mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
Conflicts: benchmark-suite/benchmarks/ports.bm libguile/async.h libguile/bytevectors.c libguile/foreign.c libguile/gsubr.c libguile/srfi-1.c libguile/vm-engine.h libguile/vm-i-scheme.c module/Makefile.am module/language/tree-il/analyze.scm module/language/tree-il/peval.scm module/scripts/compile.scm module/scripts/disassemble.scm test-suite/tests/asm-to-bytecode.test test-suite/tests/peval.test test-suite/tests/rdelim.test
1380 lines
42 KiB
Scheme
1380 lines
42 KiB
Scheme
;;;; tree-il.test --- test suite for compiling tree-il -*- scheme -*-
|
||
;;;; Andy Wingo <wingo@pobox.com> --- May 2009
|
||
;;;;
|
||
;;;; Copyright (C) 2009-2014 Free Software Foundation, Inc.
|
||
;;;;
|
||
;;;; This library is free software; you can redistribute it and/or
|
||
;;;; modify it under the terms of the GNU Lesser General Public
|
||
;;;; License as published by the Free Software Foundation; either
|
||
;;;; version 3 of the License, or (at your option) any later version.
|
||
;;;;
|
||
;;;; This library is distributed in the hope that it will be useful,
|
||
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
;;;; Lesser General Public License for more details.
|
||
;;;;
|
||
;;;; You should have received a copy of the GNU Lesser General Public
|
||
;;;; License along with this library; if not, write to the Free Software
|
||
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
||
(define-module (test-suite tree-il)
|
||
#:use-module (test-suite lib)
|
||
#:use-module (system base compile)
|
||
#:use-module (system base pmatch)
|
||
#:use-module (system base message)
|
||
#:use-module (language tree-il)
|
||
#:use-module (language tree-il primitives)
|
||
#:use-module (rnrs bytevectors) ;; for the bytevector primitives
|
||
#:use-module (srfi srfi-13))
|
||
|
||
(define peval
|
||
;; The partial evaluator.
|
||
(@@ (language tree-il optimize) peval))
|
||
|
||
(define-syntax pass-if-peval
|
||
(syntax-rules ()
|
||
((_ in pat)
|
||
(pass-if-peval in pat
|
||
(expand-primitives
|
||
(resolve-primitives
|
||
(compile 'in #:from 'scheme #:to 'tree-il)
|
||
(current-module)))))
|
||
((_ in pat code)
|
||
(pass-if 'in
|
||
(let ((evaled (unparse-tree-il (peval code))))
|
||
(pmatch evaled
|
||
(pat #t)
|
||
(_ (pk 'peval-mismatch)
|
||
((@ (ice-9 pretty-print) pretty-print)
|
||
'in)
|
||
(newline)
|
||
((@ (ice-9 pretty-print) pretty-print)
|
||
evaled)
|
||
(newline)
|
||
((@ (ice-9 pretty-print) pretty-print)
|
||
'pat)
|
||
(newline)
|
||
#f)))))))
|
||
|
||
|
||
(with-test-prefix "partial evaluation"
|
||
|
||
(pass-if-peval
|
||
;; First order, primitive.
|
||
(let ((x 1) (y 2)) (+ x y))
|
||
(const 3))
|
||
|
||
(pass-if-peval
|
||
;; First order, thunk.
|
||
(let ((x 1) (y 2))
|
||
(let ((f (lambda () (+ x y))))
|
||
(f)))
|
||
(const 3))
|
||
|
||
(pass-if-peval
|
||
;; First order, let-values (requires primitive expansion for
|
||
;; `call-with-values'.)
|
||
(let ((x 0))
|
||
(call-with-values
|
||
(lambda () (if (zero? x) (values 1 2) (values 3 4)))
|
||
(lambda (a b)
|
||
(+ a b))))
|
||
(const 3))
|
||
|
||
(pass-if-peval
|
||
;; First order, multiple values.
|
||
(let ((x 1) (y 2))
|
||
(values x y))
|
||
(primcall values (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
;; First order, multiple values truncated.
|
||
(let ((x (values 1 'a)) (y 2))
|
||
(values x y))
|
||
(primcall values (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
;; First order, multiple values truncated.
|
||
(or (values 1 2) 3)
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; First order, coalesced, mutability preserved.
|
||
(cons 0 (cons 1 (cons 2 (list 3 4 5))))
|
||
(primcall list
|
||
(const 0) (const 1) (const 2) (const 3) (const 4) (const 5)))
|
||
|
||
(pass-if-peval
|
||
;; First order, coalesced, immutability preserved.
|
||
(cons 0 (cons 1 (cons 2 '(3 4 5))))
|
||
(primcall cons (const 0)
|
||
(primcall cons (const 1)
|
||
(primcall cons (const 2)
|
||
(const (3 4 5))))))
|
||
|
||
;; These two tests doesn't work any more because we changed the way we
|
||
;; deal with constants -- now the algorithm will see a construction as
|
||
;; being bound to the lexical, so it won't propagate it. It can't
|
||
;; even propagate it in the case that it is only referenced once,
|
||
;; because:
|
||
;;
|
||
;; (let ((x (cons 1 2))) (lambda () x))
|
||
;;
|
||
;; is not the same as
|
||
;;
|
||
;; (lambda () (cons 1 2))
|
||
;;
|
||
;; Perhaps if we determined that not only was it only referenced once,
|
||
;; it was not closed over by a lambda, then we could propagate it, and
|
||
;; re-enable these two tests.
|
||
;;
|
||
#;
|
||
(pass-if-peval
|
||
;; First order, mutability preserved.
|
||
(let loop ((i 3) (r '()))
|
||
(if (zero? i)
|
||
r
|
||
(loop (1- i) (cons (cons i i) r))))
|
||
(primcall list
|
||
(primcall cons (const 1) (const 1))
|
||
(primcall cons (const 2) (const 2))
|
||
(primcall cons (const 3) (const 3))))
|
||
;;
|
||
;; See above.
|
||
#;
|
||
(pass-if-peval
|
||
;; First order, evaluated.
