1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/libguile/eval.c
Dirk Herrmann a954ce1d25 * eval.c (s_bad_bindings, s_bad_binding, s_bad_exit_clause): New
static identifiers.

	(scm_m_do): Use ASSERT_SYNTAX to signal syntax errors.  Be more
	specific about the kind of error that was detected.  Avoid use of
	SCM_CDRLOC.  Avoid unnecessary consing when creating the memoized
	code, this way also making sure that file name, line number
	information etc. remain available.
2003-10-12 09:22:52 +00:00

4991 lines
141 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003 Free Software Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/* This file is read twice in order to produce debugging versions of
* scm_ceval and scm_apply. These functions, scm_deval and
* scm_dapply, are produced when we define the preprocessor macro
* DEVAL. The file is divided into sections which are treated
* differently with respect to DEVAL. The heads of these sections are
* marked with the string "SECTION:".
*/
/* SECTION: This code is compiled once.
*/
#if HAVE_CONFIG_H
# include <config.h>
#endif
#include "libguile/__scm.h"
#ifndef DEVAL
/* AIX requires this to be the first thing in the file. The #pragma
directive is indented so pre-ANSI compilers will ignore it, rather
than choke on it. */
#ifndef __GNUC__
# if HAVE_ALLOCA_H
# include <alloca.h>
# else
# ifdef _AIX
# pragma alloca
# else
# ifndef alloca /* predefined by HP cc +Olibcalls */
char *alloca ();
# endif
# endif
# endif
#endif
#include "libguile/_scm.h"
#include "libguile/debug.h"
#include "libguile/dynwind.h"
#include "libguile/alist.h"
#include "libguile/eq.h"
#include "libguile/continuations.h"
#include "libguile/futures.h"
#include "libguile/strings.h"
#include "libguile/throw.h"
#include "libguile/smob.h"
#include "libguile/macros.h"
#include "libguile/procprop.h"
#include "libguile/hashtab.h"
#include "libguile/hash.h"
#include "libguile/srcprop.h"
#include "libguile/stackchk.h"
#include "libguile/objects.h"
#include "libguile/async.h"
#include "libguile/feature.h"
#include "libguile/modules.h"
#include "libguile/ports.h"
#include "libguile/root.h"
#include "libguile/vectors.h"
#include "libguile/fluids.h"
#include "libguile/goops.h"
#include "libguile/values.h"
#include "libguile/validate.h"
#include "libguile/eval.h"
#include "libguile/lang.h"
/* {Syntax Errors}
*
* This section defines the message strings for the syntax errors that can be
* detected during memoization and the functions and macros that shall be
* called by the memoizer code to signal syntax errors. */
/* Syntax errors that can be detected during memoization: */
/* Circular or improper lists do not form valid scheme expressions. If a
* circular list or an improper list is detected in a place where a scheme
* expression is expected, a 'Bad expression' error is signalled. */
static const char s_bad_expression[] = "Bad expression";
/* If a form is detected that holds less expressions than are required in that
* context, a 'Missing expression' error is signalled. */
static const char s_missing_expression[] = "Missing expression in";
/* If a form is detected that holds more expressions than are allowed in that
* context, an 'Extra expression' error is signalled. */
static const char s_extra_expression[] = "Extra expression in";
/* Case or cond expressions must have at least one clause. If a case or cond
* expression without any clauses is detected, a 'Missing clauses' error is
* signalled. */
static const char s_missing_clauses[] = "Missing clauses";
/* If there is an 'else' clause in a case or a cond statement, it must be the
* last clause. If after the 'else' case clause further clauses are detected,
* a 'Misplaced else clause' error is signalled. */
static const char s_misplaced_else_clause[] = "Misplaced else clause";
/* If a case clause is detected that is not in the format
* (<label(s)> <expression1> <expression2> ...)
* a 'Bad case clause' error is signalled. */
static const char s_bad_case_clause[] = "Bad case clause";
/* If a case clause is detected where the <label(s)> element is neither a
* proper list nor (in case of the last clause) the syntactic keyword 'else',
* a 'Bad case labels' error is signalled. Note: If you encounter this error
* for an else-clause which seems to be syntactically correct, check if 'else'
* is really a syntactic keyword in that context. If 'else' is bound in the
* local or global environment, it is not considered a syntactic keyword, but
* will be treated as any other variable. */
static const char s_bad_case_labels[] = "Bad case labels";
/* In a case statement all labels have to be distinct. If in a case statement
* a label occurs more than once, a 'Duplicate case label' error is
* signalled. */
static const char s_duplicate_case_label[] = "Duplicate case label";
/* If a cond clause is detected that is not in one of the formats
* (<test> <expression1> ...) or (else <expression1> <expression2> ...)
