1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-06-03 18:50:19 +02:00
guile/module/language/cps/dfg.scm
Andy Wingo cf8bb03772 First-order CPS has $program and $closure forms
* module/language/cps.scm ($closure, $program): New CPS types, part of
  low-level (first-order) CPS.
  (build-cps-exp, build-cps-term, parse-cps, unparse-cps)
  (compute-max-label-and-var): Update for new CPS types.

* module/language/cps/closure-conversion.scm: Rewrite to produce a
  $program with $closures, and no $funs.

* module/language/cps/reify-primitives.scm:
* module/language/cps/compile-bytecode.scm (compile-fun):
  (compile-bytecode): Adapt to new first-order format.

* module/language/cps/dfg.scm (compute-dfg): Add $closure case.

* module/language/cps/renumber.scm (renumber): Allow this pass to work
  on either format.

* module/language/cps/slot-allocation.scm (allocate-slots): Add $closure
  case.
2014-04-12 14:59:31 +02:00

1046 lines
39 KiB
Scheme

;;; Continuation-passing style (CPS) intermediate language (IL)
;; Copyright (C) 2013, 2014 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
;;; Commentary:
;;;
;;; Many passes rely on a local or global static analysis of a function.
;;; This module implements a simple data-flow graph (DFG) analysis,
;;; tracking the definitions and uses of variables and continuations.
;;; It also builds a table of continuations and scope links, to be able
;;; to easily determine if one continuation is in the scope of another,
;;; and to get to the expression inside a continuation.
;;;
;;; Note that the data-flow graph of continuation labels is a
;;; control-flow graph.
;;;
;;; We currently don't expose details of the DFG type outside this
;;; module, preferring to only expose accessors. That may change in the
;;; future but it seems to work for now.
;;;
;;; Code:
(define-module (language cps dfg)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-26)
#:use-module (language cps)
#:export (build-cont-table
lookup-cont
compute-dfg
dfg-cont-table
dfg-min-label
dfg-label-count
dfg-min-var
dfg-var-count
with-fresh-name-state-from-dfg
lookup-def
lookup-uses
lookup-predecessors
lookup-successors
lookup-block-scope
find-call
call-expression
find-expression
find-defining-expression
find-constant-value
continuation-bound-in?
variable-free-in?
constant-needs-allocation?
control-point?
lookup-bound-syms
;; Data flow analysis.
compute-live-variables
dfa-k-idx dfa-k-sym dfa-k-count dfa-k-in dfa-k-out
dfa-var-idx dfa-var-sym dfa-var-count
print-dfa))
;; These definitions are here because currently we don't do cross-module
;; inlining. They can be removed once that restriction is gone.
(define-inlinable (for-each f l)
(unless (list? l)
(scm-error 'wrong-type-arg "for-each" "Not a list: ~S" (list l) #f))
(let for-each1 ((l l))
(unless (null? l)
(f (car l))
(for-each1 (cdr l)))))
(define-inlinable (for-each/2 f l1 l2)
(unless (= (length l1) (length l2))
(scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S"
(list l2) #f))
(let for-each2 ((l1 l1) (l2 l2))
(unless (null? l1)
(f (car l1) (car l2))
(for-each2 (cdr l1) (cdr l2)))))
(define (build-cont-table fun)
(let ((max-k (fold-conts (lambda (k cont max-k) (max k max-k))
-1 fun)))
(fold-conts (lambda (k cont table)
(vector-set! table k cont)
table)
(make-vector (1+ max-k) #f)
fun)))
;; Data-flow graph for CPS: both for values and continuations.
(define-record-type $dfg
(make-dfg conts preds defs uses scopes scope-levels
min-label max-label label-count
min-var max-var var-count)
dfg?
;; vector of label -> $kif, $kargs, etc
(conts dfg-cont-table)
;; vector of label -> (pred-label ...)
(preds dfg-preds)
;; vector of var -> def-label
(defs dfg-defs)
;; vector of var -> (use-label ...)
(uses dfg-uses)
;; vector of label -> label
(scopes dfg-scopes)
;; vector of label -> int
(scope-levels dfg-scope-levels)
(min-label dfg-min-label)
(max-label dfg-max-label)
(label-count dfg-label-count)
(min-var dfg-min-var)
(max-var dfg-max-var)
(var-count dfg-var-count))
(define-inlinable (vector-push! vec idx val)
(let ((v vec) (i idx))
(vector-set! v i (cons val (vector-ref v i)))))
(define (compute-reachable dfg min-label label-count)
"Compute and return the continuations that may be reached if flow
reaches a continuation N. Returns a vector of bitvectors, whose first
index corresponds to MIN-LABEL, and so on."