|
||
(let loop ((i 7)
|
||
(r '()))
|
||
(if (<= i 0)
|
||
(car r)
|
||
(loop (1- i) (cons i r))))
|
||
(const 1))
|
||
|
||
;; Instead here are tests for what happens for the above cases: they
|
||
;; unroll but they don't fold.
|
||
(pass-if-peval
|
||
(let loop ((i 3) (r '()))
|
||
(if (zero? i)
|
||
r
|
||
(loop (1- i) (cons (cons i i) r))))
|
||
(let (r) (_)
|
||
((primcall list
|
||
(primcall cons (const 3) (const 3))))
|
||
(let (r) (_)
|
||
((primcall cons
|
||
(primcall cons (const 2) (const 2))
|
||
(lexical r _)))
|
||
(primcall cons
|
||
(primcall cons (const 1) (const 1))
|
||
(lexical r _)))))
|
||
|
||
;; See above.
|
||
(pass-if-peval
|
||
(let loop ((i 4)
|
||
(r '()))
|
||
(if (<= i 0)
|
||
(car r)
|
||
(loop (1- i) (cons i r))))
|
||
(let (r) (_)
|
||
((primcall list (const 4)))
|
||
(let (r) (_)
|
||
((primcall cons
|
||
(const 3)
|
||
(lexical r _)))
|
||
(let (r) (_)
|
||
((primcall cons
|
||
(const 2)
|
||
(lexical r _)))
|
||
(let (r) (_)
|
||
((primcall cons
|
||
(const 1)
|
||
(lexical r _)))
|
||
(primcall car
|
||
(lexical r _)))))))
|
||
|
||
;; Static sums.
|
||
(pass-if-peval
|
||
(let loop ((l '(1 2 3 4)) (sum 0))
|
||
(if (null? l)
|
||
sum
|
||
(loop (cdr l) (+ sum (car l)))))
|
||
(const 10))
|
||
|
||
(pass-if-peval
|
||
(let ((string->chars
|
||
(lambda (s)
|
||
(define (char-at n)
|
||
(string-ref s n))
|
||
(define (len)
|
||
(string-length s))
|
||
(let loop ((i 0))
|
||
(if (< i (len))
|
||
(cons (char-at i)
|
||
(loop (1+ i)))
|
||
'())))))
|
||
(string->chars "yo"))
|
||
(primcall list (const #\y) (const #\o)))
|
||
|
||
(pass-if-peval
|
||
;; Primitives in module-refs are resolved (the expansion of `pmatch'
|
||
;; below leads to calls to (@@ (system base pmatch) car) and
|
||
;; similar, which is what we want to be inlined.)
|
||
(begin
|
||
(use-modules (system base pmatch))
|
||
(pmatch '(a b c d)
|
||
((a b . _)
|
||
#t)))
|
||
(seq (call . _)
|
||
(const #t)))
|
||
|
||
(pass-if-peval
|
||
;; Mutability preserved.
|
||
((lambda (x y z) (list x y z)) 1 2 3)
|
||
(primcall list (const 1) (const 2) (const 3)))
|
||
|
||
(pass-if-peval
|
||
;; Don't propagate effect-free expressions that operate on mutable
|
||
;; objects.
|
||
(let* ((x (list 1))
|
||
(y (car x)))
|
||
(set-car! x 0)
|
||
y)
|
||
(let (x) (_) ((primcall list (const 1)))
|
||
(let (y) (_) ((primcall car (lexical x _)))
|
||
(seq
|
||
(primcall set-car! (lexical x _) (const 0))
|
||
(lexical y _)))))
|
||
|
||
(pass-if-peval
|
||
;; Don't propagate effect-free expressions that operate on objects we
|
||
;; don't know about.
|
||
(let ((y (car x)))
|
||
(set-car! x 0)
|
||
y)
|
||
(let (y) (_) ((primcall car (toplevel x)))
|
||
(seq
|
||
(primcall set-car! (toplevel x) (const 0))
|
||
(lexical y _))))
|
||
|
||
(pass-if-peval
|
||
;; Infinite recursion
|
||
((lambda (x) (x x)) (lambda (x) (x x)))
|
||
(let (x) (_)
|
||
((lambda _
|
||
(lambda-case
|
||
(((x) _ _ _ _ _)
|
||
(call (lexical x _) (lexical x _))))))
|
||
(call (lexical x _) (lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; First order, aliased primitive.
|
||
(let* ((x *) (y (x 1 2))) y)
|
||
(const 2))
|
||
|
||
(pass-if-peval
|
||
;; First order, shadowed primitive.
|
||
(begin
|
||
(define (+ x y) (pk x y))
|
||
(+ 1 2))
|
||
(seq
|
||
(define +
|
||
(lambda (_)
|
||
(lambda-case
|
||
(((x y) #f #f #f () (_ _))
|
||
(call (toplevel pk) (lexical x _) (lexical y _))))))
|
||
(call (toplevel +) (const 1) (const 2))))
|
||
|
||
(pass-if-peval
|
||
;; First-order, effects preserved.
|
||
(let ((x 2))
|
||
(do-something!)
|
||
x)
|
||
(seq
|
||
(call (toplevel do-something!))
|
||
(const 2)))
|
||
|
||
(pass-if-peval
|
||
;; First order, residual bindings removed.
|
||
(let ((x 2) (y 3))
|
||
(* (+ x y) z))
|
||
(primcall * (const 5) (toplevel z)))
|
||
|
||
(pass-if-peval
|
||
;; First order, with lambda.
|
||
(define (foo x)
|
||
(define (bar z) (* z z))
|
||
(+ x (bar 3)))
|
||
(define foo
|
||
(lambda (_)
|
||
(lambda-case
|
||
(((x) #f #f #f () (_))
|
||
(primcall + (lexical x _) (const 9)))))))
|
||
|
||
(pass-if-peval
|
||
;; First order, with lambda inlined & specialized twice.
