mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 03:40:34 +02:00
* libguile/integers.c (scm_integer_logbit_ui, scm_integer_logbit_uz): * libguile/integers.h: Declare the new internal functions. * libguile/numbers.c (scm_logbit_p): Use new internal functions.
2030 lines
42 KiB
C
2030 lines
42 KiB
C
/* Copyright 1995-2016,2018-2021
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of Guile.
|
||
|
||
Guile is free software: you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Guile is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with Guile. If not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <stdlib.h>
|
||
#include <stdio.h>
|
||
#include <verify.h>
|
||
|
||
#include "boolean.h"
|
||
#include "numbers.h"
|
||
|
||
#include "integers.h"
|
||
|
||
/* Some functions that use GMP's mpn functions assume that a
|
||
non-negative fixnum will always fit in a 'mp_limb_t'. */
|
||
verify (SCM_MOST_POSITIVE_FIXNUM <= (mp_limb_t) -1);
|
||
|
||
#define NLIMBS_MAX (SSIZE_MAX / sizeof(mp_limb_t))
|
||
|
||
#ifndef NDEBUG
|
||
#define ASSERT(x) \
|
||
do { \
|
||
if (!(x)) \
|
||
{ \
|
||
fprintf (stderr, "%s:%d: assertion failed\n", __FILE__, __LINE__); \
|
||
abort(); \
|
||
} \
|
||
} while (0)
|
||
#else
|
||
#define ASSERT(x) do { } while (0)
|
||
#endif
|
||
|
||
struct scm_bignum
|
||
{
|
||
scm_t_bits tag;
|
||
/* FIXME: In Guile 3.2, replace this union with just a "size" member.
|
||
Digits are always allocated inline. */
|
||
union {
|
||
mpz_t mpz;
|
||
struct {
|
||
int zero;
|
||
int size;
|
||
mp_limb_t *limbs;
|
||
} z;
|
||
} u;
|
||
mp_limb_t limbs[];
|
||
};
|
||
|
||
static inline struct scm_bignum *
|
||
scm_bignum (SCM x)
|
||
{
|
||
ASSERT (SCM_BIGP (x));
|
||
return (struct scm_bignum *) SCM_UNPACK (x);
|
||
}
|
||
|
||
static int
|
||
bignum_size (struct scm_bignum *z)
|
||
{
|
||
return z->u.z.size;
|
||
}
|
||
|
||
static int
|
||
bignum_is_negative (struct scm_bignum *z)
|
||
{
|
||
return bignum_size (z) < 0;
|
||
}
|
||
|
||
static int
|
||
bignum_is_positive (struct scm_bignum *z)
|
||
{
|
||
return bignum_size (z) > 0;
|
||
}
|
||
|
||
static size_t
|
||
bignum_limb_count (struct scm_bignum *z)
|
||
{
|
||
return bignum_is_negative (z) ? -bignum_size (z) : bignum_size (z);
|
||
}
|
||
|
||
static mp_limb_t*
|
||
bignum_limbs (struct scm_bignum *z)
|
||
{
|
||
// FIXME: In the future we can just return z->limbs.
|
||
return z->u.z.limbs;
|
||
}
|
||
|
||
static inline unsigned long
|
||
long_magnitude (long l)
|
||
{
|
||
unsigned long mag = l;
|
||
return l < 0 ? ~mag + 1 : mag;
|
||
}
|
||
|
||
static inline long
|
||
negative_long (unsigned long mag)
|
||
{
|
||
ASSERT (mag <= (unsigned long) LONG_MIN);
|
||
return ~mag + 1;
|
||
}
|
||
|
||
static inline scm_t_bits
|
||
inum_magnitude (scm_t_inum i)
|
||
{
|
||
scm_t_bits mag = i;
|
||
if (i < 0)
|
||
mag = ~mag + 1;
|
||
return mag;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
allocate_bignum (size_t nlimbs)
|
||
{
|
||
ASSERT (nlimbs <= (size_t)INT_MAX);
|
||
ASSERT (nlimbs <= NLIMBS_MAX);
|
||
|
||
size_t size = sizeof (struct scm_bignum) + nlimbs * sizeof(mp_limb_t);
|
||
struct scm_bignum *z = scm_gc_malloc_pointerless (size, "bignum");
|
||
|
||
z->tag = scm_tc16_big;
|
||
|
||
z->u.z.zero = 0;
|
||
z->u.z.size = nlimbs;
|
||
z->u.z.limbs = z->limbs;
|
||
|
||
// _mp_alloc == 0 means GMP will never try to free this memory.