* a 'Bad cond clause' error is signalled. */
static const char s_bad_cond_clause[] = "Bad cond clause";
/* If a cond clause is detected that uses the alternate '=>' form, but does
* not hold a recipient element for the test result, a 'Missing recipient'
* error is signalled. */
static const char s_missing_recipient[] = "Missing recipient in";
/* If in a position where a variable name is required some other object is
* detected, a 'Bad variable' error is signalled. */
static const char s_bad_variable[] = "Bad variable";
/* Bindings for forms like 'let' and 'do' have to be given in a proper,
* possibly empty list. If any other object is detected in a place where a
* list of bindings was required, a 'Bad bindings' error is signalled. */
static const char s_bad_bindings[] = "Bad bindings";
/* Depending on the syntactic context, a binding has to be in the format
* (<variable> <expression>) or (<variable> <expression1> <expression2>).
* If anything else is detected in a place where a binding was expected, a
* 'Bad binding' error is signalled. */
static const char s_bad_binding[] = "Bad binding";
/* If the exit form of a 'do' expression is not in the format
* (<test> <expression> ...)
* a 'Bad exit clause' error is signalled. */
static const char s_bad_exit_clause[] = "Bad exit clause";
/* Signal a syntax error. We distinguish between the form that caused the
* error and the enclosing expression. The error message will print out as
* shown in the following pattern. The file name and line number are only
* given when they can be determined from the erroneous form or from the
* enclosing expression.
*
* <filename>: In procedure memoization:
* <filename>: In file <name>, line <nr>: <error-message> in <expression>. */
SCM_SYMBOL (syntax_error_key, "syntax-error");
/* The prototype is needed to indicate that the function does not return. */
static void
syntax_error (const char* const, const SCM, const SCM) SCM_NORETURN;
static void
syntax_error (const char* const msg, const SCM form, const SCM expr)
{
const SCM msg_string = scm_makfrom0str (msg);
SCM filename = SCM_BOOL_F;
SCM linenr = SCM_BOOL_F;
const char *format;
SCM args;
if (SCM_CONSP (form))
{
filename = scm_source_property (form, scm_sym_filename);
linenr = scm_source_property (form, scm_sym_line);
}
if (SCM_FALSEP (filename) && SCM_FALSEP (linenr) && SCM_CONSP (expr))
{
filename = scm_source_property (expr, scm_sym_filename);
linenr = scm_source_property (expr, scm_sym_line);
}
if (!SCM_UNBNDP (expr))
{
if (!SCM_FALSEP (filename))
{
format = "In file ~S, line ~S: ~A ~S in expression ~S.";
args = scm_list_5 (filename, linenr, msg_string, form, expr);
}
else if (!SCM_FALSEP (linenr))
{
format = "In line ~S: ~A ~S in expression ~S.";
args = scm_list_4 (linenr, msg_string, form, expr);
}
else
{
format = "~A ~S in expression ~S.";
args = scm_list_3 (msg_string, form, expr);
}
}
else
{
if (!SCM_FALSEP (filename))
{
format = "In file ~S, line ~S: ~A ~S.";
args = scm_list_4 (filename, linenr, msg_string, form);
}
else if (!SCM_FALSEP (linenr))
{
format = "In line ~S: ~A ~S.";
args = scm_list_3 (linenr, msg_string, form);
}
else
{
format = "~A ~S.";
args = scm_list_2 (msg_string, form);
}
}
scm_error (syntax_error_key, "memoization", format, args, SCM_BOOL_F);
}
/* Shortcut macros to simplify syntax error handling. */
#define ASSERT_SYNTAX(cond, message, form) \
{ if (!(cond)) syntax_error (message, form, SCM_UNDEFINED); }
#define ASSERT_SYNTAX_2(cond, message, form, expr) \
{ if (!(cond)) syntax_error (message, form, expr); }
/* {Ilocs}
*
* Ilocs are memoized references to variables in local environment frames.
* They are represented as three values: The relative offset of the
* environment frame, the number of the binding within that frame, and a
* boolean value indicating whether the binding is the last binding in the
* frame.
*/
#define SCM_ILOC00 SCM_MAKE_ITAG8(0L, scm_tc8_iloc)
#define SCM_IDINC (0x00100000L)
#define SCM_IDSTMSK (-SCM_IDINC)
#define SCM_MAKE_ILOC(frame_nr, binding_nr, last_p) \
SCM_PACK ( \
((frame_nr) << 8) \
+ ((binding_nr) << 20) \
+ ((last_p) ? SCM_ICDR : 0) \
+ scm_tc8_iloc )
#if (SCM_DEBUG_DEBUGGING_SUPPORT == 1)
SCM scm_dbg_make_iloc (SCM frame, SCM binding, SCM cdrp);
SCM_DEFINE (scm_dbg_make_iloc, "dbg-make-iloc", 3, 0, 0,
(SCM frame, SCM binding, SCM cdrp),
"Return a new iloc with frame offset @var{frame}, binding\n"
"offset @var{binding} and the cdr flag @var{cdrp}.")