|
||
(let ((f (lambda (x y)
|
||
(+ (* x top) y)))
|
||
(x 2)
|
||
(y 3))
|
||
(+ (* x (f x y))
|
||
(f something x)))
|
||
(primcall +
|
||
(primcall *
|
||
(const 2)
|
||
(primcall + ; (f 2 3)
|
||
(primcall *
|
||
(const 2)
|
||
(toplevel top))
|
||
(const 3)))
|
||
(let (x) (_) ((toplevel something)) ; (f something 2)
|
||
;; `something' is not const, so preserve order of
|
||
;; effects with a lexical binding.
|
||
(primcall +
|
||
(primcall *
|
||
(lexical x _)
|
||
(toplevel top))
|
||
(const 2)))))
|
||
|
||
(pass-if-peval
|
||
;; First order, with lambda inlined & specialized 3 times.
|
||
(let ((f (lambda (x y) (if (> x 0) y x))))
|
||
(+ (f -1 0)
|
||
(f 1 0)
|
||
(f -1 y)
|
||
(f 2 y)
|
||
(f z y)))
|
||
(primcall
|
||
+
|
||
(primcall
|
||
+
|
||
(primcall
|
||
+
|
||
(const -1) ; (f -1 0)
|
||
(seq (toplevel y) (const -1))) ; (f -1 y)
|
||
(toplevel y)) ; (f 2 y)
|
||
(let (x y) (_ _) ((toplevel z) (toplevel y)) ; (f z y)
|
||
(if (primcall > (lexical x _) (const 0))
|
||
(lexical y _)
|
||
(lexical x _)))))
|
||
|
||
(pass-if-peval
|
||
;; First order, conditional.
|
||
(let ((y 2))
|
||
(lambda (x)
|
||
(if (> y 0)
|
||
(display x)
|
||
'never-reached)))
|
||
(lambda ()
|
||
(lambda-case
|
||
(((x) #f #f #f () (_))
|
||
(call (toplevel display) (lexical x _))))))
|
||
|
||
(pass-if-peval
|
||
;; First order, recursive procedure.
|
||
(letrec ((fibo (lambda (n)
|
||
(if (<= n 1)
|
||
n
|
||
(+ (fibo (- n 1))
|
||
(fibo (- n 2)))))))
|
||
(fibo 4))
|
||
(const 3))
|
||
|
||
(pass-if-peval
|
||
;; Don't propagate toplevel references, as intervening expressions
|
||
;; could alter their bindings.
|
||
(let ((x top))
|
||
(foo)
|
||
x)
|
||
(let (x) (_) ((toplevel top))
|
||
(seq
|
||
(call (toplevel foo))
|
||
(lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; Higher order.
|
||
((lambda (f x)
|
||
(f (* (car x) (cadr x))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3))
|
||
(const 7))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional argument (default value).
|
||
((lambda* (f x #:optional (y 0))
|
||
(+ y (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3))
|
||
(const 7))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional argument (default uses earlier argument).
|
||
;; <http://bugs.gnu.org/17634>
|
||
((lambda* (f x #:optional (y (+ 3 (car x))))
|
||
(+ y (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3))
|
||
(const 12))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional arguments
|
||
;; (default uses earlier optional argument).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
|
||
(+ y z (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3))
|
||
(const 20))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional arguments (one caller-supplied value,
|
||
;; one default that uses earlier optional argument).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
|
||
(+ y z (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
-3)
|
||
(const 4))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional arguments (caller-supplied values).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y)))
|
||
(+ y z (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
-3
|
||
17)
|
||
(const 21))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional and rest arguments (one
|
||
;; caller-supplied value, one default that uses earlier optional
|
||
;; argument).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
|
||
#:rest r)
|
||
(list r (+ y z (f (* (car x) (cadr x))))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
-3)
|
||
(primcall list (const ()) (const 4)))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional and rest arguments
|
||
;; (caller-supplied values for optionals).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
|
||
#:rest r)
|
||
(list r (+ y z (f (* (car x) (cadr x))))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
-3
|
||
17)
|
||
(primcall list (const ()) (const 21)))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional and rest arguments
|
||
;; (caller-supplied values for optionals and rest).
|
||
((lambda* (f x #:optional (y (+ 3 (car x))) (z (+ (cadr x) y))
|
||
#:rest r)
|
||
(list r (+ y z (f (* (car x) (cadr x))))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
-3
|
||
17
|
||
8
|
||
3)
|
||
(let (r) (_) ((primcall list (const 8) (const 3)))
|
||
(primcall list (lexical r _) (const 21))))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional argument (caller-supplied value).
|
||
((lambda* (f x #:optional (y 0))
|
||
(+ y (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
35)
|
||
(const 42))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional argument (side-effecting default
|
||
;; value).
|
||
((lambda* (f x #:optional (y (foo)))
|
||
(+ y (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3))
|
||
(let (y) (_) ((call (toplevel foo)))
|
||
(primcall + (lexical y _) (const 7))))
|
||
|
||
(pass-if-peval
|
||
;; Higher order with optional argument (caller-supplied value).
|
||
((lambda* (f x #:optional (y (foo)))
|
||
(+ y (f (* (car x) (cadr x)))))
|
||
(lambda (x)
|
||
(+ x 1))
|
||
'(2 3)
|
||
35)
|
||
(const 42))
|
||
|
||
(pass-if-peval
|
||
;; Higher order.
|
||
((lambda (f) (f x)) (lambda (x) x))
|
||
(toplevel x))
|
||
|
||
(pass-if-peval
|
||
;; Bug reported at
|
||
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html>.
|
||
(let ((fold (lambda (f g) (f (g top)))))
|
||
(fold 1+ (lambda (x) x)))
|
||
(primcall 1+ (toplevel top)))
|
||
|
||
(pass-if-peval
|
||
;; Procedure not inlined when residual code contains recursive calls.
|
||
;; <http://debbugs.gnu.org/9542>
|
||
(letrec ((fold (lambda (f x3 b null? car cdr)
|
||
(if (null? x3)
|
||
b
|
||
(f (car x3) (fold f (cdr x3) b null? car cdr))))))
|
||
(fold * x 1 zero? (lambda (x1) x1) (lambda (x2) (- x2 1))))
|
||
(letrec (fold) (_) (_)
|
||
(call (lexical fold _)
|
||
(primitive *)
|
||
(toplevel x)
|
||
(const 1)
|
||
(primitive zero?)