(let (;; Vector of bitvectors, indicating that continuation N can
;; reach a set M...
(reachable (make-vector label-count #f)))
(define (label->idx label) (- label min-label))
;; All continuations are reachable from themselves.
(let lp ((n 0))
(when (< n label-count)
(let ((bv (make-bitvector label-count #f)))
(bitvector-set! bv n #t)
(vector-set! reachable n bv)
(lp (1+ n)))))
;; Iterate labels backwards, to converge quickly.
(let ((tmp (make-bitvector label-count #f)))
(define (add-reachable! succ)
(bit-set*! tmp (vector-ref reachable (label->idx succ)) #t))
(let lp ((label (+ min-label label-count)) (changed? #f))
(cond
((= label min-label)
(if changed?
(lp (+ min-label label-count) #f)
reachable))
(else
(let* ((label (1- label))
(idx (label->idx label)))
(bitvector-fill! tmp #f)
(visit-cont-successors
(case-lambda
(() #t)
((succ0) (add-reachable! succ0))
((succ0 succ1) (add-reachable! succ0) (add-reachable! succ1)))
(lookup-cont label dfg))
(bitvector-set! tmp idx #t)
(bit-set*! tmp (vector-ref reachable idx) #f)
(cond
((bit-position #t tmp 0)
(bit-set*! (vector-ref reachable idx) tmp #t)
(lp label #t))
(else
(lp label changed?))))))))))
(define (find-prompts dfg min-label label-count)
"Find the prompts in DFG between MIN-LABEL and MIN-LABEL +
LABEL-COUNT, and return them as a list of PROMPT-LABEL, HANDLER-LABEL
pairs."
(let lp ((label min-label) (prompts '()))
(cond
((= label (+ min-label label-count))
(reverse prompts))
(else
(match (lookup-cont label dfg)
(($ $kargs names syms body)
(match (find-expression body)
(($ $prompt escape? tag handler)
(lp (1+ label) (acons label handler prompts)))
(_ (lp (1+ label) prompts))))
(_ (lp (1+ label) prompts)))))))
(define (compute-interval reachable min-label label-count start end)
"Compute and return the set of continuations that may be reached from
START, inclusive, but not reached by END, exclusive. Returns a
bitvector."
(let ((body (make-bitvector label-count #f)))
(bit-set*! body (vector-ref reachable (- start min-label)) #t)
(bit-set*! body (vector-ref reachable (- end min-label)) #f)
body))
(define (find-prompt-bodies dfg min-label label-count)
"Find all the prompts in DFG from the LABEL-COUNT continuations
starting at MIN-LABEL, and compute the set of continuations that is
reachable from the prompt bodies but not from the corresponding handler.
Returns a list of PROMPT, HANDLER, BODY lists, where the BODY is a
bitvector."
(match (find-prompts dfg min-label label-count)
(() '())
(((prompt . handler) ...)
(let ((reachable (compute-reachable dfg min-label label-count)))
(map (lambda (prompt handler)
;; FIXME: It isn't correct to use all continuations
;; reachable from the prompt, because that includes
;; continuations outside the prompt body. This point is
;; moot if the handler's control flow joins with the the
;; body, as is usually but not always the case.
;;
;; One counter-example is when the handler contifies an
;; infinite loop; in that case we compute a too-large
;; prompt body. This error is currently innocuous, but we
;; should fix it at some point.
;;
;; The fix is to end the body at the corresponding "pop"
;; primcall, if any.
(let ((body (compute-interval reachable min-label label-count
prompt handler)))
(list prompt handler body)))
prompt handler)))))
(define* (visit-prompt-control-flow dfg min-label label-count f #:key complete?)
"For all prompts in DFG in the range [MIN-LABEL, MIN-LABEL +
LABEL-COUNT), invoke F with arguments PROMPT, HANDLER, and BODY for each
body continuation in the prompt."
(define (label->idx label) (- label min-label))
(define (idx->label idx) (+ idx min-label))
(for-each
(match-lambda
((prompt handler body)
(define (out-or-back-edge? n)
;; Most uses of visit-prompt-control-flow don't need every body
;; continuation, and would be happy getting called only for
;; continuations that postdominate the rest of the body. Unless
;; you pass #:complete? #t, we only invoke F on continuations
;; that can leave the body, or on back-edges in loops.
;;
;; You would think that looking for the final "pop" primcall
;; would be sufficient, but that is incorrect; it's possible for
;; a loop in the prompt body to be contified, and that loop need
;; not continue to the pop if it never terminates. The pop could
;; even be removed by DCE, in that case.
