(define (unzip4 l)
(values (map1 first l) (map1 second l) (map1 third l) (map1 fourth l)))
(define (unzip5 l)
(values (map1 first l) (map1 second l) (map1 third l) (map1 fourth l)
(map1 fifth l)))
;;; Fold, unfold & map
(define (fold kons knil list1 . rest)
"Apply PROC to the elements of LIST1 ... LISTN to build a result, and return
that result. See the manual for details."
(if (null? rest)
(let f ((knil knil) (list1 list1))
(if (null? list1)
knil
(f (kons (car list1) knil) (cdr list1))))
(let f ((knil knil) (lists (cons list1 rest)))
(if (any null? lists)
knil
(let ((cars (map1 car lists))
(cdrs (map1 cdr lists)))
(f (apply kons (append! cars (list knil))) cdrs))))))
(define (fold-right kons knil clist1 . rest)
(if (null? rest)
(let loop ((lst (reverse clist1))
(result knil))
(if (null? lst)
result
(loop (cdr lst)
(kons (car lst) result))))
(let loop ((lists (map1 reverse (cons clist1 rest)))
(result knil))
(if (any1 null? lists)
result
(loop (map1 cdr lists)
(apply kons (append! (map1 car lists) (list result))))))))
(define (pair-fold kons knil clist1 . rest)
(if (null? rest)
(let f ((knil knil) (list1 clist1))
(if (null? list1)
knil
(let ((tail (cdr list1)))
(f (kons list1 knil) tail))))
(let f ((knil knil) (lists (cons clist1 rest)))
(if (any null? lists)
knil
(let ((tails (map1 cdr lists)))
(f (apply kons (append! lists (list knil))) tails))))))
(define (pair-fold-right kons knil clist1 . rest)
(if (null? rest)
(let f ((list1 clist1))
(if (null? list1)
knil
(kons list1 (f (cdr list1)))))
(let f ((lists (cons clist1 rest)))
(if (any null? lists)
knil
(apply kons (append! lists (list (f (map1 cdr lists)))))))))
(define* (unfold p f g seed #:optional (tail-gen (lambda (x) '())))
(define (reverse+tail lst seed)
(let loop ((lst lst)
(result (tail-gen seed)))
(if (null? lst)
result
(loop (cdr lst)
(cons (car lst) result)))))
(let loop ((seed seed)
(result '()))
(if (p seed)
(reverse+tail result seed)
(loop (g seed)
(cons (f seed) result)))))
(define* (unfold-right p f g seed #:optional (tail '()))
(let uf ((seed seed) (lis tail))
(if (p seed)
lis
(uf (g seed) (cons (f seed) lis)))))
(define (reduce f ridentity lst)
"`reduce' is a variant of `fold', where the first call to F is on two
elements from LST, rather than one element and a given initial value.
If LST is empty, RIDENTITY is returned. If LST has just one element
then that's the return value."
(if (null? lst)
ridentity
(fold f (car lst) (cdr lst))))
(define (reduce-right f ridentity lst)
"`reduce-right' is a variant of `fold-right', where the first call to
F is on two elements from LST, rather than one element and a given
initial value. If LST is empty, RIDENTITY is returned. If LST
has just one element then that's the return value."
(if (null? lst)
ridentity
(fold-right f (last lst) (drop-right lst 1))))
;; Internal helper procedure. Map `f' over the single list `ls'.
;;
(define map1 map)
(define (append-map f clist1 . rest)
(concatenate (apply map f clist1 rest)))
(define (append-map! f clist1 . rest)
(concatenate! (apply map f clist1 rest)))
;; OPTIMIZE-ME: Re-use cons cells of list1
(define map! map)
(define (filter-map proc list1 . rest)
"Apply PROC to to the elements of LIST1... and return a list of the
results as per SRFI-1 `map', except that any #f results are omitted from
the list returned."
