1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-14 01:30:19 +02:00
guile/mark-sweep.h
Andy Wingo 883a761775 Stub out support for multiple mutator threads on semi, mark-sweep
For semi probably we never implement support for multiple mutator
threads.  We will do local freelists for mark-sweep though.
2022-03-20 21:03:26 +01:00

494 lines
15 KiB
C

#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
#include "precise-roots.h"
#ifdef GC_PARALLEL_MARK
#include "parallel-marker.h"
#else
#include "serial-marker.h"
#endif
#define LAZY_SWEEP 1
#define GRANULE_SIZE 8
#define GRANULE_SIZE_LOG_2 3
#define LARGE_OBJECT_THRESHOLD 256
#define LARGE_OBJECT_GRANULE_THRESHOLD 32
STATIC_ASSERT_EQ(GRANULE_SIZE, 1 << GRANULE_SIZE_LOG_2);
STATIC_ASSERT_EQ(LARGE_OBJECT_THRESHOLD,
LARGE_OBJECT_GRANULE_THRESHOLD * GRANULE_SIZE);
// There are small object pages for allocations of these sizes.
#define FOR_EACH_SMALL_OBJECT_GRANULES(M) \
M(1) M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
enum small_object_size {
#define SMALL_OBJECT_GRANULE_SIZE(i) SMALL_OBJECT_##i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
SMALL_OBJECT_SIZES,
NOT_SMALL_OBJECT = SMALL_OBJECT_SIZES
};
static const uint8_t small_object_granule_sizes[] =
{
#define SMALL_OBJECT_GRANULE_SIZE(i) i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
};
static const enum small_object_size small_object_sizes_for_granules[LARGE_OBJECT_GRANULE_THRESHOLD + 2] = {
SMALL_OBJECT_1, SMALL_OBJECT_1, SMALL_OBJECT_2, SMALL_OBJECT_3,
SMALL_OBJECT_4, SMALL_OBJECT_5, SMALL_OBJECT_6, SMALL_OBJECT_8,
SMALL_OBJECT_8, SMALL_OBJECT_10, SMALL_OBJECT_10, SMALL_OBJECT_16,
SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16,
SMALL_OBJECT_16, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, NOT_SMALL_OBJECT
};
static enum small_object_size granules_to_small_object_size(unsigned granules) {
ASSERT(granules <= LARGE_OBJECT_GRANULE_THRESHOLD);
return small_object_sizes_for_granules[granules];
}
static uintptr_t align_up(uintptr_t addr, size_t align) {
return (addr + align - 1) & ~(align-1);
}
static inline size_t size_to_granules(size_t size) {
return (size + GRANULE_SIZE - 1) >> GRANULE_SIZE_LOG_2;
}
// Alloc kind is in bits 0-7, for live objects.
static const uintptr_t gcobj_alloc_kind_mask = 0xff;
static const uintptr_t gcobj_alloc_kind_shift = 0;
static inline uint8_t tag_live_alloc_kind(uintptr_t tag) {
return (tag >> gcobj_alloc_kind_shift) & gcobj_alloc_kind_mask;
}
static inline uintptr_t tag_live(uint8_t alloc_kind) {
return ((uintptr_t)alloc_kind << gcobj_alloc_kind_shift);
}
struct gcobj_free {
struct gcobj_free *next;
};
// Objects larger than LARGE_OBJECT_GRANULE_THRESHOLD.
struct gcobj_free_large {
struct gcobj_free_large *next;
size_t granules;
};
struct gcobj {
union {
uintptr_t tag;
struct gcobj_free free;
struct gcobj_free_large free_large;
uintptr_t words[0];
void *pointers[0];
};
};
struct context {
// Segregated freelists of small objects.
struct gcobj_free *small_objects[SMALL_OBJECT_SIZES];
// Unordered list of large objects.