(or-map (lambda (succ)
(let ((succ (label->idx succ)))
(or (not (bitvector-ref body succ))
(<= succ n))))
(lookup-successors (idx->label n) dfg)))
(let lp ((n 0))
(let ((n (bit-position #t body n)))
(when n
(when (or complete? (out-or-back-edge? n))
(f prompt handler (idx->label n)))
(lp (1+ n)))))))
(find-prompt-bodies dfg min-label label-count)))
(define (analyze-reverse-control-flow fun dfg min-label label-count)
(define (compute-reverse-control-flow-order ktail dfg)
(let ((order (make-vector label-count #f))
(label-map (make-vector label-count #f))
(next -1))
(define (label->idx label) (- label min-label))
(define (idx->label idx) (+ idx min-label))
(let visit ((k ktail))
;; Mark this label as visited.
(vector-set! label-map (label->idx k) #t)
(for-each (lambda (k)
;; Visit predecessors unless they are already visited.
(unless (vector-ref label-map (label->idx k))
(visit k)))
(lookup-predecessors k dfg))
;; Add to reverse post-order chain.
(vector-set! label-map (label->idx k) next)
(set! next k))
(let lp ((n 0) (head next))
(if (< head 0)
;; Add nodes that are not reachable from the tail.
(let lp ((n n) (m label-count))
(unless (= n label-count)
(let find-unvisited ((m (1- m)))
(if (vector-ref label-map m)
(find-unvisited (1- m))
(begin
(vector-set! label-map m n)
(lp (1+ n) m))))))
;; Pop the head off the chain, give it its
;; reverse-post-order numbering, and continue.
(let ((next (vector-ref label-map (label->idx head))))
(vector-set! label-map (label->idx head) n)
(lp (1+ n) next))))
(let lp ((n 0))
(when (< n label-count)
(vector-set! order (vector-ref label-map n) (idx->label n))
(lp (1+ n))))
(values order label-map)))
(define (convert-successors k-map)
(define (idx->label idx) (+ idx min-label))
(define (renumber label)
(vector-ref k-map (- label min-label)))
(let ((succs (make-vector (vector-length k-map) #f)))
(let lp ((n 0))
(when (< n (vector-length succs))
(vector-set! succs (vector-ref k-map n)
(map renumber
(lookup-successors (idx->label n) dfg)))
(lp (1+ n))))
succs))
(match fun
(($ $cont kfun ($ $kfun src meta self ($ $cont ktail tail)))
(call-with-values
(lambda ()
(compute-reverse-control-flow-order ktail dfg))
(lambda (order k-map)
(let ((succs (convert-successors k-map)))
;; Any expression in the prompt body could cause an abort to
;; the handler. This code adds links from every block in the
;; prompt body to the handler. This causes all values used
;; by the handler to be seen as live in the prompt body, as
;; indeed they are.
(visit-prompt-control-flow
dfg min-label label-count
(lambda (prompt handler body)
(define (renumber label)
(vector-ref k-map (- label min-label)))
(vector-push! succs (renumber body) (renumber handler))))
(values k-map order succs)))))))
;; Dominator analysis.
(define-record-type $dominator-analysis
(make-dominator-analysis min-label idoms dom-levels loop-header irreducible)
dominator-analysis?
;; Label corresponding to first entry in idoms, dom-levels, etc
(min-label dominator-analysis-min-label)
;; Vector of k-idx -> k-idx
(idoms dominator-analysis-idoms)
;; Vector of k-idx -> dom-level
(dom-levels dominator-analysis-dom-levels)
;; Vector of k-idx -> k-idx or -1
(loop-header dominator-analysis-loop-header)
;; Vector of k-idx -> true or false value
(irreducible dominator-analysis-irreducible))
(define (compute-dom-levels idoms)
(let ((dom-levels (make-vector (vector-length idoms) #f)))
(define (compute-dom-level n)
(or (vector-ref dom-levels n)
(let ((dom-level (1+ (compute-dom-level (vector-ref idoms n)))))
(vector-set! dom-levels n dom-level)
dom-level)))
(vector-set! dom-levels 0 0)
(let lp ((n 0))
(when (< n (vector-length idoms))
(compute-dom-level n)
(lp (1+ n))))
dom-levels))
(define (compute-idoms preds min-label label-count)
(define (label->idx label) (- label min-label))
(define (idx->label idx) (+ idx min-label))
(let ((idoms (make-vector label-count 0)))
(define (common-idom d0 d1)
;; We exploit the fact that a reverse post-order is a topological
;; sort, and so the idom of a node is always numerically less than
;; the node itself.