#define FUNC_NAME s_scm_dbg_make_iloc
{
SCM_VALIDATE_INUM (1, frame);
SCM_VALIDATE_INUM (2, binding);
return SCM_MAKE_ILOC (SCM_INUM (frame),
SCM_INUM (binding),
!SCM_FALSEP (cdrp));
}
#undef FUNC_NAME
SCM scm_dbg_iloc_p (SCM obj);
SCM_DEFINE (scm_dbg_iloc_p, "dbg-iloc?", 1, 0, 0,
(SCM obj),
"Return @code{#t} if @var{obj} is an iloc.")
#define FUNC_NAME s_scm_dbg_iloc_p
{
return SCM_BOOL (SCM_ILOCP (obj));
}
#undef FUNC_NAME
#endif
#define SCM_VALIDATE_NON_EMPTY_COMBINATION(x) \
do { \
if (SCM_EQ_P ((x), SCM_EOL)) \
scm_misc_error (NULL, s_expression, SCM_EOL); \
} while (0)
/* The evaluator contains a plethora of EVAL symbols.
* This is an attempt at explanation.
*
* The following macros should be used in code which is read twice
* (where the choice of evaluator is hard soldered):
*
* SCM_CEVAL is the symbol used within one evaluator to call itself.
* Originally, it is defined to scm_ceval, but is redefined to
* scm_deval during the second pass.
*
* SCM_EVALIM is used when it is known that the expression is an
* immediate. (This macro never calls an evaluator.)
*
* EVALCAR evaluates the car of an expression.
*
* The following macros should be used in code which is read once
* (where the choice of evaluator is dynamic):
*
* SCM_XEVAL takes care of immediates without calling an evaluator. It
* then calls scm_ceval *or* scm_deval, depending on the debugging
* mode.
*
* SCM_XEVALCAR corresponds to EVALCAR, but uses scm_ceval *or* scm_deval
* depending on the debugging mode.
*
* The main motivation for keeping this plethora is efficiency
* together with maintainability (=> locality of code).
*/
#define SCM_CEVAL scm_ceval
#define SCM_EVALIM2(x) \
((SCM_EQ_P ((x), SCM_EOL) \
? scm_misc_error (NULL, s_expression, SCM_EOL), 0 \
: 0), \
(x))
#define SCM_EVALIM(x, env) (SCM_ILOCP (x) \
? *scm_ilookup ((x), env) \
: SCM_EVALIM2(x))
#define SCM_XEVAL(x, env) (SCM_IMP (x) \
? SCM_EVALIM2(x) \
: (*scm_ceval_ptr) ((x), (env)))
#define SCM_XEVALCAR(x, env) (SCM_IMP (SCM_CAR (x)) \
? SCM_EVALIM (SCM_CAR (x), env) \
: (SCM_SYMBOLP (SCM_CAR (x)) \
? *scm_lookupcar (x, env, 1) \
: (*scm_ceval_ptr) (SCM_CAR (x), env)))
#define EVALCAR(x, env) (SCM_IMP (SCM_CAR (x)) \
? SCM_EVALIM (SCM_CAR (x), env) \
: (SCM_SYMBOLP (SCM_CAR (x)) \
? *scm_lookupcar (x, env, 1) \
: SCM_CEVAL (SCM_CAR (x), env)))
SCM_REC_MUTEX (source_mutex);
static const char s_expression[] = "missing or extra expression";
static const char s_test[] = "bad test";
static const char s_body[] = "bad body";
static const char s_bindings[] = "bad bindings";
static const char s_duplicate_bindings[] = "duplicate bindings";
static const char s_variable[] = "bad variable";
static const char s_clauses[] = "bad or missing clauses";
static const char s_formals[] = "bad formals";
static const char s_duplicate_formals[] = "duplicate formals";
static const char s_splicing[] = "bad (non-list) result for unquote-splicing";
/* Lookup a given local variable in an environment. The local variable is
* given as an iloc, that is a triple <frame, binding, last?>, where frame
* indicates the relative number of the environment frame (counting upwards
* from the innermost environment frame), binding indicates the number of the
* binding within the frame, and last? (which is extracted from the iloc using
* the macro SCM_ICDRP) indicates whether the binding forms the binding at the
* very end of the improper list of bindings. */
SCM *
scm_ilookup (SCM iloc, SCM env)
{
unsigned int frame_nr = SCM_IFRAME (iloc);
unsigned int binding_nr = SCM_IDIST (iloc);
SCM frames = env;
SCM bindings;
for (; 0 != frame_nr; --frame_nr)
frames = SCM_CDR (frames);
bindings = SCM_CAR (frames);
for (; 0 != binding_nr; --binding_nr)
bindings = SCM_CDR (bindings);
if (SCM_ICDRP (iloc))
return SCM_CDRLOC (bindings);
return SCM_CARLOC (SCM_CDR (bindings));
}
/* The Lookup Car Race
- by Eva Luator
Memoization of variables and special forms is done while executing
the code for the first time. As long as there is only one thread
everything is fine, but as soon as two threads execute the same
code concurrently `for the first time' they can come into conflict.