struct gcobj_free_large *large_objects;
uintptr_t base;
uint8_t *mark_bytes;
uintptr_t heap_base;
size_t heap_size;
uintptr_t sweep;
struct handle *roots;
void *mem;
size_t mem_size;
long count;
struct marker marker;
};
static inline struct marker* context_marker(struct context *cx) {
return &cx->marker;
}
static inline struct gcobj_free**
get_small_object_freelist(struct context *cx, enum small_object_size kind) {
ASSERT(kind < SMALL_OBJECT_SIZES);
return &cx->small_objects[kind];
}
#define GC_HEADER uintptr_t _gc_header
static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static void collect(struct context *cx) NEVER_INLINE;
static inline uint8_t* mark_byte(struct context *cx, struct gcobj *obj) {
ASSERT(cx->heap_base <= (uintptr_t) obj);
ASSERT((uintptr_t) obj < cx->heap_base + cx->heap_size);
uintptr_t granule = (((uintptr_t) obj) - cx->heap_base) / GRANULE_SIZE;
return &cx->mark_bytes[granule];
}
static inline int mark_object(struct context *cx, struct gcobj *obj) {
uint8_t *byte = mark_byte(cx, obj);
if (*byte)
return 0;
*byte = 1;
return 1;
}
static inline void trace_one(struct gcobj *obj, void *mark_data) {
switch (tag_live_alloc_kind(obj->tag)) {
#define SCAN_OBJECT(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
visit_##name##_fields((Name*)obj, marker_visit, mark_data); \
break;
FOR_EACH_HEAP_OBJECT_KIND(SCAN_OBJECT)
#undef SCAN_OBJECT
default:
abort ();
}
}
static void clear_freelists(struct context *cx) {
for (int i = 0; i < SMALL_OBJECT_SIZES; i++)
cx->small_objects[i] = NULL;
cx->large_objects = NULL;
}
static void collect(struct context *cx) {
DEBUG("start collect #%ld:\n", cx->count);
marker_prepare(cx);
for (struct handle *h = cx->roots; h; h = h->next)
marker_visit_root(&h->v, cx);
marker_trace(cx);
marker_release(cx);
DEBUG("done marking\n");
cx->sweep = cx->heap_base;
clear_freelists(cx);
cx->count++;
}
static void push_free(struct gcobj_free **loc, struct gcobj_free *obj) {
obj->next = *loc;
*loc = obj;
}
static void push_small(struct context *cx, void *region,
enum small_object_size kind, size_t region_granules) {
uintptr_t addr = (uintptr_t) region;
while (region_granules) {
size_t granules = small_object_granule_sizes[kind];
struct gcobj_free **loc = get_small_object_freelist(cx, kind);
while (granules <= region_granules) {
push_free(loc, (struct gcobj_free*) addr);
region_granules -= granules;
addr += granules * GRANULE_SIZE;
}
// Fit any remaining granules into smaller freelists.
kind--;
}
}
static void push_large(struct context *cx, void *region, size_t granules) {
struct gcobj_free_large *large = region;
large->next = cx->large_objects;
large->granules = granules;
cx->large_objects = large;
}
static void reclaim(struct context *cx, void *obj, size_t granules) {
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
push_small(cx, obj, SMALL_OBJECT_SIZES - 1, granules);
else
push_large(cx, obj, granules);
}
static void split_large_object(struct context *cx,
struct gcobj_free_large *large,
size_t granules) {
size_t large_granules = large->granules;
ASSERT(large_granules >= granules);
ASSERT(granules >= LARGE_OBJECT_GRANULE_THRESHOLD);
// Invariant: all words in LARGE are 0 except the two header words.
// LARGE is off the freelist. We return a block of cleared memory, so
// clear those fields now.