(if (null? rest)
(let lp ((l list1)
(rl '()))
(if (null? l)
(reverse! rl)
(let ((res (proc (car l))))
(if res
(lp (cdr l) (cons res rl))
(lp (cdr l) rl)))))
(let lp ((l (cons list1 rest))
(rl '()))
(if (any1 null? l)
(reverse! rl)
(let ((res (apply proc (map1 car l))))
(if res
(lp (map1 cdr l) (cons res rl))
(lp (map1 cdr l) rl)))))))
(define (pair-for-each f clist1 . rest)
(if (null? rest)
(let lp ((l clist1))
(if (null? l)
(if #f #f)
(begin
(f l)
(lp (cdr l)))))
(let lp ((l (cons clist1 rest)))
(if (any1 null? l)
(if #f #f)
(begin
(apply f l)
(lp (map1 cdr l)))))))
;;; Searching
(define (take-while pred ls)
"Return a new list which is the longest initial prefix of LS whose
elements all satisfy the predicate PRED."
(cond ((null? ls) '())
((not (pred (car ls))) '())
(else
(let ((result (list (car ls))))
(let lp ((ls (cdr ls)) (p result))
(cond ((null? ls) result)
((not (pred (car ls))) result)
(else
(set-cdr! p (list (car ls)))
(lp (cdr ls) (cdr p)))))))))
(define (take-while! pred lst)
"Linear-update variant of `take-while'."
(let loop ((prev #f)
(rest lst))
(cond ((null? rest)
lst)
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
lst)
'())))))
(define (drop-while pred lst)
"Drop the longest initial prefix of LST whose elements all satisfy the
predicate PRED."
(let loop ((lst lst))
(cond ((null? lst)
'())
((pred (car lst))
(loop (cdr lst)))
(else lst))))
(define (span pred lst)
"Return two values, the longest initial prefix of LST whose elements
all satisfy the predicate PRED, and the remainder of LST."
(let lp ((lst lst) (rl '()))
(if (and (not (null? lst))
(pred (car lst)))
(lp (cdr lst) (cons (car lst) rl))
(values (reverse! rl) lst))))
(define (span! pred list)
"Linear-update variant of `span'."
(let loop ((prev #f)
(rest list))
(cond ((null? rest)
(values list '()))
((pred (car rest))
(loop rest (cdr rest)))
(else
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list rest))
(values '() list))))))
(define (break pred clist)
"Return two values, the longest initial prefix of LST whose elements
all fail the predicate PRED, and the remainder of LST."
(let lp ((clist clist) (rl '()))
(if (or (null? clist)
(pred (car clist)))
(values (reverse! rl) clist)
(lp (cdr clist) (cons (car clist) rl)))))
(define (break! pred list)
"Linear-update variant of `break'."
(let loop ((l list)
(prev #f))
(cond ((null? l)
(values list '()))
((pred (car l))
(if (pair? prev)
(begin
(set-cdr! prev '())
(values list l))
(values '() list)))
(else
(loop (cdr l) l)))))
(define (any pred ls . lists)
(if (null? lists)
(any1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#f)
((any1 null? (map1 cdr lists))
(apply pred (map1 car lists)))
(else
(or (apply pred (map1 car lists)) (lp (map1 cdr lists))))))))
(define (any1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#f)
((null? (cdr ls))
(pred (car ls)))
(else
(or (pred (car ls)) (lp (cdr ls)))))))
(define (every pred ls . lists)
(if (null? lists)
(every1 pred ls)
(let lp ((lists (cons ls lists)))
(cond ((any1 null? lists)
#t)
((any1 null? (map1 cdr lists))
(apply pred (map1 car lists)))
(else
(and (apply pred (map1 car lists)) (lp (map1 cdr lists))))))))
(define (every1 pred ls)
(let lp ((ls ls))
(cond ((null? ls)
#t)
((null? (cdr ls))
(pred (car ls)))
(else
(and (pred (car ls)) (lp (cdr ls)))))))
(define (list-index pred clist1 . rest)
"Return the index of the first set of elements, one from each of
CLIST1 ... CLISTN, that satisfies PRED."
(if (null? rest)
(let lp ((l clist1) (i 0))
(if (null? l)
#f
(if (pred (car l))
i
(lp (cdr l) (+ i 1)))))
(let lp ((lists (cons clist1 rest)) (i 0))
(cond ((any1 null? lists)
#f)
((apply pred (map1 car lists)) i)
(else
(lp (map1 cdr lists) (+ i 1)))))))
;;; Association lists
(define alist-cons acons)
(define (alist-copy alist)
"Return a copy of ALIST, copying both the pairs comprising the list
and those making the associations."