|
||
ASSERT (z->u.mpz[0]._mp_alloc == 0);
|
||
// Our "size" field should alias the mpz's _mp_size field.
|
||
ASSERT (z->u.mpz[0]._mp_size == nlimbs);
|
||
// Limbs are always allocated inline.
|
||
ASSERT (z->u.mpz[0]._mp_d == z->limbs);
|
||
|
||
// z->limbs left uninitialized.
|
||
return z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
negate_bignum (struct scm_bignum *z)
|
||
{
|
||
z->u.z.size = -z->u.z.size;
|
||
return z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
make_bignum_1 (int is_negative, mp_limb_t limb)
|
||
{
|
||
struct scm_bignum *z = allocate_bignum (1);
|
||
z->limbs[0] = limb;
|
||
return is_negative ? negate_bignum(z) : z;
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
ulong_to_bignum (unsigned long u)
|
||
{
|
||
return make_bignum_1 (0, u);
|
||
};
|
||
|
||
static struct scm_bignum *
|
||
long_to_bignum (long i)
|
||
{
|
||
if (i > 0)
|
||
return ulong_to_bignum (i);
|
||
|
||
return make_bignum_1 (1, long_magnitude (i));
|
||
};
|
||
|
||
static SCM
|
||
long_to_scm (long i)
|
||
{
|
||
if (SCM_FIXABLE (i))
|
||
return SCM_I_MAKINUM (i);
|
||
return SCM_PACK (long_to_bignum (i));
|
||
}
|
||
|
||
static SCM
|
||
ulong_to_scm (unsigned long i)
|
||
{
|
||
if (SCM_POSFIXABLE (i))
|
||
return SCM_I_MAKINUM (i);
|
||
return SCM_PACK (ulong_to_bignum (i));
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
clone_bignum (struct scm_bignum *z)
|
||
{
|
||
struct scm_bignum *ret = allocate_bignum (bignum_limb_count (z));
|
||
mpn_copyi (bignum_limbs (ret), bignum_limbs (z), bignum_limb_count (z));
|
||
return bignum_is_negative (z) ? negate_bignum (ret) : ret;
|
||
}
|
||
|
||
static void
|
||
alias_bignum_to_mpz (struct scm_bignum *z, mpz_ptr mpz)
|
||
{
|
||
// No need to clear this mpz.
|
||
mpz->_mp_alloc = 0;
|
||
mpz->_mp_size = bignum_size (z);
|
||
// Gotta be careful to keep z alive.