large->next = NULL;
large->granules = 0;
if (large_granules == granules)
return;
char *tail = ((char*)large) + granules * GRANULE_SIZE;
reclaim(cx, tail, large_granules - granules);
}
static void unlink_large_object(struct gcobj_free_large **prev,
struct gcobj_free_large *large) {
*prev = large->next;
}
static size_t live_object_granules(struct gcobj *obj) {
size_t bytes;
switch (tag_live_alloc_kind (obj->tag)) {
#define COMPUTE_SIZE(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
bytes = name##_size((Name*)obj); \
break;
FOR_EACH_HEAP_OBJECT_KIND(COMPUTE_SIZE)
#undef COMPUTE_SIZE
default:
abort ();
}
size_t granules = size_to_granules(bytes);
if (granules > LARGE_OBJECT_GRANULE_THRESHOLD)
return granules;
return small_object_granule_sizes[granules_to_small_object_size(granules)];
}
static size_t next_mark(const uint8_t *mark, size_t limit) {
size_t n = 0;
for (; (((uintptr_t)mark) & 7) && n < limit; n++)
if (mark[n])
return n;
uintptr_t *word_mark = (uintptr_t *)(mark + n);
for (;
n + sizeof(uintptr_t) * 4 <= limit;
n += sizeof(uintptr_t) * 4, word_mark += 4)
if (word_mark[0] | word_mark[1] | word_mark[2] | word_mark[3])
break;
for (;
n + sizeof(uintptr_t) <= limit;
n += sizeof(uintptr_t), word_mark += 1)
if (word_mark[0])
break;
for (; n < limit; n++)
if (mark[n])
return n;
return limit;
}
// Sweep some heap to reclaim free space. Return 1 if there is more
// heap to sweep, or 0 if we reached the end.
static int sweep(struct context *cx, size_t for_granules) {
// Sweep until we have reclaimed 128 granules (1024 kB), or we reach
// the end of the heap.
ssize_t to_reclaim = 128;
uintptr_t sweep = cx->sweep;
uintptr_t limit = cx->heap_base + cx->heap_size;
if (sweep == limit)
return 0;
while (to_reclaim > 0 && sweep < limit) {
uint8_t* mark = mark_byte(cx, (struct gcobj*)sweep);
size_t limit_granules = (limit - sweep) >> GRANULE_SIZE_LOG_2;
if (limit_granules > for_granules)
limit_granules = for_granules;
size_t free_granules = next_mark(mark, limit_granules);
if (free_granules) {
size_t free_bytes = free_granules * GRANULE_SIZE;
clear_memory(sweep + GRANULE_SIZE, free_bytes - GRANULE_SIZE);
reclaim(cx, (void*)sweep, free_granules);
sweep += free_bytes;
to_reclaim -= free_granules;
mark += free_granules;
if (free_granules == limit_granules)
break;
}
// Object survived collection; clear mark and continue sweeping.
ASSERT(*mark == 1);
*mark = 0;
sweep += live_object_granules((struct gcobj *)sweep) * GRANULE_SIZE;
}
cx->sweep = sweep;
return 1;
}
static void* allocate_large(struct context *cx, enum alloc_kind kind,
size_t granules) {
int swept_from_beginning = 0;
struct gcobj_free_large *already_scanned = NULL;
while (1) {
do {
struct gcobj_free_large **prev = &cx->large_objects;
for (struct gcobj_free_large *large = cx->large_objects;
large != already_scanned;
prev = &large->next, large = large->next) {
if (large->granules >= granules) {
unlink_large_object(prev, large);
split_large_object(cx, large, granules);
struct gcobj *obj = (struct gcobj *)large;
obj->tag = tag_live(kind);
return large;
}
}
already_scanned = cx->large_objects;
} while (sweep(cx, granules));
// No large object, and we swept across the whole heap. Collect.
if (swept_from_beginning) {
fprintf(stderr, "ran out of space, heap size %zu\n", cx->heap_size);
abort();
} else {
collect(cx);
swept_from_beginning = 1;
}
}
}
static void fill_small(struct context *cx, enum small_object_size kind) {
int swept_from_beginning = 0;
while (1) {
// First see if there are small objects already on the freelists
// that can be split.
for (enum small_object_size next_kind = kind;
next_kind < SMALL_OBJECT_SIZES;
next_kind++) {
struct gcobj_free **loc = get_small_object_freelist(cx, next_kind);
if (*loc) {
if (kind != next_kind) {
struct gcobj_free *ret = *loc;
*loc = ret->next;
push_small(cx, ret, kind,
small_object_granule_sizes[next_kind]);
}
return;
}
}
// Otherwise if there is a large object, take and split it.