(let lp ((a alist)
(rl '()))
(if (null? a)
(reverse! rl)
(lp (cdr a) (alist-cons (caar a) (cdar a) rl)))))
(define* (alist-delete key alist #:optional (k= equal?))
(let lp ((a alist) (rl '()))
(if (null? a)
(reverse! rl)
(if (k= key (caar a))
(lp (cdr a) rl)
(lp (cdr a) (cons (car a) rl))))))
(define* (alist-delete! key alist #:optional (k= equal?))
(alist-delete key alist k=)) ; XXX:optimize
;;; Set operations on lists
(define (lset<= = . rest)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(lp (car r) (cdr r)))))))
(define (lset= = . rest)
(if (null? rest)
#t
(let lp ((f (car rest)) (r (cdr rest)))
(or (null? r)
(and (every (lambda (el) (member el (car r) =)) f)
(every (lambda (el) (member el f (lambda (x y) (= y x)))) (car r))
(lp (car r) (cdr r)))))))
;; It's not quite clear if duplicates among the `rest' elements are meant to
;; be cast out. The spec says `=' is called as (= lstelem restelem),
;; suggesting perhaps not, but the reference implementation shows the "list"
;; at each stage as including those elements already added. The latter
;; corresponds to what's described for lset-union, so that's what's done.
;;
(define (lset-adjoin = list . rest)
"Add to LIST any of the elements of REST not already in the list.
These elements are `cons'ed onto the start of LIST (so the return shares
a common tail with LIST), but the order they're added is unspecified.
The given `=' procedure is used for comparing elements, called
as `(@var{=} listelem elem)', i.e., the second argument is one of the
given REST parameters."
(let lp ((l rest) (acc list))
(if (null? l)
acc
(if (member (car l) acc (lambda (x y) (= y x)))
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc))))))
(define (lset-union = . rest)
(let ((acc '()))
(for-each (lambda (lst)
(if (null? acc)
(set! acc lst)
(for-each (lambda (elem)
(if (not (member elem acc
(lambda (x y) (= y x))))
(set! acc (cons elem acc))))
lst)))
rest)
acc))
(define (lset-intersection = list1 . rest)
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (every (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) (cons (car l) acc))
(lp (cdr l) acc)))))
(define (lset-difference = list1 . rest)
(if (null? rest)
list1
(let lp ((l list1) (acc '()))
(if (null? l)
(reverse! acc)
(if (any (lambda (ll) (member (car l) ll =)) rest)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc)))))))
;(define (fold kons knil list1 . rest)
(define (lset-xor = . rest)
(fold (lambda (lst res)
(let lp ((l lst) (acc '()))
(if (null? l)
(let lp0 ((r res) (acc acc))
(if (null? r)
(reverse! acc)
(if (member (car r) lst =)
(lp0 (cdr r) acc)
(lp0 (cdr r) (cons (car r) acc)))))
(if (member (car l) res =)
(lp (cdr l) acc)
(lp (cdr l) (cons (car l) acc))))))
'()
rest))
(define (lset-diff+intersection = list1 . rest)
(let lp ((l list1) (accd '()) (acci '()))
(if (null? l)
(values (reverse! accd) (reverse! acci))
(let ((appears (every (lambda (ll) (member (car l) ll =)) rest)))
(if appears
(lp (cdr l) accd (cons (car l) acci))
(lp (cdr l) (cons (car l) accd) acci))))))
(define (lset-union! = . rest)
(apply lset-union = rest)) ; XXX:optimize
(define (lset-intersection! = list1 . rest)
(apply lset-intersection = list1 rest)) ; XXX:optimize
(define (lset-xor! = . rest)
(apply lset-xor = rest)) ; XXX:optimize
(define (lset-diff+intersection! = list1 . rest)
(apply lset-diff+intersection = list1 rest)) ; XXX:optimize
;;; srfi-1.scm ends here