This memoization includes rewriting variable references into more
efficient forms and expanding macros. Furthermore, macro expansion
includes `compiling' special forms like `let', `cond', etc. into
tree-code instructions.
There shouldn't normally be a problem with memoizing local and
global variable references (into ilocs and variables), because all
threads will mutate the code in *exactly* the same way and (if I
read the C code correctly) it is not possible to observe a half-way
mutated cons cell. The lookup procedure can handle this
transparently without any critical sections.
It is different with macro expansion, because macro expansion
happens outside of the lookup procedure and can't be
undone. Therefore the lookup procedure can't cope with it. It has
to indicate failure when it detects a lost race and hope that the
caller can handle it. Luckily, it turns out that this is the case.
An example to illustrate this: Suppose that the following form will
be memoized concurrently by two threads
(let ((x 12)) x)
Let's first examine the lookup of X in the body. The first thread
decides that it has to find the symbol "x" in the environment and
starts to scan it. Then the other thread takes over and actually
overtakes the first. It looks up "x" and substitutes an
appropriate iloc for it. Now the first thread continues and
completes its lookup. It comes to exactly the same conclusions as
the second one and could - without much ado - just overwrite the
iloc with the same iloc.
But let's see what will happen when the race occurs while looking
up the symbol "let" at the start of the form. It could happen that
the second thread interrupts the lookup of the first thread and not
only substitutes a variable for it but goes right ahead and
replaces it with the compiled form (#@let* (x 12) x). Now, when
the first thread completes its lookup, it would replace the #@let*
with a variable containing the "let" binding, effectively reverting
the form to (let (x 12) x). This is wrong. It has to detect that
it has lost the race and the evaluator has to reconsider the
changed form completely.
This race condition could be resolved with some kind of traffic
light (like mutexes) around scm_lookupcar, but I think that it is
best to avoid them in this case. They would serialize memoization
completely and because lookup involves calling arbitrary Scheme
code (via the lookup-thunk), threads could be blocked for an
arbitrary amount of time or even deadlock. But with the current
solution a lot of unnecessary work is potentially done. */
/* SCM_LOOKUPCAR1 is what SCM_LOOKUPCAR used to be but is allowed to
return NULL to indicate a failed lookup due to some race conditions
between threads. This only happens when VLOC is the first cell of
a special form that will eventually be memoized (like `let', etc.)
In that case the whole lookup is bogus and the caller has to
reconsider the complete special form.
SCM_LOOKUPCAR is still there, of course. It just calls
SCM_LOOKUPCAR1 and aborts on receiving NULL. So SCM_LOOKUPCAR
should only be called when it is known that VLOC is not the first
pair of a special form. Otherwise, use SCM_LOOKUPCAR1 and check
for NULL. I think I've found the only places where this
applies. */
SCM_SYMBOL (scm_unbound_variable_key, "unbound-variable");
static SCM *
scm_lookupcar1 (SCM vloc, SCM genv, int check)
{
SCM env = genv;
register SCM *al, fl, var = SCM_CAR (vloc);
register SCM iloc = SCM_ILOC00;
for (; SCM_NIMP (env); env = SCM_CDR (env))
{
if (!SCM_CONSP (SCM_CAR (env)))
break;
al = SCM_CARLOC (env);
for (fl = SCM_CAR (*al); SCM_NIMP (fl); fl = SCM_CDR (fl))
{
if (!SCM_CONSP (fl))
{
if (SCM_EQ_P (fl, var))
{
if (! SCM_EQ_P (SCM_CAR (vloc), var))
goto race;
SCM_SET_CELL_WORD_0 (vloc, SCM_UNPACK (iloc) + SCM_ICDR);
return SCM_CDRLOC (*al);
}
else
break;
}
al = SCM_CDRLOC (*al);
if (SCM_EQ_P (SCM_CAR (fl), var))
{
if (SCM_UNBNDP (SCM_CAR (*al)))
{
env = SCM_EOL;
goto errout;
}
if (!SCM_EQ_P (SCM_CAR (vloc), var))
goto race;