|
||
mpz->_mp_d = bignum_limbs (z);
|
||
}
|
||
|
||
static struct scm_bignum *
|
||
make_bignum_from_mpz (mpz_srcptr mpz)
|
||
{
|
||
size_t nlimbs = mpz_size (mpz);
|
||
struct scm_bignum *ret = allocate_bignum (nlimbs);
|
||
mpn_copyi (bignum_limbs (ret), mpz_limbs_read (mpz), nlimbs);
|
||
return mpz_sgn (mpz) < 0 ? negate_bignum (ret) : ret;
|
||
}
|
||
|
||
static SCM
|
||
normalize_bignum (struct scm_bignum *z)
|
||
{
|
||
switch (bignum_size (z))
|
||
{
|
||
case -1:
|
||
if (bignum_limbs (z)[0] <= inum_magnitude (SCM_MOST_NEGATIVE_FIXNUM))
|
||
return SCM_I_MAKINUM (negative_long (bignum_limbs (z)[0]));
|
||
break;
|
||
case 0:
|
||
return SCM_INUM0;
|
||
case 1:
|
||
if (bignum_limbs (z)[0] <= SCM_MOST_POSITIVE_FIXNUM)
|
||
return SCM_I_MAKINUM (bignum_limbs (z)[0]);
|
||
break;
|
||
default:
|
||
break;
|
||
}
|
||
return SCM_PACK (z);
|
||
}
|
||
|
||
static SCM
|
||
take_mpz (mpz_ptr mpz)
|
||
{
|
||
struct scm_bignum *res = make_bignum_from_mpz (mpz);
|
||
mpz_clear (mpz);
|
||
return normalize_bignum (res);
|
||
}
|
||
|
||
static int
|
||
long_sign (long l)
|
||
{
|
||
if (l < 0) return -1;
|
||
if (l == 0) return 0;
|
||
return 1;
|
||
}
|
||
|
||
static int
|
||
bignum_cmp_long (struct scm_bignum *z, long l)
|
||
{
|
||
switch (bignum_size (z))
|
||
{
|
||
case -1:
|
||
if (l >= 0)
|
||
return -1;
|
||
return long_sign (long_magnitude (l) - bignum_limbs (z)[0]);
|
||
case 0:
|
||
return long_sign (l);
|
||
case 1:
|
||
if (l <= 0)
|
||
return 1;
|
||
return long_sign (bignum_limbs (z)[0] - (unsigned long) l);
|
||
default:
|
||
return long_sign (bignum_size (z));
|
||
}
|
||
}
|
||
|
||
int
|
||
scm_is_integer_odd_i (scm_t_inum i)
|
||
{
|
||
return i & 1;
|
||
}
|
||
|
||
int
|
||
scm_is_integer_odd_z (SCM z)
|
||
{
|
||
return bignum_limbs (scm_bignum (z))[0] & 1;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_abs_i (scm_t_inum i)
|
||
{
|
||
if (i >= 0)
|
||
return SCM_I_MAKINUM (i);
|
||
|
||
return ulong_to_scm (long_magnitude (i));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_abs_z (SCM z)
|
||
{
|
||
if (!bignum_is_negative (scm_bignum (z)))
|
||
return z;
|
||
|
||
return SCM_PACK (negate_bignum (clone_bignum (scm_bignum (z))));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (x < 0)
|
||
x = x - y + 1;
|
||
}
|
||
else if (y == 0)
|
||
scm_num_overflow ("floor-quotient");
|
||
else if (x > 0)
|
||
x = x - y - 1;
|
||
scm_t_inum q = x / y;
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (x == 0 || ((x < 0) == bignum_is_negative (scm_bignum (y))))
|
||
return SCM_INUM0;
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-quotient");
|
||
else if (y == 1)
|
||
return x;
|
||
|
||
mpz_t zx, q;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_init (q);
|
||
if (y > 0)
|
||
mpz_fdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_quotient_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t zx, zy, q;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_init (q);
|
||
mpz_fdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-remainder");
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r < 0) : (r > 0);
|
||
if (needs_adjustment)
|
||
r += y;
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (bignum_is_positive (scm_bignum (y)))
|
||
{
|
||
if (x < 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_sub_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
return take_mpz (r);
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
else if (x <= 0)
|
||
return SCM_I_MAKINUM (x);
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_add_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
return take_mpz (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-remainder");
|
||
else
|
||
{
|
||
scm_t_inum r;
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
if (y > 0)
|
||
r = mpz_fdiv_ui (zx, y);
|
||
else
|
||
r = -mpz_cdiv_ui (zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_floor_remainder_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t zx, zy, r;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_init (r);
|
||
mpz_fdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r < 0) : (r > 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
r += y;
|
||
q--;
|
||
}
|
||
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_iz (scm_t_inum x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (bignum_is_positive (scm_bignum (y)))
|
||
{
|
||
if (x < 0)
|
||
{
|
||
mpz_t zy, r;
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_init (r);