|
||
(lambda ()
|
||
(lambda-case
|
||
(((x1) #f #f #f () (_))
|
||
(lexical x1 _))))
|
||
(lambda ()
|
||
(lambda-case
|
||
(((x2) #f #f #f () (_))
|
||
(primcall 1- (lexical x2 _))))))))
|
||
|
||
(pass-if "inlined lambdas are alpha-renamed"
|
||
;; In this example, `make-adder' is inlined more than once; thus,
|
||
;; they should use different gensyms for their arguments, because
|
||
;; the various optimization passes assume uniquely-named variables.
|
||
;;
|
||
;; Bug reported at
|
||
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00019.html> and
|
||
;; <https://lists.gnu.org/archive/html/bug-guile/2011-09/msg00029.html>.
|
||
(pmatch (unparse-tree-il
|
||
(peval (expand-primitives
|
||
(resolve-primitives
|
||
(compile
|
||
'(let ((make-adder
|
||
(lambda (x) (lambda (y) (+ x y)))))
|
||
(cons (make-adder 1) (make-adder 2)))
|
||
#:to 'tree-il)
|
||
(current-module)))))
|
||
((primcall cons
|
||
(lambda ()
|
||
(lambda-case
|
||
(((y) #f #f #f () (,gensym1))
|
||
(primcall +
|
||
(const 1)
|
||
(lexical y ,ref1)))))
|
||
(lambda ()
|
||
(lambda-case
|
||
(((y) #f #f #f () (,gensym2))
|
||
(primcall +
|
||
(const 2)
|
||
(lexical y ,ref2))))))
|
||
(and (eq? gensym1 ref1)
|
||
(eq? gensym2 ref2)
|
||
(not (eq? gensym1 gensym2))))
|
||
(_ #f)))
|
||
|
||
(pass-if-peval
|
||
;; Unused letrec bindings are pruned.
|
||
(letrec ((a (lambda () (b)))
|
||
(b (lambda () (a)))
|
||
(c (lambda (x) x)))
|
||
(c 10))
|
||
(const 10))
|
||
|
||
(pass-if-peval
|
||
;; Unused letrec bindings are pruned.
|
||
(letrec ((a (foo!))
|
||
(b (lambda () (a)))
|
||
(c (lambda (x) x)))
|
||
(c 10))
|
||
(seq (call (toplevel foo!))
|
||
(const 10)))
|
||
|
||
(pass-if-peval
|
||
;; Higher order, mutually recursive procedures.
|
||
(letrec ((even? (lambda (x)
|
||
(or (= 0 x)
|
||
(odd? (- x 1)))))
|
||
(odd? (lambda (x)
|
||
(not (even? x)))))
|
||
(and (even? 4) (odd? 7)))
|
||
(const #t))
|
||
|
||
(pass-if-peval
|
||
;; Memv with constants.
|
||
(memv 1 '(3 2 1))
|
||
(const '(1)))
|
||
|
||
(pass-if-peval
|
||
;; Memv with non-constant list. It could fold but doesn't
|
||
;; currently.
|
||
(memv 1 (list 3 2 1))
|
||
(primcall memv
|
||
(const 1)
|
||
(primcall list (const 3) (const 2) (const 1))))
|
||
|
||
(pass-if-peval
|
||
;; Memv with non-constant key, constant list, test context
|
||
(case foo
|
||
((3 2 1) 'a)
|
||
(else 'b))
|
||
(let (key) (_) ((toplevel foo))
|
||
(if (if (primcall eqv? (lexical key _) (const 3))
|
||
(const #t)
|
||
(if (primcall eqv? (lexical key _) (const 2))
|
||
(const #t)
|
||
(primcall eqv? (lexical key _) (const 1))))
|
||
(const a)
|
||
(const b))))
|
||
|
||
(pass-if-peval
|
||
;; Memv with non-constant key, empty list, test context.
|
||
(case foo
|
||
(() 'a)
|
||
(else 'b))
|
||
(seq (toplevel foo) (const 'b)))
|
||
|
||
;;
|
||
;; Below are cases where constant propagation should bail out.
|
||
;;
|
||
|
||
(pass-if-peval
|
||
;; Non-constant lexical is not propagated.
|
||
(let ((v (make-vector 6 #f)))
|
||
(lambda (n)
|
||
(vector-set! v n n)))
|
||
(let (v) (_)
|
||
((primcall make-vector (const 6) (const #f)))
|
||
(lambda ()
|
||
(lambda-case
|
||
(((n) #f #f #f () (_))
|
||
(primcall vector-set!
|
||
(lexical v _) (lexical n _) (lexical n _)))))))
|
||
|
||
(pass-if-peval
|
||
;; Mutable lexical is not propagated.
|
||
(let ((v (vector 1 2 3)))
|
||
(lambda ()
|
||
v))
|
||
(let (v) (_)
|
||
((primcall vector (const 1) (const 2) (const 3)))
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(lexical v _))))))
|
||
|
||
(pass-if-peval
|
||
;; Lexical that is not provably pure is not inlined nor propagated.
|
||
(let* ((x (if (> p q) (frob!) (display 'chbouib)))
|
||
(y (* x 2)))
|
||
(+ x x y))
|
||
(let (x) (_) ((if (primcall > (toplevel p) (toplevel q))
|
||
(call (toplevel frob!))
|
||
(call (toplevel display) (const chbouib))))
|
||
(let (y) (_) ((primcall * (lexical x _) (const 2)))
|
||
(primcall +
|
||
(primcall + (lexical x _) (lexical x _))
|
||
(lexical y _)))))
|
||
|
||
(pass-if-peval
|
||
;; Non-constant arguments not propagated to lambdas.