(cond
((= d0 d1) d0)
((< d0 d1) (common-idom d0 (vector-ref idoms d1)))
(else (common-idom (vector-ref idoms d0) d1))))
(define (compute-idom preds)
(match preds
(() 0)
((pred . preds)
(let lp ((idom (label->idx pred)) (preds preds))
(match preds
(() idom)
((pred . preds)
(lp (common-idom idom (label->idx pred)) preds)))))))
;; This is the iterative O(n^2) fixpoint algorithm, originally from
;; Allen and Cocke ("Graph-theoretic constructs for program flow
;; analysis", 1972). See the discussion in Cooper, Harvey, and
;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001.
(let iterate ((n 0) (changed? #f))
(cond
((< n label-count)
(let ((idom (vector-ref idoms n))
(idom* (compute-idom (vector-ref preds (idx->label n)))))
(cond
((eqv? idom idom*)
(iterate (1+ n) changed?))
(else
(vector-set! idoms n idom*)
(iterate (1+ n) #t)))))
(changed?
(iterate 0 #f))
(else idoms)))))
;; Compute a vector containing, for each node, a list of the nodes that
;; it immediately dominates. These are the "D" edges in the DJ tree.
(define (compute-dom-edges idoms)
(let ((doms (make-vector (vector-length idoms) '())))
(let lp ((n 0))
(when (< n (vector-length idoms))
(let ((idom (vector-ref idoms n)))
(vector-push! doms idom n))
(lp (1+ n))))
doms))
;; Compute a vector containing, for each node, a list of the successors
;; of that node that are not dominated by that node. These are the "J"
;; edges in the DJ tree.
(define (compute-join-edges preds min-label idoms)
(define (dominates? n1 n2)
(or (= n1 n2)
(and (< n1 n2)
(dominates? n1 (vector-ref idoms n2)))))
(let ((joins (make-vector (vector-length idoms) '())))
(let lp ((n 0))
(when (< n (vector-length idoms))
(for-each (lambda (pred)
(let ((pred (- pred min-label)))
(unless (dominates? pred n)
(vector-push! joins pred n))))
(vector-ref preds (+ n min-label)))
(lp (1+ n))))
joins))
;; Compute a vector containing, for each node, a list of the back edges
;; to that node. If a node is not the entry of a reducible loop, that
;; list is empty.
(define (compute-reducible-back-edges joins idoms)
(define (dominates? n1 n2)
(or (= n1 n2)
(and (< n1 n2)
(dominates? n1 (vector-ref idoms n2)))))
(let ((back-edges (make-vector (vector-length idoms) '())))
(let lp ((n 0))
(when (< n (vector-length joins))
(for-each (lambda (succ)
(when (dominates? succ n)
(vector-push! back-edges succ n)))
(vector-ref joins n))
(lp (1+ n))))
back-edges))
;; Compute the levels in the dominator tree at which there are
;; irreducible loops, as an integer. If a bit N is set in the integer,
;; that indicates that at level N in the dominator tree, there is at
;; least one irreducible loop.
(define (compute-irreducible-dom-levels doms joins idoms dom-levels)
(define (dominates? n1 n2)
(or (= n1 n2)
(and (< n1 n2)
(dominates? n1 (vector-ref idoms n2)))))
(let ((pre-order (make-vector (vector-length doms) #f))
(last-pre-order (make-vector (vector-length doms) #f))
(res 0)
(count 0))
;; Is MAYBE-PARENT an ancestor of N on the depth-first spanning tree
;; computed from the DJ graph? See Havlak 1997, "Nesting of
;; Reducible and Irreducible Loops".
(define (ancestor? a b)
(let ((w (vector-ref pre-order a))
(v (vector-ref pre-order b)))
(and (<= w v)
(<= v (vector-ref last-pre-order w)))))
;; Compute depth-first spanning tree of DJ graph.
(define (recurse n)
(unless (vector-ref pre-order n)
(visit n)))
(define (visit n)
;; Pre-order visitation index.
(vector-set! pre-order n count)
(set! count (1+ count))
(for-each recurse (vector-ref doms n))
(for-each recurse (vector-ref joins n))
;; Pre-order visitation index of last descendant.
(vector-set! last-pre-order (vector-ref pre-order n) (1- count)))
(visit 0)
(let lp ((n 0))
(when (< n (vector-length joins))
(for-each (lambda (succ)
;; If this join edge is not a loop back edge but it
;; does go to an ancestor on the DFST of the DJ
;; graph, then we have an irreducible loop.
