1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/async.c
Mikael Djurfeldt 9882ea1991 * arbiters.c (prinarb),
async.c (print_async),
debug.c (prindebugobj, prinmemoized),
eval.c (prinprom, prinmacro),
filesys.c (scm_fd_print, scm_dir_print),
kw.c (print_kw),
mallocs.c (prinmalloc),
numbers.c, numbers.h (scm_floprint, scm_bigprint),
smob.h (scm_smobfuns),
srcprop.c (prinsrcprops),
throw.c (prinjb),
unif.c, unif.h (scm_raprin1, rapr1),
variable.c (prin_var): Changed argument `int writing' to
`scm_print_state *pstate'.
1996-09-22 22:41:40 +00:00

745 lines
15 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* As a special exception, the Free Software Foundation gives permission
* for additional uses of the text contained in its release of GUILE.
*
* The exception is that, if you link the GUILE library with other files
* to produce an executable, this does not by itself cause the
* resulting executable to be covered by the GNU General Public License.
* Your use of that executable is in no way restricted on account of
* linking the GUILE library code into it.
*
* This exception does not however invalidate any other reasons why
* the executable file might be covered by the GNU General Public License.
*
* This exception applies only to the code released by the
* Free Software Foundation under the name GUILE. If you copy
* code from other Free Software Foundation releases into a copy of
* GUILE, as the General Public License permits, the exception does
* not apply to the code that you add in this way. To avoid misleading
* anyone as to the status of such modified files, you must delete
* this exception notice from them.
*
* If you write modifications of your own for GUILE, it is your choice
* whether to permit this exception to apply to your modifications.
* If you do not wish that, delete this exception notice.
*/
#include <stdio.h>
#include <signal.h>
#include "_scm.h"
#include "eval.h"
#include "throw.h"
#include "smob.h"
#include "async.h"
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/* {Asynchronous Events}
*
*
* Async == thunk + mark.
*
* Setting the mark guarantees future execution of the thunk. More
* than one set may be satisfied by a single execution.
*
* scm_tick_clock decremented once per SCM_ALLOW_INTS.
* Async execution triggered by SCM_ALLOW_INTS when scm_tick_clock drops to 0.
* Async execution prevented by scm_mask_ints != 0.
*
* If the clock reaches 0 when scm_mask_ints != 0, then reset the clock
* to 1.
*
* If the clock reaches 0 any other time, run marked asyncs.
*
* From a unix signal handler, mark a corresponding async and set the clock
* to 1. Do SCM_REDEFER_INTS;/SCM_REALLOW_INTS so that if the signal handler is not
* called in the dynamic scope of a critical section, it is excecuted immediately.
*
* Overall, closely timed signals of a particular sort may be combined. Pending signals
* are delivered in a fixed priority order, regardless of arrival order.
*
*/
#define min(A,B) ((A) < (B) ? (A) : (B))
unsigned int scm_async_clock = 20;
static unsigned int scm_async_rate = 20;
unsigned int scm_mask_ints = 1;
static unsigned int scm_tick_clock = 0;
static unsigned int scm_tick_rate = 0;
static unsigned int scm_desired_tick_rate = 0;
static unsigned int scm_switch_clock = 0;
static unsigned int scm_switch_rate = 0;
static unsigned int scm_desired_switch_rate = 0;
static SCM system_signal_asyncs[SCM_NUM_SIGS];
static SCM handler_var;
static SCM symbol_signal;
struct scm_async
{