|
||
((lambda (x y z)
|
||
(vector-set! x 0 0)
|
||
(set-car! y 0)
|
||
(set-cdr! z '()))
|
||
(vector 1 2 3)
|
||
(make-list 10)
|
||
(list 1 2 3))
|
||
(let (x y z) (_ _ _)
|
||
((primcall vector (const 1) (const 2) (const 3))
|
||
(call (toplevel make-list) (const 10))
|
||
(primcall list (const 1) (const 2) (const 3)))
|
||
(seq
|
||
(primcall vector-set!
|
||
(lexical x _) (const 0) (const 0))
|
||
(seq (primcall set-car!
|
||
(lexical y _) (const 0))
|
||
(primcall set-cdr!
|
||
(lexical z _) (const ()))))))
|
||
|
||
(pass-if-peval
|
||
(let ((foo top-foo) (bar top-bar))
|
||
(let* ((g (lambda (x y) (+ x y)))
|
||
(f (lambda (g x) (g x x))))
|
||
(+ (f g foo) (f g bar))))
|
||
(let (foo bar) (_ _) ((toplevel top-foo) (toplevel top-bar))
|
||
(primcall +
|
||
(primcall + (lexical foo _) (lexical foo _))
|
||
(primcall + (lexical bar _) (lexical bar _)))))
|
||
|
||
(pass-if-peval
|
||
;; Fresh objects are not turned into constants, nor are constants
|
||
;; turned into fresh objects.
|
||
(let* ((c '(2 3))
|
||
(x (cons 1 c))
|
||
(y (cons 0 x)))
|
||
y)
|
||
(let (x) (_) ((primcall cons (const 1) (const (2 3))))
|
||
(primcall cons (const 0) (lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; Bindings mutated.
|
||
(let ((x 2))
|
||
(set! x 3)
|
||
x)
|
||
(let (x) (_) ((const 2))
|
||
(seq
|
||
(set! (lexical x _) (const 3))
|
||
(lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; Bindings mutated.
|
||
(letrec ((x 0)
|
||
(f (lambda ()
|
||
(set! x (+ 1 x))
|
||
x)))
|
||
(frob f) ; may mutate `x'
|
||
x)
|
||
(letrec (x) (_) ((const 0))
|
||
(seq
|
||
(call (toplevel frob) (lambda _ _))
|
||
(lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; Bindings mutated.
|
||
(letrec ((f (lambda (x)
|
||
(set! f (lambda (_) x))
|
||
x)))
|
||
(f 2))
|
||
(letrec _ . _))
|
||
|
||
(pass-if-peval
|
||
;; Bindings possibly mutated.
|
||
(let ((x (make-foo)))
|
||
(frob! x) ; may mutate `x'
|
||
x)
|
||
(let (x) (_) ((call (toplevel make-foo)))
|
||
(seq
|
||
(call (toplevel frob!) (lexical x _))
|
||
(lexical x _))))
|
||
|
||
(pass-if-peval
|
||
;; Inlining stops at recursive calls with dynamic arguments.
|
||
(let loop ((x x))
|
||
(if (< x 0) x (loop (1- x))))
|
||
(letrec (loop) (_) ((lambda (_)
|
||
(lambda-case
|
||
(((x) #f #f #f () (_))
|
||
(if _ _
|
||
(call (lexical loop _)
|
||
(primcall 1-
|
||
(lexical x _))))))))
|
||
(call (lexical loop _) (toplevel x))))
|
||
|
||
(pass-if-peval
|
||
;; Recursion on the 2nd argument is fully evaluated.
|
||
(let ((x (top)))
|
||
(let loop ((x x) (y 10))
|
||
(if (> y 0)
|
||
(loop x (1- y))
|
||
(foo x y))))
|
||
(let (x) (_) ((call (toplevel top)))
|
||
(call (toplevel foo) (lexical x _) (const 0))))
|
||
|
||
(pass-if-peval
|
||
;; Inlining aborted when residual code contains recursive calls.
|
||
;;
|
||
;; <http://debbugs.gnu.org/9542>
|
||
(let loop ((x x) (y 0))
|
||
(if (> y 0)
|
||
(loop (1- x) (1- y))
|
||
(if (< x 0)
|
||
x
|
||
(loop (1+ x) (1+ y)))))
|
||
(letrec (loop) (_) ((lambda (_)
|
||
(lambda-case
|
||
(((x y) #f #f #f () (_ _))
|
||
(if (primcall >
|
||
(lexical y _) (const 0))
|
||
_ _)))))
|
||
(call (lexical loop _) (toplevel x) (const 0))))
|
||
|
||
(pass-if-peval
|
||
;; Infinite recursion: `peval' gives up and leaves it as is.
|
||
(letrec ((f (lambda (x) (g (1- x))))
|
||
(g (lambda (x) (h (1+ x))))
|
||
(h (lambda (x) (f x))))
|
||
(f 0))
|
||
(letrec _ . _))
|
||
|
||
(pass-if-peval
|
||
;; Infinite recursion: all the arguments to `loop' are static, but
|
||
;; unrolling it would lead `peval' to enter an infinite loop.
|
||
(let loop ((x 0))
|
||
(and (< x top)
|
||
(loop (1+ x))))
|
||
(letrec (loop) (_) ((lambda . _))
|
||
(call (lexical loop _) (const 0))))
|
||
|
||
(pass-if-peval
|
||
;; This test checks that the `start' binding is indeed residualized.
|
||
;; See the `referenced?' procedure in peval's `prune-bindings'.
|
||
(let ((pos 0))
|
||
(let ((here (let ((start pos)) (lambda () start))))
|
||
(set! pos 1) ;; Cause references to `pos' to residualize.
|
||
(here)))
|
||
(let (pos) (_) ((const 0))
|
||
(let (here) (_) (_)
|
||
(seq
|
||
(set! (lexical pos _) (const 1))
|
||
(call (lexical here _))))))
|
||
|
||
(pass-if-peval
|
||
;; FIXME: should this one residualize the binding?
|
||
(letrec ((a a))
|
||
1)
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; This is a fun one for peval to handle.
|
||
(letrec ((a a))
|
||
a)
|
||
(letrec (a) (_) ((lexical a _))
|
||
(lexical a _)))
|
||
|
||
(pass-if-peval
|
||
;; Another interesting recursive case.