(when (and (not (dominates? succ n))
(ancestor? succ n))
(set! res (logior (ash 1 (vector-ref dom-levels succ))))))
(vector-ref joins n))
(lp (1+ n))))
res))
(define (compute-nodes-by-level dom-levels)
(let* ((max-level (let lp ((n 0) (max-level 0))
(if (< n (vector-length dom-levels))
(lp (1+ n) (max (vector-ref dom-levels n) max-level))
max-level)))
(nodes-by-level (make-vector (1+ max-level) '())))
(let lp ((n (1- (vector-length dom-levels))))
(when (>= n 0)
(vector-push! nodes-by-level (vector-ref dom-levels n) n)
(lp (1- n))))
nodes-by-level))
;; Collect all predecessors to the back-nodes that are strictly
;; dominated by the loop header, and mark them as belonging to the loop.
;; If they already have a loop header, that means they are either in a
;; nested loop, or they have already been visited already.
(define (mark-loop-body header back-nodes preds min-label idoms loop-headers)
(define (strictly-dominates? n1 n2)
(and (< n1 n2)
(let ((idom (vector-ref idoms n2)))
(or (= n1 idom)
(strictly-dominates? n1 idom)))))
(define (visit node)
(when (strictly-dominates? header node)
(cond
((vector-ref loop-headers node) => visit)
(else
(vector-set! loop-headers node header)
(for-each (lambda (pred) (visit (- pred min-label)))
(vector-ref preds (+ node min-label)))))))
(for-each visit back-nodes))
(define (mark-irreducible-loops level idoms dom-levels loop-headers)
;; FIXME: Identify strongly-connected components that are >= LEVEL in
;; the dominator tree, and somehow mark them as irreducible.
(warn 'irreducible-loops-at-level level))
;; "Identifying Loops Using DJ Graphs" by Sreedhar, Gao, and Lee, ACAPS
;; Technical Memo 98, 1995.
(define (identify-loops preds min-label idoms dom-levels)
(let* ((doms (compute-dom-edges idoms))
(joins (compute-join-edges preds min-label idoms))
(back-edges (compute-reducible-back-edges joins idoms))
(irreducible-levels
(compute-irreducible-dom-levels doms joins idoms dom-levels))
(loop-headers (make-vector (vector-length idoms) #f))
(nodes-by-level (compute-nodes-by-level dom-levels)))
(let lp ((level (1- (vector-length nodes-by-level))))
(when (>= level 0)
(for-each (lambda (n)
(let ((edges (vector-ref back-edges n)))
(unless (null? edges)
(mark-loop-body n edges preds min-label
idoms loop-headers))))
(vector-ref nodes-by-level level))
(when (logbit? level irreducible-levels)
(mark-irreducible-loops level idoms dom-levels loop-headers))
(lp (1- level))))
loop-headers))
(define (analyze-dominators dfg min-label label-count)
(let* ((idoms (compute-idoms (dfg-preds dfg) min-label label-count))
(dom-levels (compute-dom-levels idoms))
(loop-headers (identify-loops (dfg-preds dfg) min-label idoms dom-levels)))
(make-dominator-analysis min-label idoms dom-levels loop-headers #f)))
;; Compute the maximum fixed point of the data-flow constraint problem.
;;
;; This always completes, as the graph is finite and the in and out sets
;; are complete semi-lattices. If the graph is reducible and the blocks
;; are sorted in reverse post-order, this completes in a maximum of LC +
;; 2 iterations, where LC is the loop connectedness number. See Hecht
;; and Ullman, "Analysis of a simple algorithm for global flow
;; problems", POPL 1973, or the recent summary in "Notes on graph
;; algorithms used in optimizing compilers", Offner 2013.
(define (compute-maximum-fixed-point preds inv outv killv genv union?)
(define (bitvector-copy! dst src)
(bitvector-fill! dst #f)
(bit-set*! dst src #t))
(define (bitvector-meet! accum src)
(bit-set*! accum src union?))
(let lp ((n 0) (changed? #f))
(cond
((< n (vector-length preds))
(let ((in (vector-ref inv n))
(out (vector-ref outv n))
(kill (vector-ref killv n))
(gen (vector-ref genv n)))
(let ((out-count (or changed? (bit-count #t out))))
(for-each
(lambda (pred)
(bitvector-meet! in (vector-ref outv pred)))
(vector-ref preds n))
(bitvector-copy! out in)
(for-each (cut bitvector-set! out <> #f) kill)
(for-each (cut bitvector-set! out <> #t) gen)
(lp (1+ n)
(or changed? (not (eqv? out-count (bit-count #t out))))))))
(changed?
(lp 0 #f)))))
;; Data-flow analysis.
(define-record-type $dfa
(make-dfa min-label k-map k-order min-var var-count in out)
dfa?
;; Minimum label.
(min-label dfa-min-label)
;; Vector of (k - min-label) -> k-idx
(k-map dfa-k-map)
;; Vector of k-idx -> k-sym, in (possibly reversed) control-flow order
(k-order dfa-k-order)
;; Minimum var in this function.