SCM_SETCAR (vloc, iloc);
return SCM_CARLOC (*al);
}
iloc = SCM_PACK (SCM_UNPACK (iloc) + SCM_IDINC);
}
iloc = SCM_PACK ((~SCM_IDSTMSK) & (SCM_UNPACK(iloc) + SCM_IFRINC));
}
{
SCM top_thunk, real_var;
if (SCM_NIMP (env))
{
top_thunk = SCM_CAR (env); /* env now refers to a
top level env thunk */
env = SCM_CDR (env);
}
else
top_thunk = SCM_BOOL_F;
real_var = scm_sym2var (var, top_thunk, SCM_BOOL_F);
if (SCM_FALSEP (real_var))
goto errout;
if (!SCM_NULLP (env) || SCM_UNBNDP (SCM_VARIABLE_REF (real_var)))
{
errout:
if (check)
{
if (SCM_NULLP (env))
scm_error (scm_unbound_variable_key, NULL,
"Unbound variable: ~S",
scm_list_1 (var), SCM_BOOL_F);
else
scm_misc_error (NULL, "Damaged environment: ~S",
scm_list_1 (var));
}
else
{
/* A variable could not be found, but we shall
not throw an error. */
static SCM undef_object = SCM_UNDEFINED;
return &undef_object;
}
}
if (!SCM_EQ_P (SCM_CAR (vloc), var))
{
/* Some other thread has changed the very cell we are working
on. In effect, it must have done our job or messed it up
completely. */
race:
var = SCM_CAR (vloc);
if (SCM_VARIABLEP (var))
return SCM_VARIABLE_LOC (var);
if (SCM_ITAG7 (var) == SCM_ITAG7 (SCM_ILOC00))
return scm_ilookup (var, genv);
/* We can't cope with anything else than variables and ilocs. When
a special form has been memoized (i.e. `let' into `#@let') we
return NULL and expect the calling function to do the right
thing. For the evaluator, this means going back and redoing
the dispatch on the car of the form. */
return NULL;
}
SCM_SETCAR (vloc, real_var);
return SCM_VARIABLE_LOC (real_var);
}
}
SCM *
scm_lookupcar (SCM vloc, SCM genv, int check)
{
SCM *loc = scm_lookupcar1 (vloc, genv, check);
if (loc == NULL)
abort ();
return loc;
}
/* Return true if the symbol is - from the point of view of a macro
* transformer - a literal in the sense specified in chapter "pattern
* language" of R5RS. In the code below, however, we don't match the
* definition of R5RS exactly: It returns true if the identifier has no
* binding or if it is a syntactic keyword. */
static int
literal_p (const SCM symbol, const SCM env)
{
const SCM x = scm_cons (symbol, SCM_UNDEFINED);
const SCM value = *scm_lookupcar (x, env, 0);
if (SCM_UNBNDP (value) || SCM_MACROP (value))
return 1;
else
return 0;
}
#define unmemocar scm_unmemocar
SCM_SYMBOL (sym_three_question_marks, "???");
SCM
scm_unmemocar (SCM form, SCM env)
{
if (!SCM_CONSP (form))
return form;
else
{
SCM c = SCM_CAR (form);
if (SCM_VARIABLEP (c))
{
SCM sym = scm_module_reverse_lookup (scm_env_module (env), c);
if (SCM_FALSEP (sym))
sym = sym_three_question_marks;
SCM_SETCAR (form, sym);
}
else if (SCM_ILOCP (c))
{
unsigned long int ir;
for (ir = SCM_IFRAME (c); ir != 0; --ir)
env = SCM_CDR (env);
env = SCM_CAAR (env);
for (ir = SCM_IDIST (c); ir != 0; --ir)
env = SCM_CDR (env);
SCM_SETCAR (form, SCM_ICDRP (c) ? env : SCM_CAR (env));
}
return form;
}
}
SCM
scm_eval_car (SCM pair, SCM env)
{
return SCM_XEVALCAR (pair, env);
}
/*
* The following rewrite expressions and
* some memoized forms have different syntax
*/
SCM_GLOBAL_SYMBOL (scm_sym_else, "else");
SCM_GLOBAL_SYMBOL (scm_sym_unquote, "unquote");
SCM_GLOBAL_SYMBOL (scm_sym_uq_splicing, "unquote-splicing");
SCM_GLOBAL_SYMBOL (scm_sym_enter_frame, "enter-frame");
SCM_GLOBAL_SYMBOL (scm_sym_apply_frame, "apply-frame");
SCM_GLOBAL_SYMBOL (scm_sym_exit_frame, "exit-frame");
SCM_GLOBAL_SYMBOL (scm_sym_trace, "trace");
/* Check that the body denoted by XORIG is valid and rewrite it into
its internal form. The internal form of a body is just the body
itself, but prefixed with an ISYM that denotes to what kind of
outer construct this body belongs. A lambda body starts with
SCM_IM_LAMBDA, for example, a body of a let starts with SCM_IM_LET,
etc. The one exception is a body that belongs to a letrec that has
been formed by rewriting internal defines: it starts with
SCM_IM_DEFINE. */
/* XXX - Besides controlling the rewriting of internal defines, the
additional ISYM could be used for improved error messages.