|
||
(letrec ((a b) (b a))
|
||
a)
|
||
(letrec (a) (_) ((lexical a _))
|
||
(lexical a _)))
|
||
|
||
(pass-if-peval
|
||
;; Another pruning case, that `a' is residualized.
|
||
(letrec ((a (lambda () (a)))
|
||
(b (lambda () (a)))
|
||
(c (lambda (x) x)))
|
||
(let ((d (foo b)))
|
||
(c d)))
|
||
|
||
;; "b c a" is the current order that we get with unordered letrec,
|
||
;; but it's not important to this test, so if it changes, just adapt
|
||
;; the test.
|
||
(letrec (b a) (_ _)
|
||
((lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(call (lexical a _)))))
|
||
(lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(call (lexical a _))))))
|
||
(call (toplevel foo) (lexical b _))))
|
||
|
||
(pass-if-peval
|
||
;; In this case, we can prune the bindings. `a' ends up being copied
|
||
;; because it is only referenced once in the source program. Oh
|
||
;; well.
|
||
(letrec* ((a (lambda (x) (top x)))
|
||
(b (lambda () a)))
|
||
(foo (b) (b)))
|
||
(call (toplevel foo)
|
||
(lambda _
|
||
(lambda-case
|
||
(((x) #f #f #f () (_))
|
||
(call (toplevel top) (lexical x _)))))
|
||
(lambda _
|
||
(lambda-case
|
||
(((x) #f #f #f () (_))
|
||
(call (toplevel top) (lexical x _)))))))
|
||
|
||
(pass-if-peval
|
||
;; The inliner sees through a `let'.
|
||
((let ((a 10)) (lambda (b) (* b 2))) 30)
|
||
(const 60))
|
||
|
||
(pass-if-peval
|
||
((lambda ()
|
||
(define (const x) (lambda (_) x))
|
||
(let ((v #f))
|
||
((const #t) v))))
|
||
(const #t))
|
||
|
||
(pass-if-peval
|
||
;; Applications of procedures with rest arguments can get inlined.
|
||
((lambda (x y . z)
|
||
(list x y z))
|
||
1 2 3 4)
|
||
(let (z) (_) ((primcall list (const 3) (const 4)))
|
||
(primcall list (const 1) (const 2) (lexical z _))))
|
||
|
||
(pass-if-peval
|
||
;; Unmutated lists can get inlined.
|
||
(let ((args (list 2 3)))
|
||
(apply (lambda (x y z w)
|
||
(list x y z w))
|
||
0 1 args))
|
||
(primcall list (const 0) (const 1) (const 2) (const 3)))
|
||
|
||
(pass-if-peval
|
||
;; However if the list might have been mutated, it doesn't propagate.
|
||
(let ((args (list 2 3)))
|
||
(foo! args)
|
||
(apply (lambda (x y z w)
|
||
(list x y z w))
|
||
0 1 args))
|
||
(let (args) (_) ((primcall list (const 2) (const 3)))
|
||
(seq
|
||
(call (toplevel foo!) (lexical args _))
|
||
(primcall apply
|
||
(lambda ()
|
||
(lambda-case
|
||
(((x y z w) #f #f #f () (_ _ _ _))
|
||
(primcall list
|
||
(lexical x _) (lexical y _)
|
||
(lexical z _) (lexical w _)))))
|
||
(const 0)
|
||
(const 1)
|
||
(lexical args _)))))
|
||
|
||
(pass-if-peval
|
||
;; Here the `args' that gets built by the application of the lambda
|
||
;; takes more than effort "10" to visit. Test that we fall back to
|
||
;; the source expression of the operand, which is still a call to
|
||
;; `list', so the inlining still happens.
|
||
(lambda (bv offset n)
|
||
(let ((x (bytevector-ieee-single-native-ref
|
||
bv
|
||
(+ offset 0)))
|
||
(y (bytevector-ieee-single-native-ref
|
||
bv
|
||
(+ offset 4))))
|
||
(let ((args (list x y)))
|
||
(apply
|
||
(lambda (bv offset x y)
|
||
(bytevector-ieee-single-native-set!
|
||
bv
|
||
(+ offset 0)
|
||
x)
|
||
(bytevector-ieee-single-native-set!
|
||
bv
|
||
(+ offset 4)
|
||
y))
|
||
bv
|
||
offset
|
||
args))))
|
||
(lambda ()
|
||
(lambda-case
|
||
(((bv offset n) #f #f #f () (_ _ _))
|
||
(let (x y) (_ _) ((primcall bytevector-ieee-single-native-ref
|
||
(lexical bv _)
|
||
(primcall +
|
||
(lexical offset _) (const 0)))
|
||
(primcall bytevector-ieee-single-native-ref
|
||
(lexical bv _)
|
||
(primcall +
|
||
(lexical offset _) (const 4))))
|
||
(seq
|
||
(primcall bytevector-ieee-single-native-set!
|
||
(lexical bv _)
|
||
(primcall +
|
||
(lexical offset _) (const 0))
|
||
(lexical x _))
|
||
(primcall bytevector-ieee-single-native-set!
|
||
(lexical bv _)
|
||
(primcall +
|
||
(lexical offset _) (const 4))
|
||
(lexical y _))))))))
|
||
|
||
(pass-if-peval
|
||
;; Here we ensure that non-constant expressions are not copied.
|
||
(lambda ()
|
||
(let ((args (list (foo!))))
|
||
(apply
|
||
(lambda (z x)
|
||
(list z x))
|
||
;; This toplevel ref might raise an unbound variable exception.
|
||
;; The effects of `(foo!)' must be visible before this effect.
|
||
z
|
||
args)))
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(let (_) (_) ((call (toplevel foo!)))
|
||
(let (z) (_) ((toplevel z))
|
||
(primcall 'list
|
||
(lexical z _)
|
||
(lexical _ _))))))))
|
||
|
||
(pass-if-peval
|
||
;; Rest args referenced more than once are not destructured.