(min-var dfa-min-var)
;; Minimum var in this function.
(var-count dfa-var-count)
;; Vector of k-idx -> bitvector
(in dfa-in)
;; Vector of k-idx -> bitvector
(out dfa-out))
(define (dfa-k-idx dfa k)
(vector-ref (dfa-k-map dfa) (- k (dfa-min-label dfa))))
(define (dfa-k-sym dfa idx)
(vector-ref (dfa-k-order dfa) idx))
(define (dfa-k-count dfa)
(vector-length (dfa-k-map dfa)))
(define (dfa-var-idx dfa var)
(let ((idx (- var (dfa-min-var dfa))))
(unless (< -1 idx (dfa-var-count dfa))
(error "var out of range" var))
idx))
(define (dfa-var-sym dfa idx)
(unless (< -1 idx (dfa-var-count dfa))
(error "idx out of range" idx))
(+ idx (dfa-min-var dfa)))
(define (dfa-k-in dfa idx)
(vector-ref (dfa-in dfa) idx))
(define (dfa-k-out dfa idx)
(vector-ref (dfa-out dfa) idx))
(define (compute-live-variables fun dfg)
(unless (and (= (vector-length (dfg-uses dfg)) (dfg-var-count dfg))
(= (vector-length (dfg-cont-table dfg)) (dfg-label-count dfg)))
(error "function needs renumbering"))
(let* ((min-label (dfg-min-label dfg))
(nlabels (dfg-label-count dfg))
(min-var (dfg-min-var dfg))
(nvars (dfg-var-count dfg))
(usev (make-vector nlabels '()))
(defv (make-vector nlabels '()))
(live-in (make-vector nlabels #f))
(live-out (make-vector nlabels #f)))
(call-with-values
(lambda ()
(analyze-reverse-control-flow fun dfg min-label nlabels))
(lambda (k-map k-order succs)
(define (var->idx var) (- var min-var))
(define (idx->var idx) (+ idx min-var))
(define (label->idx label)
(vector-ref k-map (- label min-label)))
;; Initialize defv and usev.
(let ((defs (dfg-defs dfg))
(uses (dfg-uses dfg)))
(let lp ((n 0))
(when (< n (vector-length defs))
(let ((def (vector-ref defs n)))
(unless def
(error "internal error -- var array not packed"))
(for-each (lambda (def)
(vector-push! defv (label->idx def) n))
(lookup-predecessors def dfg))
(for-each (lambda (use)
(vector-push! usev (label->idx use) n))
(vector-ref uses n))
(lp (1+ n))))))
;; Initialize live-in and live-out sets.
(let lp ((n 0))
(when (< n (vector-length live-out))
(vector-set! live-in n (make-bitvector nvars #f))
(vector-set! live-out n (make-bitvector nvars #f))
(lp (1+ n))))
;; Liveness is a reverse data-flow problem, so we give
;; compute-maximum-fixed-point a reversed graph, swapping in for
;; out, usev for defv, and using successors instead of
;; predecessors. Continuation 0 is ktail.
(compute-maximum-fixed-point succs live-out live-in defv usev #t)
(make-dfa min-label k-map k-order min-var nvars live-in live-out)))))
(define (print-dfa dfa)
(match dfa
(($ $dfa min-label k-map k-order min-var var-count in out)
(define (print-var-set bv)
(let lp ((n 0))
(let ((n (bit-position #t bv n)))
(when n
(format #t " ~A" (+ n min-var))
(lp (1+ n))))))
(let lp ((n 0))
(when (< n (vector-length k-order))
(format #t "~A:\n" (vector-ref k-order n))
(format #t " in:")
(print-var-set (vector-ref in n))
(newline)
(format #t " out:")
(print-var-set (vector-ref out n))
(newline)
(lp (1+ n)))))))
(define (compute-label-and-var-ranges fun global?)
(define (min* a b)
(if b (min a b) a))
(define-syntax-rule (do-fold make-cont-folder)
((make-cont-folder min-label max-label label-count
min-var max-var var-count)
(lambda (label cont
min-label max-label label-count
min-var max-var var-count)
(let ((min-label (min* label min-label))
(max-label (max label max-label)))
(define (visit-letrec body min-var max-var var-count)
(match body
(($ $letk conts body)
(visit-letrec body min-var max-var var-count))
(($ $letrec names vars funs body)
(visit-letrec body
(cond (min-var (fold min min-var vars))
((pair? vars) (fold min (car vars) (cdr vars)))
(else min-var))
(fold max max-var vars)
(+ var-count (length vars))))
(($ $continue) (values min-var max-var var-count))))
(match cont
(($ $kargs names vars body)
(call-with-values
(lambda ()
(if global?