int got_it; /* needs to be delivered? */
SCM thunk; /* the handler. */
};
static long scm_tc16_async;
#define SCM_ASYNCP(X) (scm_tc16_async == SCM_GCTYP16 (X))
#define SCM_ASYNC(X) ((struct scm_async *)SCM_CDR (X))
#ifdef __STDC__
static int
asyncs_pending (void)
#else
static int
asyncs_pending ()
#endif
{
SCM pos;
pos = scm_asyncs;
while (pos != SCM_EOL)
{
SCM a;
struct scm_async * it;
a = SCM_CAR (pos);
it = SCM_ASYNC (a);
if (it->got_it)
return 1;
pos = SCM_CDR (pos);
}
return 0;
}
#ifdef __STDC__
void
scm_async_click (void)
#else
void
scm_async_click ()
#endif
{
int owe_switch;
int owe_tick;
if (!scm_switch_rate)
{
owe_switch = 0;
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
{
owe_switch = (scm_async_rate >= scm_switch_clock);
if (owe_switch)
{
if (scm_desired_switch_rate)
{
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
scm_switch_clock = scm_switch_rate;
}
else
{
if (scm_desired_switch_rate)
{
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
scm_switch_clock -= scm_async_rate;
}
}
if (scm_mask_ints)
{
if (owe_switch)
scm_switch ();
scm_async_clock = 1;
return;;
}
if (!scm_tick_rate)
{
unsigned int r;
owe_tick = 0;
r = scm_desired_tick_rate;
if (r)
{
scm_desired_tick_rate = 0;
scm_tick_rate = r;
scm_tick_clock = r;
}
}
else
{
owe_tick = (scm_async_rate >= scm_tick_clock);
if (owe_tick)
{
scm_tick_clock = scm_tick_rate = scm_desired_tick_rate;
scm_desired_tick_rate = 0;
}
else
{
if (scm_desired_tick_rate)
{
scm_tick_clock = scm_tick_rate = scm_desired_tick_rate;
scm_desired_tick_rate = 0;
}
else
scm_tick_clock -= scm_async_rate;
}
}
if (owe_tick)
scm_async_mark (system_signal_asyncs[SCM_SIG_ORD(SCM_TICK_SIGNAL)]);
SCM_DEFER_INTS;
if (scm_tick_rate && scm_switch_rate)
{
scm_async_rate = min (scm_tick_clock, scm_switch_clock);
scm_async_clock = scm_async_rate;
}
else if (scm_tick_rate)
{
scm_async_clock = scm_async_rate = scm_tick_clock;
}
else if (scm_switch_rate)
{
scm_async_clock = scm_async_rate = scm_switch_clock;
}
else
scm_async_clock = scm_async_rate = 1 << 16;
SCM_ALLOW_INTS_ONLY;
tail:
scm_run_asyncs (scm_asyncs);
SCM_DEFER_INTS;
if (asyncs_pending ())
{
SCM_ALLOW_INTS_ONLY;
goto tail;
}
SCM_ALLOW_INTS;
if (owe_switch)
scm_switch ();
}
#ifdef __STDC__
void
scm_switch (void)
#else
void
scm_switch ()
#endif
{}
#ifdef __STDC__
static void
scm_deliver_signal (int num)
#else
static void
scm_deliver_signal (num)
int num;
#endif
{
SCM handler;
handler = SCM_CDR (handler_var);
if (handler != SCM_BOOL_F)
scm_apply (handler, SCM_MAKINUM (num), scm_listofnull);
else
{
scm_mask_ints = 0;
scm_throw (symbol_signal,
scm_listify (SCM_MAKINUM (num), SCM_UNDEFINED));
}
}
#ifdef __STDC__
static int
print_async (SCM exp, SCM port, scm_print_state *pstate)
#else
static int
print_async (exp, port, pstate)
SCM exp;
SCM port;
scm_print_state *pstate;
#endif
{
scm_gen_puts (scm_regular_string, "#<async ", port);
scm_intprint(exp, 16, port);
scm_gen_putc('>', port);
return 1;
}
#ifdef __STDC__
static SCM
mark_async (SCM obj)
#else
static SCM
mark_async (obj)
SCM obj;
#endif
{
struct scm_async * it;
if (SCM_GC8MARKP (obj))
return SCM_BOOL_F;
SCM_SETGC8MARK (obj);
it = SCM_ASYNC (obj);
return it->thunk;
}
#ifdef __STDC__
static scm_sizet
free_async (SCM obj)
#else
static scm_sizet
free_async (SCM obj)
SCM obj;
#endif
{
struct scm_async * it;
it = SCM_ASYNC (obj);
scm_must_free ((char *)it);
return (sizeof (*it));
}
static scm_smobfuns async_smob =
{
mark_async,
free_async,
print_async,
0
};