|
||
mpz_sub_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = take_mpz (r);
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
else if (x <= 0)
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
else
|
||
{
|
||
mpz_t zy, r;
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_init (r);
|
||
mpz_add_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_zi (SCM x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("floor-divide");
|
||
|
||
mpz_t zx, q, r;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
if (y > 0)
|
||
mpz_fdiv_qr_ui (q, r, zx, y);
|
||
else
|
||
{
|
||
mpz_cdiv_qr_ui (q, r, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_floor_divide_zz (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t zx, zy, q, r;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-quotient");
|
||
|
||
if (y > 0)
|
||
{
|
||
if (x >= 0)
|
||
x = x + y - 1;
|
||
}
|
||
else if (x < 0)
|
||
x = x + y + 1;
|
||
scm_t_inum q = x / y;
|
||
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (bignum_is_positive (scm_bignum (y)))
|
||
{
|
||
if (x > 0)
|
||
return SCM_INUM1;
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_INUM0;
|
||
}
|
||
else if (x >= 0)
|
||
return SCM_INUM0;
|
||
else
|
||
return SCM_INUM1;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-quotient");
|
||
else if (y == 1)
|
||
return x;
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
if (y > 0)
|
||
mpz_cdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_fdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_quotient_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t q, zx, zy;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_cdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-remainder");
|
||
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment = (y > 0) ? (r > 0) : (r < 0);
|
||
if (needs_adjustment)
|
||
r -= y;
|
||
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (bignum_is_positive (scm_bignum (y)))
|
||
{
|
||
if (x > 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_sub_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
return take_mpz (r);
|
||
}
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_INUM0;
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
else if (x >= 0)
|
||
return SCM_I_MAKINUM (x);
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_add_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
return take_mpz (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-remainder");
|
||
else
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
if (y > 0)
|
||
r = -mpz_cdiv_ui (zx, y);
|
||
else
|
||
r = mpz_fdiv_ui (zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_ceiling_remainder_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t r, zx, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_cdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-divide");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
needs_adjustment = (r > 0);
|
||
else
|
||
needs_adjustment = (r < 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
r -= y;
|
||
q++;
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_iz (scm_t_inum x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (bignum_is_positive (scm_bignum (y)))
|
||
{
|
||
if (x > 0)
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_sub_ui (r, zy, x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
*qp = SCM_INUM1;
|
||
*rp = take_mpz (r);
|
||
}
|
||
else if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = SCM_INUM0;
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
else if (x >= 0)
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
else
|
||
{
|
||
mpz_t r, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_add_ui (r, zy, -x);
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_neg (r, r);
|
||
*qp = SCM_INUM1;
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_zi (SCM x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("ceiling-divide");
|
||
else
|
||
{
|
||
mpz_t q, r, zx;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
if (y > 0)
|
||
mpz_cdiv_qr_ui (q, r, zx, y);
|
||
else
|
||
{
|
||
mpz_fdiv_qr_ui (q, r, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_ceiling_divide_zz (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-quotient");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
return long_to_scm (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_INUM0;
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-quotient");