struct gcobj_free_large *large = cx->large_objects;
if (large) {
unlink_large_object(&cx->large_objects, large);
split_large_object(cx, large, LARGE_OBJECT_GRANULE_THRESHOLD);
push_small(cx, large, kind, LARGE_OBJECT_GRANULE_THRESHOLD);
return;
}
if (!sweep(cx, LARGE_OBJECT_GRANULE_THRESHOLD)) {
if (swept_from_beginning) {
fprintf(stderr, "ran out of space, heap size %zu\n", cx->heap_size);
abort();
} else {
collect(cx);
swept_from_beginning = 1;
}
}
}
}
static inline void* allocate_small(struct context *cx,
enum alloc_kind alloc_kind,
enum small_object_size small_kind) {
struct gcobj_free **loc = get_small_object_freelist(cx, small_kind);
if (!*loc)
fill_small(cx, small_kind);
struct gcobj_free *ret = *loc;
*loc = ret->next;
struct gcobj *obj = (struct gcobj *)ret;
obj->tag = tag_live(alloc_kind);
return obj;
}
static inline void* allocate(struct context *cx, enum alloc_kind kind,
size_t size) {
size_t granules = size_to_granules(size);
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
return allocate_small(cx, kind, granules_to_small_object_size(granules));
return allocate_large(cx, kind, granules);
}
static inline void* allocate_pointerless(struct context *cx,
enum alloc_kind kind,
size_t size) {
return allocate(cx, kind, size);
}
static inline void init_field(void **addr, void *val) {
*addr = val;
}
static inline void set_field(void **addr, void *val) {
*addr = val;
}
static inline void* get_field(void **addr) {
return *addr;
}
static struct context* initialize_gc(size_t size) {
#define SMALL_OBJECT_GRANULE_SIZE(i) \
ASSERT_EQ(SMALL_OBJECT_##i, small_object_sizes_for_granules[i]); \
ASSERT_EQ(SMALL_OBJECT_##i + 1, small_object_sizes_for_granules[i+1]);
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE);
#undef SMALL_OBJECT_GRANULE_SIZE
ASSERT_EQ(SMALL_OBJECT_SIZES - 1,
small_object_sizes_for_granules[LARGE_OBJECT_GRANULE_THRESHOLD]);
size = align_up(size, getpagesize());
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
abort();
}
struct context *cx = mem;
cx->mem = mem;
cx->mem_size = size;
size_t overhead = sizeof(*cx);
// If there is 1 mark byte per granule, and SIZE bytes available for
// HEAP_SIZE + MARK_BYTES, then:
//
// size = (granule_size + 1) / granule_size * heap_size
// mark_bytes = 1/granule_size * heap_size
// mark_bytes = ceil(size / (granule_size + 1))
cx->mark_bytes = ((uint8_t *)mem) + overhead;
size_t mark_bytes_size = (size - overhead + GRANULE_SIZE) / (GRANULE_SIZE + 1);
overhead += mark_bytes_size;
overhead = align_up(overhead, GRANULE_SIZE);
cx->heap_base = ((uintptr_t) mem) + overhead;
cx->heap_size = size - overhead;
clear_freelists(cx);
cx->sweep = cx->heap_base + cx->heap_size;
cx->roots = NULL;
cx->count = 0;
if (!marker_init(cx))
abort();
reclaim(cx, (void*)cx->heap_base, size_to_granules(cx->heap_size));
return cx;
}
static struct context* initialize_gc_for_thread(uintptr_t *stack_base,
struct context *parent) {
fprintf(stderr,
"Multiple mutator threads not yet implemented.\n");
exit(1);
}
static void finish_gc_for_thread(struct context *cx) {
}
static inline void print_start_gc_stats(struct context *cx) {
}
static inline void print_end_gc_stats(struct context *cx) {
printf("Completed %ld collections\n", cx->count);
printf("Heap size with overhead is %zd\n", cx->mem_size);
}