(visit-letrec body min-var max-var var-count)
(values min-var max-var var-count)))
(lambda (min-var max-var var-count)
(values min-label max-label (1+ label-count)
(cond (min-var (fold min min-var vars))
((pair? vars) (fold min (car vars) (cdr vars)))
(else min-var))
(fold max max-var vars)
(+ var-count (length vars))))))
(($ $kfun src meta self)
(values min-label max-label (1+ label-count)
(min* self min-var) (max self max-var) (1+ var-count)))
(_ (values min-label max-label (1+ label-count)
min-var max-var var-count)))))
fun
#f -1 0 #f -1 0))
(if global?
(do-fold make-global-cont-folder)
(do-fold make-local-cont-folder)))
(define* (compute-dfg fun #:key (global? #t))
(call-with-values (lambda () (compute-label-and-var-ranges fun global?))
(lambda (min-label max-label label-count min-var max-var var-count)
(when (or (zero? label-count) (zero? var-count))
(error "internal error (no vars or labels for fun?)"))
(let* ((nlabels (- (1+ max-label) min-label))
(nvars (- (1+ max-var) min-var))
(conts (make-vector nlabels #f))
(preds (make-vector nlabels '()))
(defs (make-vector nvars #f))
(uses (make-vector nvars '()))
(scopes (make-vector nlabels #f))
(scope-levels (make-vector nlabels #f)))
(define (var->idx var) (- var min-var))
(define (label->idx label) (- label min-label))
(define (add-def! var def-k)
(vector-set! defs (var->idx var) def-k))
(define (add-use! var use-k)
(vector-push! uses (var->idx var) use-k))
(define* (declare-block! label cont parent
#:optional (level
(1+ (vector-ref
scope-levels
(label->idx parent)))))
(vector-set! conts (label->idx label) cont)
(vector-set! scopes (label->idx label) parent)
(vector-set! scope-levels (label->idx label) level))
(define (link-blocks! pred succ)
(vector-push! preds (label->idx succ) pred))
(define (visit-cont cont label)
(match cont
(($ $kargs names syms body)
(for-each (cut add-def! <> label) syms)
(visit-term body label))
(($ $kif kt kf)
(link-blocks! label kt)
(link-blocks! label kf))
(($ $kreceive arity k)
(link-blocks! label k))))
(define (visit-term term label)
(match term
(($ $letk (($ $cont k cont) ...) body)
;; Set up recursive environment before visiting cont bodies.
(for-each/2 (lambda (cont k)
(declare-block! k cont label))
cont k)
(for-each/2 visit-cont cont k)
(visit-term body label))
(($ $letrec names syms funs body)
(unless global?
(error "$letrec should not be present when building a local DFG"))
(for-each (cut add-def! <> label) syms)
(for-each (lambda (fun)
(match fun
(($ $fun free body)
(visit-fun body))))
funs)
(visit-term body label))
(($ $continue k src exp)
(link-blocks! label k)
(visit-exp exp label))))
(define (visit-exp exp label)
(define (use! sym)
(add-use! sym label))
(match exp
((or ($ $void) ($ $const) ($ $prim) ($ $closure)) #f)
(($ $call proc args)
(use! proc)
(for-each use! args))
(($ $callk k proc args)
(use! proc)
(for-each use! args))
(($ $primcall name args)
(for-each use! args))
(($ $values args)
(for-each use! args))
(($ $prompt escape? tag handler)
(use! tag)
(link-blocks! label handler))
(($ $fun free body)
(when global?
(visit-fun body)))))
(define (visit-clause clause kfun)
(match clause
(#f #t)
(($ $cont kclause
(and clause ($ $kclause arity ($ $cont kbody body)
alternate)))
(declare-block! kclause clause kfun)
(link-blocks! kfun kclause)
(declare-block! kbody body kclause)
(link-blocks! kclause kbody)
(visit-cont body kbody)
(visit-clause alternate kfun))))
(define (visit-fun fun)
(match fun
(($ $cont kfun
(and cont
($ $kfun src meta self ($ $cont ktail tail) clause)))
(declare-block! kfun cont #f 0)
(add-def! self kfun)
(declare-block! ktail tail kfun)
(visit-clause clause kfun))))
(visit-fun fun)
(make-dfg conts preds defs uses scopes scope-levels
min-label max-label label-count
min-var max-var var-count)))))
(define-syntax-rule (with-fresh-name-state-from-dfg dfg body ...)
(parameterize ((label-counter (1+ (dfg-max-label dfg)))
(var-counter (1+ (dfg-max-var dfg))))
body ...))