|
||
else if (y == 1)
|
||
return x;
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
if (y > 0)
|
||
mpz_tdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
mpz_tdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_quotient_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t q, zx, zy;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_tdiv_q (q, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-remainder");
|
||
else
|
||
{
|
||
scm_t_inum q = x % y;
|
||
return long_to_scm (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_iz (scm_t_inum x, SCM y)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_INUM0;
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (x);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-remainder");
|
||
else
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r = mpz_tdiv_ui (zx, (y > 0) ? y : -y) * mpz_sgn (zx);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_truncate_remainder_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t r, zx, zy;
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_tdiv_r (r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-divide");
|
||
else
|
||
{
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_iz (scm_t_inum x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM &&
|
||
bignum_cmp_long (scm_bignum (y), -SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
*qp = SCM_I_MAKINUM (-1);
|
||
*rp = SCM_INUM0;
|
||
}
|
||
else
|
||
{
|
||
*qp = SCM_INUM0;
|
||
*rp = SCM_I_MAKINUM (x);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_zi (SCM x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("truncate-divide");
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
if (y > 0)
|
||
r = mpz_tdiv_q_ui (q, zx, y);
|
||
else
|
||
{
|
||
r = mpz_tdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
}
|
||
r *= mpz_sgn (zx);
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_integer_truncate_divide_zz (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_tdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
static SCM
|
||
integer_centered_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, min_r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild. */
|
||
|
||
/* min_r will eventually become -abs(y)/2 */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for rr to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_sub_ui (q, q, 1);
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_add_ui (q, q, 1);
|
||
}
|
||
mpz_clear (r);
|
||
mpz_clear (min_r);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-quotient");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
q++;
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
q--;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
q++;
|
||
}
|
||
}
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_iz (scm_t_inum x, SCM y)
|
||
{
|
||
return integer_centered_quotient_zz (long_to_bignum (x),
|
||
scm_bignum (y));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-quotient");
|
||
else if (y == 1)
|
||
return x;
|
||
else
|
||
{
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
/* Arrange for r to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed
|
||
bounds. */
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
if (r < -y / 2)
|
||
mpz_sub_ui (q, q, 1);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_neg (q, q);
|
||
if (r < y / 2)
|
||
mpz_add_ui (q, q, 1);
|
||
}
|
||
return take_mpz (q);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_quotient_zz (SCM x, SCM y)
|
||
{
|
||
return integer_centered_quotient_zz (scm_bignum (x), scm_bignum (y));
|
||
}
|
||
|
||
static SCM
|
||
integer_centered_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t r, min_r, zx, zy;
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
|
||
/* min_r will eventually become -abs(y)/2 */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for r to initially be non-positive, because that simplifies
|
||
the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_r (r, zx, zy);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_add (r, r, zy);
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_r (r, zx, zy);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_clear (min_r);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-remainder");
|
||
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
r -= y;
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
r += y;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