This is not done yet. */
static SCM
scm_m_body (SCM op, SCM xorig, const char *what)
{
SCM_ASSYNT (scm_ilength (xorig) >= 1, s_body, what);
/* Don't add another ISYM if one is present already. */
if (SCM_ISYMP (SCM_CAR (xorig)))
return xorig;
/* Retain possible doc string. */
if (!SCM_CONSP (SCM_CAR (xorig)))
{
if (!SCM_NULLP (SCM_CDR (xorig)))
return scm_cons (SCM_CAR (xorig),
scm_m_body (op, SCM_CDR (xorig), what));
return xorig;
}
return scm_cons (op, xorig);
}
/* Start of the memoizers for the standard R5RS builtin macros. */
SCM_SYNTAX (s_and, "and", scm_i_makbimacro, scm_m_and);
SCM_GLOBAL_SYMBOL (scm_sym_and, s_and);
SCM
scm_m_and (SCM expr, SCM env SCM_UNUSED)
{
const SCM cdr_expr = SCM_CDR (expr);
const long length = scm_ilength (cdr_expr);
ASSERT_SYNTAX (length >= 0, s_bad_expression, expr);
if (length == 0)
{
/* Special case: (and) is replaced by #t. */
return SCM_BOOL_T;
}
else
{
SCM_SETCAR (expr, SCM_IM_AND);
return expr;
}
}
SCM_SYNTAX (s_begin, "begin", scm_i_makbimacro, scm_m_begin);
SCM_GLOBAL_SYMBOL (scm_sym_begin, s_begin);
SCM
scm_m_begin (SCM expr, SCM env SCM_UNUSED)
{
const SCM cdr_expr = SCM_CDR (expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr);
SCM_SETCAR (expr, SCM_IM_BEGIN);
return expr;
}
SCM_SYNTAX (s_case, "case", scm_i_makbimacro, scm_m_case);
SCM_GLOBAL_SYMBOL (scm_sym_case, s_case);
SCM
scm_m_case (SCM expr, SCM env)
{
SCM clauses;
SCM all_labels = SCM_EOL;
/* Check, whether 'else is a literal, i. e. not bound to a value. */
const int else_literal_p = literal_p (scm_sym_else, env);
const SCM cdr_expr = SCM_CDR (expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 2, s_missing_clauses, expr);
clauses = SCM_CDR (cdr_expr);
while (!SCM_NULLP (clauses))
{
SCM labels;
const SCM clause = SCM_CAR (clauses);
ASSERT_SYNTAX_2 (scm_ilength (clause) >= 2,
s_bad_case_clause, clause, expr);
labels = SCM_CAR (clause);
if (SCM_CONSP (labels))
{
ASSERT_SYNTAX_2 (scm_ilength (labels) >= 0,
s_bad_case_labels, labels, expr);
all_labels = scm_append_x (scm_list_2 (labels, all_labels));
}
else if (SCM_NULLP (labels))
{
/* The list of labels is empty. According to R5RS this is allowed.
* It means that the sequence of expressions will never be executed.
* Therefore, as an optimization, we could remove the whole
* clause. */
}
else
{
ASSERT_SYNTAX_2 (SCM_EQ_P (labels, scm_sym_else) && else_literal_p,
s_bad_case_labels, labels, expr);
ASSERT_SYNTAX_2 (SCM_NULLP (SCM_CDR (clauses)),
s_misplaced_else_clause, clause, expr);
}
/* build the new clause */
if (SCM_EQ_P (labels, scm_sym_else))
SCM_SETCAR (clause, SCM_IM_ELSE);
clauses = SCM_CDR (clauses);
}
/* Check whether all case labels are distinct. */
for (; !SCM_NULLP (all_labels); all_labels = SCM_CDR (all_labels))
{
const SCM label = SCM_CAR (all_labels);
SCM label_idx = SCM_CDR (all_labels);
for (; !SCM_NULLP (label_idx); label_idx = SCM_CDR (label_idx))
{
ASSERT_SYNTAX_2 (!SCM_EQ_P (SCM_CAR (label_idx), label),
s_duplicate_case_label, label, expr);
}
}
SCM_SETCAR (expr, SCM_IM_CASE);
return expr;
}
SCM_SYNTAX (s_cond, "cond", scm_i_makbimacro, scm_m_cond);
SCM_GLOBAL_SYMBOL (scm_sym_cond, s_cond);
SCM_GLOBAL_SYMBOL (scm_sym_arrow, "=>");
SCM
scm_m_cond (SCM expr, SCM env)
{
/* Check, whether 'else or '=> is a literal, i. e. not bound to a value. */
const int else_literal_p = literal_p (scm_sym_else, env);
const int arrow_literal_p = literal_p (scm_sym_arrow, env);
const SCM clauses = SCM_CDR (expr);
SCM clause_idx;
ASSERT_SYNTAX (scm_ilength (clauses) >= 0, s_bad_expression, expr);
ASSERT_SYNTAX (scm_ilength (clauses) >= 1, s_missing_clauses, expr);
for (clause_idx = clauses;
!SCM_NULLP (clause_idx);
clause_idx = SCM_CDR (clause_idx))
{
SCM test;
const SCM clause = SCM_CAR (clause_idx);
const long length = scm_ilength (clause);
ASSERT_SYNTAX_2 (length >= 1, s_bad_cond_clause, clause, expr);