|
||
(lambda ()
|
||
(let ((args (list 'foo)))
|
||
(set-car! args 'bar)
|
||
(apply
|
||
(lambda (z x)
|
||
(list z x))
|
||
z
|
||
args)))
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(let (args) (_)
|
||
((primcall list (const foo)))
|
||
(seq
|
||
(primcall set-car! (lexical args _) (const bar))
|
||
(primcall apply
|
||
(lambda . _)
|
||
(toplevel z)
|
||
(lexical args _))))))))
|
||
|
||
(pass-if-peval
|
||
;; Let-values inlining, even with consumers with rest args.
|
||
(call-with-values (lambda () (values 1 2))
|
||
(lambda args
|
||
(apply list args)))
|
||
(primcall list (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
;; When we can't inline let-values but can prove that the producer
|
||
;; has just one value, reduce to "let" (which can then fold
|
||
;; further).
|
||
(call-with-values (lambda () (if foo 1 2))
|
||
(lambda args
|
||
(apply values args)))
|
||
(if (toplevel foo) (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cons of #nil does not make list
|
||
(cons 1 #nil)
|
||
(primcall cons (const 1) (const '#nil)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cons
|
||
(begin (cons 1 2) #f)
|
||
(const #f))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cons
|
||
(begin (cons (foo) 2) #f)
|
||
(seq (call (toplevel foo)) (const #f)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cons
|
||
(if (cons 0 0) 1 2)
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: car+cons
|
||
(car (cons 1 0))
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cdr+cons
|
||
(cdr (cons 1 0))
|
||
(const 0))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: car+cons, impure
|
||
(car (cons 1 (bar)))
|
||
(seq (call (toplevel bar)) (const 1)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cdr+cons, impure
|
||
(cdr (cons (bar) 0))
|
||
(seq (call (toplevel bar)) (const 0)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: car+list
|
||
(car (list 1 0))
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cdr+list
|
||
(cdr (list 1 0))
|
||
(primcall list (const 0)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: car+list, impure
|
||
(car (list 1 (bar)))
|
||
(seq (call (toplevel bar)) (const 1)))
|
||
|
||
(pass-if-peval
|
||
;; Constant folding: cdr+list, impure
|
||
(cdr (list (bar) 0))
|
||
(seq (call (toplevel bar)) (primcall list (const 0))))
|
||
|
||
(pass-if-peval
|
||
;; Equality primitive: same lexical
|
||
(let ((x (random))) (eq? x x))
|
||
(seq (call (toplevel random)) (const #t)))
|
||
|
||
(pass-if-peval
|
||
;; Equality primitive: merge lexical identities
|
||
(let* ((x (random)) (y x)) (eq? x y))
|
||
(seq (call (toplevel random)) (const #t)))
|
||
|
||
(pass-if-peval
|
||
;; Non-constant guards get lexical bindings, invocation of winder and
|
||
;; unwinder lifted out. Unfortunately both have the generic variable
|
||
;; name "tmp", so we can't distinguish them in this test, and they
|
||
;; also collide in generic names with the single-value result from
|
||
;; the dynwind; alack.
|
||
(dynamic-wind foo (lambda () bar) baz)
|
||
(let (tmp tmp) (_ _) ((toplevel foo) (toplevel baz))
|
||
(seq (seq (if (primcall thunk? (lexical tmp _))
|
||
(call (lexical tmp _))
|
||
(primcall scm-error . _))
|
||
(primcall wind (lexical tmp _) (lexical tmp _)))
|
||
(let (tmp) (_) ((toplevel bar))
|
||
(seq (seq (primcall unwind)
|
||
(call (lexical tmp _)))
|
||
(lexical tmp _))))))
|
||
|
||
(pass-if-peval
|
||
;; Constant guards don't need lexical bindings or thunk? checks.
|
||
(dynamic-wind (lambda () foo) (lambda () bar) (lambda () baz))
|
||
(seq (seq (toplevel foo)
|
||
(primcall wind
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ()) (toplevel foo))))
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ()) (toplevel baz))))))
|
||
(let (tmp) (_) ((toplevel bar))
|
||
(seq (seq (primcall unwind)
|
||
(toplevel baz))
|
||
(lexical tmp _)))))
|
||
|
||
(pass-if-peval
|
||
;; Dynwind bodies that return an unknown number of values need a
|
||
;; let-values.
|
||
(dynamic-wind (lambda () foo) (lambda () (bar)) (lambda () baz))
|
||
(seq (seq (toplevel foo)
|
||
(primcall wind
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ()) (toplevel foo))))
|
||
(lambda ()
|
||
(lambda-case
|
||
((() #f #f #f () ()) (toplevel baz))))))
|
||
(let-values (call (toplevel bar))
|
||
(lambda-case
|
||
((() #f vals #f () (_))
|
||
(seq (seq (primcall unwind)
|
||
(toplevel baz))
|
||
(primcall apply (primitive values) (lexical vals _))))))))
|
||
|
||
(pass-if-peval
|
||
;; Prompt is removed if tag is unreferenced
|
||
(let ((tag (make-prompt-tag)))
|
||
(call-with-prompt tag
|
||
(lambda () 1)
|
||
(lambda args args)))
|
||
(const 1))
|
||
|
||
(pass-if-peval
|
||
;; Prompt is removed if tag is unreferenced, with explicit stem
|
||
(let ((tag (make-prompt-tag "foo")))
|
||
(call-with-prompt tag
|
||
(lambda () 1)
|
||
(lambda args args)))
|
||
(const 1))
|
||
|
||
;; Handler lambda inlined
|
||
(pass-if-peval
|
||
(call-with-prompt tag
|
||
(lambda () 1)
|
||
(lambda (k x) x))
|
||
(prompt #t
|
||
(toplevel tag)
|
||
(const 1)
|
||
(lambda _
|
||
(lambda-case
|
||
(((k x) #f #f #f () (_ _))
|
||
(lexical x _))))))
|
||
|
||
;; Handler toplevel not inlined
|
||
(pass-if-peval
|
||
(call-with-prompt tag
|
||
(lambda () 1)
|
||
handler)
|
||
(prompt #f
|
||
(toplevel tag)
|
||
(lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(const 1))))
|
||
(toplevel handler)))
|
||
|
||
(pass-if-peval
|
||
;; `while' without `break' or `continue' has no prompts and gets its
|
||
;; condition folded. Unfortunately the outer `lp' does not yet get
|
||
;; elided, and the continuation tag stays around. (The continue tag
|
||
;; stays around because although it is not referenced, recursively
|
||
;; visiting the loop in the continue handler manages to visit the tag
|
||
;; twice before aborting. The abort doesn't unroll the recursive
|
||
;; reference.)