SCM_PROC(s_async, "async", 1, 0, 0, scm_async);
#ifdef __STDC__
SCM
scm_async (SCM thunk)
#else
SCM
scm_async (thunk)
SCM thunk;
#endif
{
SCM it;
struct scm_async * async;
SCM_NEWCELL (it);
SCM_DEFER_INTS;
SCM_SETCDR (it, SCM_EOL);
async = (struct scm_async *)scm_must_malloc (sizeof (*async), s_async);
async->got_it = 0;
async->thunk = thunk;
SCM_SETCDR (it, (SCM)async);
SCM_SETCAR (it, (SCM)scm_tc16_async);
SCM_ALLOW_INTS;
return it;
}
SCM_PROC(s_system_async, "system-async", 1, 0, 0, scm_system_async);
#ifdef __STDC__
SCM
scm_system_async (SCM thunk)
#else
SCM
scm_system_async (thunk)
SCM thunk;
#endif
{
SCM it;
SCM list;
it = scm_async (thunk);
SCM_NEWCELL (list);
SCM_DEFER_INTS;
SCM_SETCAR (list, it);
SCM_SETCDR (list, scm_asyncs);
scm_asyncs = list;
SCM_ALLOW_INTS;
return it;
}
SCM_PROC(s_async_mark, "async-mark", 1, 0, 0, scm_async_mark);
#ifdef __STDC__
SCM
scm_async_mark (SCM a)
#else
SCM
scm_async_mark (a)
SCM a;
#endif
{
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_async_mark);
it = SCM_ASYNC (a);
it->got_it = 1;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_system_async_mark, "system-async-mark", 1, 0, 0, scm_system_async_mark);
#ifdef __STDC__
SCM
scm_system_async_mark (SCM a)
#else
SCM
scm_system_async_mark (a)
SCM a;
#endif
{
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_async_mark);
it = SCM_ASYNC (a);
SCM_REDEFER_INTS;
it->got_it = 1;
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
SCM_REALLOW_INTS;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_run_asyncs, "run-asyncs", 1, 0, 0, scm_run_asyncs);
#ifdef __STDC__
SCM
scm_run_asyncs (SCM list_of_a)
#else
SCM
scm_run_asyncs (list_of_a)
SCM list_of_a;
#endif
{
SCM pos;
if (scm_mask_ints)
return SCM_BOOL_F;
pos = list_of_a;
while (pos != SCM_EOL)
{
SCM a;
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (pos) && SCM_CONSP (pos), pos, SCM_ARG1, s_run_asyncs);
a = SCM_CAR (pos);
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_run_asyncs);
it = SCM_ASYNC (a);
scm_mask_ints = 1;
if (it->got_it)
{
it->got_it = 0;
scm_apply (it->thunk, SCM_EOL, SCM_EOL);
}
scm_mask_ints = 0;
pos = SCM_CDR (pos);
}
return SCM_BOOL_T;
}
SCM_PROC(s_noop, "noop", 0, 0, 1, scm_noop);
#ifdef __STDC__
SCM
scm_noop (SCM args)
#else
SCM
scm_noop (args)
SCM args;
#endif
{
return (SCM_NULLP (args)
? SCM_BOOL_F
: SCM_CAR (args));
}
SCM_PROC(s_set_tick_rate, "set-tick-rate", 1, 0, 0, scm_set_tick_rate);
#ifdef __STDC__
SCM
scm_set_tick_rate (SCM n)
#else
SCM
scm_set_tick_rate (n)
SCM n;
#endif
{
unsigned int old_n;
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_set_tick_rate);
old_n = scm_tick_rate;
scm_desired_tick_rate = SCM_INUM (n);
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
return SCM_MAKINUM (old_n);
}
SCM_PROC(s_set_switch_rate, "set-switch-rate", 1, 0, 0, scm_set_switch_rate);
#ifdef __STDC__
SCM
scm_set_switch_rate (SCM n)
#else
SCM
scm_set_switch_rate (n)
SCM n;
#endif
{
unsigned int old_n;
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_set_switch_rate);
old_n = scm_switch_rate;
scm_desired_switch_rate = SCM_INUM (n);
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
return SCM_MAKINUM (old_n);
}
#ifdef __STDC__
static SCM
scm_sys_hup_async_thunk (void)
#else
static SCM
scm_sys_hup_async_thunk ()
#endif
{
scm_deliver_signal (SCM_HUP_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_int_async_thunk (void)
#else
static SCM
scm_sys_int_async_thunk ()
#endif
{
scm_deliver_signal (SCM_INT_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_fpe_async_thunk (void)