test = SCM_CAR (clause);
if (SCM_EQ_P (test, scm_sym_else) && else_literal_p)
{
const int last_clause_p = SCM_NULLP (SCM_CDR (clause_idx));
ASSERT_SYNTAX_2 (length >= 2,
s_bad_cond_clause, clause, expr);
ASSERT_SYNTAX_2 (last_clause_p,
s_misplaced_else_clause, clause, expr);
SCM_SETCAR (clause, SCM_IM_ELSE);
}
else if (length >= 2
&& SCM_EQ_P (SCM_CADR (clause), scm_sym_arrow)
&& arrow_literal_p)
{
ASSERT_SYNTAX_2 (length > 2, s_missing_recipient, clause, expr);
ASSERT_SYNTAX_2 (length == 3, s_extra_expression, clause, expr);
SCM_SETCAR (SCM_CDR (clause), SCM_IM_ARROW);
}
}
SCM_SETCAR (expr, SCM_IM_COND);
return expr;
}
SCM_SYNTAX(s_define, "define", scm_i_makbimacro, scm_m_define);
SCM_GLOBAL_SYMBOL(scm_sym_define, s_define);
/* Guile provides an extension to R5RS' define syntax to represent function
* currying in a compact way. With this extension, it is allowed to write
* (define <nested-variable> <body>), where <nested-variable> has of one of
* the forms (<nested-variable> <formals>), (<nested-variable> . <formal>),
* (<variable> <formals>) or (<variable> . <formal>). As in R5RS, <formals>
* should be either a sequence of zero or more variables, or a sequence of one
* or more variables followed by a space-delimited period and another
* variable. Each level of argument nesting wraps the <body> within another
* lambda expression. For example, the following forms are allowed, each one
* followed by an equivalent, more explicit implementation.
* Example 1:
* (define ((a b . c) . d) <body>) is equivalent to
* (define a (lambda (b . c) (lambda d <body>)))
* Example 2:
* (define (((a) b) c . d) <body>) is equivalent to
* (define a (lambda () (lambda (b) (lambda (c . d) <body>))))
*/
/* Dirk:FIXME:: We should provide an implementation for 'define' in the R5RS
* module that does not implement this extension. */
SCM
scm_m_define (SCM expr, SCM env)
{
SCM body;
SCM variable;
const SCM cdr_expr = SCM_CDR (expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 2, s_missing_expression, expr);
body = SCM_CDR (cdr_expr);
variable = SCM_CAR (cdr_expr);
while (SCM_CONSP (variable))
{
/* This while loop realizes function currying by variable nesting.
* Variable is known to be a nested-variable. In every iteration of the
* loop another level of lambda expression is created, starting with the
* innermost one. */
const SCM formals = SCM_CDR (variable);
const SCM tail = scm_cons (formals, body);
/* Add source properties to each new lambda expression: */
const SCM lambda = scm_cons_source (variable, scm_sym_lambda, tail);
body = scm_list_1 (lambda);
variable = SCM_CAR (variable);
}
ASSERT_SYNTAX_2 (SCM_SYMBOLP (variable), s_bad_variable, variable, expr);
ASSERT_SYNTAX (scm_ilength (body) == 1, s_expression, expr);
if (SCM_TOP_LEVEL (env))
{
SCM var;
const SCM value = scm_eval_car (body, env);
if (SCM_REC_PROCNAMES_P)
{
SCM tmp = value;
while (SCM_MACROP (tmp))
tmp = SCM_MACRO_CODE (tmp);
if (SCM_CLOSUREP (tmp)
/* Only the first definition determines the name. */
&& SCM_FALSEP (scm_procedure_property (tmp, scm_sym_name)))
scm_set_procedure_property_x (tmp, scm_sym_name, variable);
}
var = scm_sym2var (variable, scm_env_top_level (env), SCM_BOOL_T);
SCM_VARIABLE_SET (var, value);
return SCM_UNSPECIFIED;
}
else
{
SCM_SETCAR (expr, SCM_IM_DEFINE);
SCM_SETCAR (cdr_expr, variable);
SCM_SETCDR (cdr_expr, body);
return expr;
}
}
/* This is a helper function for forms (<keyword> <expression>) that are
* transformed into (#@<keyword> '() <memoized_expression>) in order to allow
* for easy creation of a thunk (i. e. a closure without arguments) using the
* ('() <memoized_expression>) tail of the memoized form. */
static SCM
memoize_as_thunk_prototype (const SCM expr, const SCM env SCM_UNUSED)
{
const SCM cdr_expr = SCM_CDR (expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) == 1, s_expression, expr);