r -= y;
|
||
}
|
||
}
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_iz (scm_t_inum x, SCM y)
|
||
{
|
||
return integer_centered_remainder_zz (long_to_bignum (x),
|
||
scm_bignum (y));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_zi (SCM x, scm_t_inum y)
|
||
{
|
||
mpz_t zx;
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-remainder");
|
||
|
||
scm_t_inum r;
|
||
/* Arrange for r to initially be non-positive, because that simplifies
|
||
the test to see if it is within the needed bounds. */
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_ui (zx, y);
|
||
if (r < -y / 2)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_ui (zx, -y);
|
||
if (r < y / 2)
|
||
r -= y;
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_centered_remainder_zz (SCM x, SCM y)
|
||
{
|
||
return integer_centered_remainder_zz (scm_bignum (x), scm_bignum (y));
|
||
}
|
||
|
||
static void
|
||
integer_centered_divide_zz (struct scm_bignum *x, struct scm_bignum *y,
|
||
SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, min_r, zx, zy;
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (min_r);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild */
|
||
|
||
/* min_r will eventually become -abs(y/2) */
|
||
mpz_tdiv_q_2exp (min_r, zy, 1);
|
||
|
||
/* Arrange for rr to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
if (mpz_sgn (zy) > 0)
|
||
{
|
||
mpz_cdiv_qr (q, r, zx, zy);
|
||
mpz_neg (min_r, min_r);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
{
|
||
mpz_sub_ui (q, q, 1);
|
||
mpz_add (r, r, zy);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
if (mpz_cmp (r, min_r) < 0)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
}
|
||
scm_remember_upto_here_2 (x, y);
|
||
mpz_clear (min_r);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
if (x > 0)
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r >= (y + 1) / 2)
|
||
{ q++; r -= y; }
|
||
}
|
||
else
|
||
{
|
||
if (r >= (1 - y) / 2)
|
||
{ q--; r += y; }
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (y > 0)
|
||
{
|
||
if (r < -y / 2)
|
||
{ q--; r += y; }
|
||
}
|
||
else
|
||
{
|
||
if (r < y / 2)
|
||
{ q++; r -= y; }
|
||
}
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_iz (scm_t_inum x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_centered_divide_zz (long_to_bignum (x), scm_bignum (y), qp, rp);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_zi (SCM x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("centered-divide");
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
|
||
/* Arrange for r to initially be non-positive, because that
|
||
simplifies the test to see if it is within the needed bounds. */
|
||
|
||
if (y > 0)
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, y);
|
||
if (r < -y / 2)
|
||
{
|
||
mpz_sub_ui (q, q, 1);
|
||
r += y;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (r < y / 2)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
r -= y;
|
||
}
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_centered_divide_zz (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_centered_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
}
|
||
|
||
static SCM
|
||
integer_round_quotient_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
scm_remember_upto_here_1 (x);
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
scm_remember_upto_here_1 (y);
|
||
|
||
if (needs_adjustment)
|
||
mpz_add_ui (q, q, 1);
|
||
|
||
mpz_clear (r);
|
||
mpz_clear (r2);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-quotient");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
q++;
|
||
else if (r2 <= -ay)
|
||
q--;
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
q++;
|
||
else if (r2 < -ay)
|
||
q--;
|
||
}
|
||
return long_to_scm (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_iz (scm_t_inum x, SCM y)
|
||
{
|
||
return integer_round_quotient_zz (long_to_bignum (x), scm_bignum (y));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-quotient");
|
||
if (y == 1)
|
||
return x;
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
if (needs_adjustment)
|
||
mpz_add_ui (q, q, 1);
|
||
return take_mpz (q);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_quotient_zz (SCM x, SCM y)
|
||
{
|
||
SCM q, r, r2;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
q = scm_i_mkbig ();
|
||
r = scm_i_mkbig ();
|
||
r2 = scm_i_mkbig ();
|
||
|
||
mpz_fdiv_qr (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (r),
|