#else
static SCM
scm_sys_fpe_async_thunk ()
#endif
{
scm_deliver_signal (SCM_FPE_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_bus_async_thunk (void)
#else
static SCM
scm_sys_bus_async_thunk ()
#endif
{
scm_deliver_signal (SCM_BUS_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_segv_async_thunk (void)
#else
static SCM
scm_sys_segv_async_thunk ()
#endif
{
scm_deliver_signal (SCM_SEGV_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_alrm_async_thunk (void)
#else
static SCM
scm_sys_alrm_async_thunk ()
#endif
{
scm_deliver_signal (SCM_ALRM_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_gc_async_thunk (void)
#else
static SCM
scm_sys_gc_async_thunk ()
#endif
{
scm_deliver_signal (SCM_GC_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_tick_async_thunk (void)
#else
static SCM
scm_sys_tick_async_thunk ()
#endif
{
scm_deliver_signal (SCM_TICK_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
SCM
scm_take_signal (int n)
#else
SCM
scm_take_signal (n)
int n;
#endif
{
SCM ignored;
if (!scm_ints_disabled)
{
SCM_NEWCELL (ignored); /* In case we interrupted SCM_NEWCELL,
* throw out the possibly already allocated
* free cell.
*/
}
scm_system_async_mark (system_signal_asyncs[SCM_SIG_ORD(n)]);
return SCM_BOOL_F;
}
SCM_PROC(s_unmask_signals, "unmask-signals", 0, 0, 0, scm_unmask_signals);
#ifdef __STDC__
SCM
scm_unmask_signals (void)
#else
SCM
scm_unmask_signals ()
#endif
{
scm_mask_ints = 0;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_mask_signals, "mask-signals", 0, 0, 0, scm_mask_signals);
#ifdef __STDC__
SCM
scm_mask_signals (void)
#else
SCM
scm_mask_signals ()
#endif
{
scm_mask_ints = 1;
return SCM_UNSPECIFIED;
}
#ifdef __STDC__
void
scm_init_async (void)
#else
void
scm_init_async ()
#endif
{
SCM a_thunk;
scm_tc16_async = scm_newsmob (&async_smob);
symbol_signal = SCM_CAR (scm_sysintern ("signal", SCM_UNDEFINED));
scm_permanent_object (symbol_signal);
/* These are in the opposite order of delivery priortity.
*
* Error conditions are given low priority:
*/
a_thunk = scm_make_gsubr ("%hup-thunk", 0, 0, 0, scm_sys_hup_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_HUP_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%int-thunk", 0, 0, 0, scm_sys_int_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_INT_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%fpe-thunk", 0, 0, 0, scm_sys_fpe_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_FPE_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%bus-thunk", 0, 0, 0, scm_sys_bus_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_BUS_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%segv-thunk", 0, 0, 0, scm_sys_segv_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_SEGV_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%gc-thunk", 0, 0, 0, scm_sys_gc_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_GC_SIGNAL)] = scm_system_async (a_thunk);
/* Clock and PC driven conditions are given highest priority. */
a_thunk = scm_make_gsubr ("%tick-thunk", 0, 0, 0, scm_sys_tick_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_TICK_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%alrm-thunk", 0, 0, 0, scm_sys_alrm_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_ALRM_SIGNAL)] = scm_system_async (a_thunk);
handler_var = scm_sysintern ("signal-handler", SCM_UNDEFINED);
SCM_SETCDR (handler_var, SCM_BOOL_F);
scm_permanent_object (handler_var);
#include "async.x"
}