(define (lookup-cont label dfg)
(let ((res (vector-ref (dfg-cont-table dfg) (- label (dfg-min-label dfg)))))
(unless res
(error "Unknown continuation!" label))
res))
(define (lookup-predecessors k dfg)
(vector-ref (dfg-preds dfg) (- k (dfg-min-label dfg))))
(define (lookup-successors k dfg)
(let ((cont (vector-ref (dfg-cont-table dfg) (- k (dfg-min-label dfg)))))
(visit-cont-successors list cont)))
(define (lookup-def var dfg)
(vector-ref (dfg-defs dfg) (- var (dfg-min-var dfg))))
(define (lookup-uses var dfg)
(vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg))))
(define (lookup-block-scope k dfg)
(vector-ref (dfg-scopes dfg) (- k (dfg-min-label dfg))))
(define (lookup-scope-level k dfg)
(vector-ref (dfg-scope-levels dfg) (- k (dfg-min-label dfg))))
(define (find-defining-term sym dfg)
(match (lookup-predecessors (lookup-def sym dfg) dfg)
((def-exp-k)
(lookup-cont def-exp-k dfg))
(else #f)))
(define (find-call term)
(match term
(($ $kargs names syms body) (find-call body))
(($ $letk conts body) (find-call body))
(($ $letrec names syms funs body) (find-call body))
(($ $continue) term)))
(define (call-expression call)
(match call
(($ $continue k src exp) exp)))
(define (find-expression term)
(call-expression (find-call term)))
(define (find-defining-expression sym dfg)
(match (find-defining-term sym dfg)
(#f #f)
(($ $kreceive) #f)
(($ $kclause) #f)
(term (find-expression term))))
(define (find-constant-value sym dfg)
(match (find-defining-expression sym dfg)
(($ $const val)
(values #t val))
(($ $continue k src ($ $void))
(values #t *unspecified*))
(else
(values #f #f))))
(define (constant-needs-allocation? var val dfg)
(define (immediate-u8? val)
(and (integer? val) (exact? val) (<= 0 val 255)))
(define (find-exp term)
(match term
(($ $kargs names vars body) (find-exp body))
(($ $letk conts body) (find-exp body))
(else term)))
(or-map
(lambda (use)
(match (find-expression (lookup-cont use dfg))
(($ $call) #f)
(($ $callk) #f)
(($ $values) #f)
(($ $primcall 'free-ref (closure slot))
(eq? var closure))
(($ $primcall 'free-set! (closure slot value))
(or (eq? var closure) (eq? var value)))
(($ $primcall 'cache-current-module! (mod . _))
(eq? var mod))
(($ $primcall 'cached-toplevel-box _)
#f)
(($ $primcall 'cached-module-box _)
#f)
(($ $primcall 'resolve (name bound?))
(eq? var name))
(($ $primcall 'make-vector/immediate (len init))
(eq? var init))
(($ $primcall 'vector-ref/immediate (v i))
(eq? var v))
(($ $primcall 'vector-set!/immediate (v i x))
(or (eq? var v) (eq? var x)))
(($ $primcall 'allocate-struct/immediate (vtable nfields))
(eq? var vtable))
(($ $primcall 'struct-ref/immediate (s n))
(eq? var s))
(($ $primcall 'struct-set!/immediate (s n x))
(or (eq? var s) (eq? var x)))
(($ $primcall 'builtin-ref (idx))
#f)
(_ #t)))
(vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg)))))
(define (continuation-scope-contains? scope-k k dfg)
(let ((scope-level (lookup-scope-level scope-k dfg)))
(let lp ((k k))
(or (eq? scope-k k)
(and (< scope-level (lookup-scope-level k dfg))
(lp (lookup-block-scope k dfg)))))))
(define (continuation-bound-in? k use-k dfg)
(continuation-scope-contains? (lookup-block-scope k dfg) use-k dfg))
(define (variable-free-in? var k dfg)
(or-map (lambda (use)
(continuation-scope-contains? k use dfg))
(lookup-uses var dfg)))
;; A continuation is a control point if it has multiple predecessors, or
;; if its single predecessor does not have a single successor.
(define (control-point? k dfg)
(match (lookup-predecessors k dfg)
((pred)
(let ((cont (vector-ref (dfg-cont-table dfg)
(- pred (dfg-min-label dfg)))))
(visit-cont-successors (case-lambda
(() #t)
((succ0) #f)
((succ1 succ2) #t))
cont)))
(_ #t)))
(define (lookup-bound-syms k dfg)
(match (lookup-cont k dfg)
(($ $kargs names syms body)
syms)))