||
SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
mpz_mul_2exp (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (r), 1); /* r2 = 2*r */
|
||
scm_remember_upto_here_2 (x, r);
|
||
|
||
cmp = mpz_cmpabs (SCM_I_BIG_MPZ (r2), SCM_I_BIG_MPZ (y));
|
||
if (mpz_odd_p (SCM_I_BIG_MPZ (q)))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
scm_remember_upto_here_2 (r2, y);
|
||
|
||
if (needs_adjustment)
|
||
mpz_add_ui (SCM_I_BIG_MPZ (q), SCM_I_BIG_MPZ (q), 1);
|
||
|
||
return scm_i_normbig (q);
|
||
}
|
||
|
||
static SCM
|
||
integer_round_remainder_zz (struct scm_bignum *x, struct scm_bignum *y)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a
|
||
fixnum, so we must not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
|
||
if (needs_adjustment)
|
||
mpz_sub (r, r, zy);
|
||
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_clear (q);
|
||
mpz_clear (r2);
|
||
return take_mpz (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-remainder");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
r -= y;
|
||
else if (r2 <= -ay)
|
||
r += y;
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
r -= y;
|
||
else if (r2 < -ay)
|
||
r += y;
|
||
}
|
||
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_iz (scm_t_inum x, SCM y)
|
||
{
|
||
return integer_round_remainder_zz (long_to_bignum (x), scm_bignum (y));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-remainder");
|
||
|
||
mpz_t q, zx;
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (q);
|
||
if (needs_adjustment)
|
||
r -= y;
|
||
return SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_round_remainder_zz (SCM x, SCM y)
|
||
{
|
||
return integer_round_remainder_zz (scm_bignum (x), scm_bignum (y));
|
||
}
|
||
|
||
static void
|
||
integer_round_divide_zz (struct scm_bignum *x, struct scm_bignum *y,
|
||
SCM *qp, SCM *rp)
|
||
{
|
||
mpz_t q, r, r2, zx, zy;
|
||
int cmp, needs_adjustment;
|
||
|
||
/* Note that x might be small enough to fit into a fixnum, so we must
|
||
not let it escape into the wild */
|
||
mpz_init (q);
|
||
mpz_init (r);
|
||
mpz_init (r2);
|
||
alias_bignum_to_mpz (x, zx);
|
||
alias_bignum_to_mpz (y, zy);
|
||
|
||
mpz_fdiv_qr (q, r, zx, zy);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_mul_2exp (r2, r, 1); /* r2 = 2*r */
|
||
|
||
cmp = mpz_cmpabs (r2, zy);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (cmp >= 0);
|
||
else
|
||
needs_adjustment = (cmp > 0);
|
||
|
||
if (needs_adjustment)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
mpz_sub (r, r, zy);
|
||
}
|
||
|
||
scm_remember_upto_here_1 (y);
|
||
mpz_clear (r2);
|
||
*qp = take_mpz (q);
|
||
*rp = take_mpz (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_ii (scm_t_inum x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-divide");
|
||
|
||
scm_t_inum q = x / y;
|
||
scm_t_inum r = x % y;
|
||
scm_t_inum ay = y;
|
||
scm_t_inum r2 = 2 * r;
|
||
|
||
if (y < 0)
|
||
{
|
||
ay = -ay;
|
||
r2 = -r2;
|
||
}
|
||
|
||
if (q & 1L)
|
||
{
|
||
if (r2 >= ay)
|
||
{ q++; r -= y; }
|
||
else if (r2 <= -ay)
|
||
{ q--; r += y; }
|
||
}
|
||
else
|
||
{
|
||
if (r2 > ay)
|
||
{ q++; r -= y; }
|
||
else if (r2 < -ay)
|
||
{ q--; r += y; }
|
||
}
|
||
*qp = long_to_scm (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_iz (scm_t_inum x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_round_divide_zz (long_to_bignum (x), scm_bignum (y), qp, rp);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_zi (SCM x, scm_t_inum y, SCM *qp, SCM *rp)
|
||
{
|
||
if (y == 0)
|
||
scm_num_overflow ("round-divide");
|
||
|
||
mpz_t q, zx;
|
||
mpz_init (q);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
scm_t_inum r;
|
||
int needs_adjustment;
|
||
|
||
if (y > 0)
|
||
{
|
||
r = mpz_fdiv_q_ui (q, zx, y);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r >= y);
|
||
else
|
||
needs_adjustment = (2*r > y);
|
||
}
|
||
else
|
||
{
|
||
r = - mpz_cdiv_q_ui (q, zx, -y);
|
||
mpz_neg (q, q);
|
||
if (mpz_odd_p (q))
|
||
needs_adjustment = (2*r <= y);
|
||
else
|
||
needs_adjustment = (2*r < y);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
if (needs_adjustment)
|
||
{
|
||
mpz_add_ui (q, q, 1);
|
||
r -= y;
|
||
}
|
||
*qp = take_mpz (q);
|
||
*rp = SCM_I_MAKINUM (r);
|
||
}
|
||
|
||
void
|
||
scm_integer_round_divide_zz (SCM x, SCM y, SCM *qp, SCM *rp)
|
||
{
|
||
integer_round_divide_zz (scm_bignum (x), scm_bignum (y), qp, rp);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