|
||
(while #t #t)
|
||
(let (_) (_) ((primcall make-prompt-tag . _))
|
||
(letrec (lp) (_)
|
||
((lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(letrec (loop) (_)
|
||
((lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(call (lexical loop _))))))
|
||
(call (lexical loop _)))))))
|
||
(call (lexical lp _)))))
|
||
|
||
(pass-if-peval
|
||
(lambda (a . rest)
|
||
(apply (lambda (x y) (+ x y))
|
||
a rest))
|
||
(lambda _
|
||
(lambda-case
|
||
(((x y) #f #f #f () (_ _))
|
||
_))))
|
||
|
||
(pass-if-peval
|
||
(car '(1 2))
|
||
(const 1))
|
||
|
||
;; If we bail out when inlining an identifier because it's too big,
|
||
;; but the identifier simply aliases some other identifier, then avoid
|
||
;; residualizing a reference to the leaf identifier. The bailout is
|
||
;; driven by the recursive-effort-limit, which is currently 100. We
|
||
;; make sure to trip it with this recursive sum thing.
|
||
(pass-if-peval
|
||
(let ((x (let sum ((n 0) (out 0))
|
||
(if (< n 10000)
|
||
(sum (1+ n) (+ out n))
|
||
out))))
|
||
((lambda (y) (list y)) x))
|
||
(let (x) (_) (_)
|
||
(primcall list (lexical x _))))
|
||
|
||
;; Here we test that a common test in a chain of ifs gets lifted.
|
||
(pass-if-peval
|
||
(if (and (struct? x) (eq? (struct-vtable x) A))
|
||
(foo x)
|
||
(if (and (struct? x) (eq? (struct-vtable x) B))
|
||
(bar x)
|
||
(if (and (struct? x) (eq? (struct-vtable x) C))
|
||
(baz x)
|
||
(qux x))))
|
||
(let (failure) (_) ((lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(call (toplevel qux) (toplevel x))))))
|
||
(if (primcall struct? (toplevel x))
|
||
(if (primcall eq?
|
||
(primcall struct-vtable (toplevel x))
|
||
(toplevel A))
|
||
(call (toplevel foo) (toplevel x))
|
||
(if (primcall eq?
|
||
(primcall struct-vtable (toplevel x))
|
||
(toplevel B))
|
||
(call (toplevel bar) (toplevel x))
|
||
(if (primcall eq?
|
||
(primcall struct-vtable (toplevel x))
|
||
(toplevel C))
|
||
(call (toplevel baz) (toplevel x))
|
||
(call (lexical failure _)))))
|
||
(call (lexical failure _)))))
|
||
|
||
;; Multiple common tests should get lifted as well.
|
||
(pass-if-peval
|
||
(if (and (struct? x) (eq? (struct-vtable x) A) B)
|
||
(foo x)
|
||
(if (and (struct? x) (eq? (struct-vtable x) A) C)
|
||
(bar x)
|
||
(if (and (struct? x) (eq? (struct-vtable x) A) D)
|
||
(baz x)
|
||
(qux x))))
|
||
(let (failure) (_) ((lambda _
|
||
(lambda-case
|
||
((() #f #f #f () ())
|
||
(call (toplevel qux) (toplevel x))))))
|
||
(if (primcall struct? (toplevel x))
|
||
(if (primcall eq?
|
||
(primcall struct-vtable (toplevel x))
|
||
(toplevel A))
|
||
(if (toplevel B)
|
||
(call (toplevel foo) (toplevel x))
|
||
(if (toplevel C)
|
||
(call (toplevel bar) (toplevel x))
|
||
(if (toplevel D)
|
||
(call (toplevel baz) (toplevel x))
|
||
(call (lexical failure _)))))
|
||
(call (lexical failure _)))
|
||
(call (lexical failure _)))))
|
||
|
||
(pass-if-peval
|
||
(apply (lambda (x y) (cons x y)) '(1 2))
|
||
(primcall cons (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
(apply (lambda (x y) (cons x y)) (list 1 2))
|
||
(primcall cons (const 1) (const 2)))
|
||
|
||
;; Disable after removal of abort-in-tail-position optimization, in
|
||
;; hopes that CPS does a uniformly better job.
|
||
#;
|
||
(pass-if-peval
|
||
(let ((t (make-prompt-tag)))
|
||
(call-with-prompt t
|
||
(lambda () (abort-to-prompt t 1 2 3))
|
||
(lambda (k x y z) (list x y z))))
|
||
(primcall list (const 1) (const 2) (const 3)))
|
||
|
||
(pass-if-peval
|
||
(call-with-values foo (lambda (x) (bar x)))
|
||
(let (x) (_) ((call (toplevel foo)))
|
||
(call (toplevel bar) (lexical x _))))
|
||
|
||
(pass-if-peval
|
||
((lambda (foo)
|
||
(define* (bar a #:optional (b (1+ a)))
|
||
(list a b))
|
||
(bar 1))
|
||
1)
|
||
(primcall list (const 1) (const 2)))
|
||
|
||
(pass-if-peval
|
||
;; Should not inline tail list to apply if it is mutable.
|
||
;; <http://debbugs.gnu.org/15533>
|
||
(let ((l '()))
|
||
(if (pair? arg)
|
||
(set! l arg))
|
||
(apply f l))
|
||
(let (l) (_) ((const ()))
|
||
(seq
|
||
(if (primcall pair? (toplevel arg))
|
||
(set! (lexical l _) (toplevel arg))
|
||
(void))
|
||
(primcall apply (toplevel f) (lexical l _))))))
|