scm_t_inum u = x < 0 ? -x : x;
|
||
scm_t_inum v = y < 0 ? -y : y;
|
||
scm_t_inum result;
|
||
if (x == 0)
|
||
result = v;
|
||
else if (y == 0)
|
||
result = u;
|
||
else
|
||
{
|
||
int k = 0;
|
||
/* Determine a common factor 2^k */
|
||
while (((u | v) & 1) == 0)
|
||
{
|
||
k++;
|
||
u >>= 1;
|
||
v >>= 1;
|
||
}
|
||
/* Now, any factor 2^n can be eliminated */
|
||
if ((u & 1) == 0)
|
||
while ((u & 1) == 0)
|
||
u >>= 1;
|
||
else
|
||
while ((v & 1) == 0)
|
||
v >>= 1;
|
||
/* Both u and v are now odd. Subtract the smaller one
|
||
from the larger one to produce an even number, remove
|
||
more factors of two, and repeat. */
|
||
while (u != v)
|
||
{
|
||
if (u > v)
|
||
{
|
||
u -= v;
|
||
while ((u & 1) == 0)
|
||
u >>= 1;
|
||
}
|
||
else
|
||
{
|
||
v -= u;
|
||
while ((v & 1) == 0)
|
||
v >>= 1;
|
||
}
|
||
}
|
||
result = u << k;
|
||
}
|
||
return ulong_to_scm (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_zi (SCM x, scm_t_inum y)
|
||
{
|
||
scm_t_bits result;
|
||
if (y == 0)
|
||
return scm_abs (x);
|
||
if (y < 0)
|
||
y = -y;
|
||
result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), y);
|
||
scm_remember_upto_here_1 (x);
|
||
return ulong_to_scm (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_gcd_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_gcd (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
SCM d = scm_integer_gcd_ii (x, y);
|
||
if (scm_is_eq (d, SCM_INUM0))
|
||
return d;
|
||
else
|
||
return scm_abs (scm_product (SCM_I_MAKINUM (x),
|
||
scm_quotient (SCM_I_MAKINUM (y), d)));
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0) return SCM_INUM0;
|
||
if (y < 0) y = - y;
|
||
mpz_t result, zx;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_lcm_ui (result, zx, y);
|
||
scm_remember_upto_here_1 (x);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_lcm_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_lcm (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* shouldn't need to normalize b/c lcm of 2 bigs should be big */
|
||
return take_mpz (result);
|
||
}
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
SCM
|
||
scm_integer_logand_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x & y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logand_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
return SCM_INUM0;
|
||
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_and (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logand_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_and (result, zx, zy);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x | y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_zi (SCM x, scm_t_inum y)
|
||
{
|
||
if (y == 0)
|
||
return x;
|
||
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_ior (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logior_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_ior (result, zy, zx);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return SCM_I_MAKINUM (x ^ y);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_zi (SCM x, scm_t_inum y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
mpz_init_set_si (zy, y);
|
||
mpz_xor (result, zy, zx);
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_clear (zy);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
SCM
|
||
scm_integer_logxor_zz (SCM x, SCM y)
|
||
{
|
||
mpz_t result, zx, zy;
|
||
mpz_init (result);
|
||
alias_bignum_to_mpz (scm_bignum (x), zx);
|
||
alias_bignum_to_mpz (scm_bignum (y), zy);
|
||
mpz_xor (result, zy, zx);
|
||
scm_remember_upto_here_2 (x, y);
|
||
return take_mpz (result);
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_ii (scm_t_inum x, scm_t_inum y)
|
||
{
|
||
return (x & y) ? 1 : 0;
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_zi (SCM x, scm_t_inum y)
|
||
{
|
||
return scm_is_eq (scm_integer_logand_zi (x, y), SCM_INUM0);
|
||
}
|
||
|
||
int
|
||
scm_integer_logtest_zz (SCM x, SCM y)
|
||
{
|
||
return scm_is_eq (scm_integer_logand_zz (x, y), SCM_INUM0);
|
||
}
|
||
|
||
int
|
||
scm_integer_logbit_ui (unsigned long index, scm_t_inum n)
|
||
{
|
||
if (index < SCM_LONG_BIT)
|
||
/* Assume two's complement representation. */
|
||
return (n >> index) & 1;
|
||
else
|
||
return n < 0;
|
||
}
|
||
|
||
int
|
||
scm_integer_logbit_uz (unsigned long index, SCM n)
|
||
{
|
||
mpz_t zn;
|
||
alias_bignum_to_mpz (scm_bignum (n), zn);
|
||
int val = mpz_tstbit (zn, index);
|
||
scm_remember_upto_here_1 (n);
|
||
return val;
|
||
}
|