SCM_SETCDR (expr, scm_cons (SCM_EOL, cdr_expr));
return expr;
}
SCM_SYNTAX (s_delay, "delay", scm_i_makbimacro, scm_m_delay);
SCM_GLOBAL_SYMBOL (scm_sym_delay, s_delay);
/* Promises are implemented as closures with an empty parameter list. Thus,
* (delay <expression>) is transformed into (#@delay '() <expression>), where
* the empty list represents the empty parameter list. This representation
* allows for easy creation of the closure during evaluation. */
SCM
scm_m_delay (SCM expr, SCM env)
{
const SCM new_expr = memoize_as_thunk_prototype (expr, env);
SCM_SETCAR (new_expr, SCM_IM_DELAY);
return new_expr;
}
SCM_SYNTAX(s_do, "do", scm_i_makbimacro, scm_m_do);
SCM_GLOBAL_SYMBOL(scm_sym_do, s_do);
/* DO gets the most radically altered syntax. The order of the vars is
* reversed here. In contrast, the order of the inits and steps is reversed
* during the evaluation:
(do ((<var1> <init1> <step1>)
(<var2> <init2>)
... )
(<test> <return>)
<body>)
;; becomes
(#@do (<init1> <init2> ... <initn>)
(varn ... var2 var1)
(<test> <return>)
(<body>)
<step1> <step2> ... <stepn>) ;; missing steps replaced by var
*/
SCM
scm_m_do (SCM expr, SCM env SCM_UNUSED)
{
SCM variables = SCM_EOL;
SCM init_forms = SCM_EOL;
SCM step_forms = SCM_EOL;
SCM binding_idx;
SCM cddr_expr;
SCM exit_clause;
SCM commands;
SCM tail;
const SCM cdr_expr = SCM_CDR (expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 0, s_bad_expression, expr);
ASSERT_SYNTAX (scm_ilength (cdr_expr) >= 2, s_missing_expression, expr);
/* Collect variables, init and step forms. */
binding_idx = SCM_CAR (cdr_expr);
ASSERT_SYNTAX_2 (scm_ilength (binding_idx) >= 0,
s_bad_bindings, binding_idx, expr);
for (; !SCM_NULLP (binding_idx); binding_idx = SCM_CDR (binding_idx))
{
const SCM binding = SCM_CAR (binding_idx);
const long length = scm_ilength (binding);
ASSERT_SYNTAX_2 (length == 2 || length == 3,
s_bad_binding, binding, expr);
{
const SCM name = SCM_CAR (binding);
const SCM init = SCM_CADR (binding);
const SCM step = (length == 2) ? name : SCM_CADDR (binding);
ASSERT_SYNTAX_2 (SCM_SYMBOLP (name), s_bad_variable, name, expr);
variables = scm_cons (name, variables);
init_forms = scm_cons (init, init_forms);
step_forms = scm_cons (step, step_forms);
}
}
init_forms = scm_reverse_x (init_forms, SCM_UNDEFINED);
step_forms = scm_reverse_x (step_forms, SCM_UNDEFINED);
/* Memoize the test form and the exit sequence. */
cddr_expr = SCM_CDR (cdr_expr);
exit_clause = SCM_CAR (cddr_expr);
ASSERT_SYNTAX_2 (scm_ilength (exit_clause) >= 1,
s_bad_exit_clause, exit_clause, expr);
commands = SCM_CDR (cddr_expr);
tail = scm_cons2 (exit_clause, commands, step_forms);
tail = scm_cons2 (init_forms, variables, tail);
SCM_SETCAR (expr, SCM_IM_DO);
SCM_SETCDR (expr, tail);
return expr;
}
SCM_SYNTAX (s_if, "if", scm_i_makbimacro, scm_m_if);
SCM_GLOBAL_SYMBOL (scm_sym_if, s_if);
SCM
scm_m_if (SCM xorig, SCM env SCM_UNUSED)
{
long len = scm_ilength (SCM_CDR (xorig));
SCM_ASSYNT (len >= 2 && len <= 3, s_expression, s_if);
return scm_cons (SCM_IM_IF, SCM_CDR (xorig));
}
SCM_SYNTAX (s_lambda, "lambda", scm_i_makbimacro, scm_m_lambda);
SCM_GLOBAL_SYMBOL (scm_sym_lambda, s_lambda);
/* Return true if OBJ is `eq?' to one of the elements of LIST or to the
* cdr of the last cons. (Thus, LIST is not required to be a proper
* list and OBJ can also be found in the improper ending.) */
static int
scm_c_improper_memq (SCM obj, SCM list)
{
for (; SCM_CONSP (list); list = SCM_CDR (list))
{
if (SCM_EQ_P (SCM_CAR (list), obj))
return 1;
}
return SCM_EQ_P (list, obj);
}
SCM
scm_m_lambda (SCM xorig, SCM env SCM_UNUSED)
{
SCM formals;
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (SCM_CONSP (x), s_formals, s_lambda);
formals = SCM_CAR (x);
while (SCM_CONSP (formals))
{
SCM formal = SCM_CAR (formals);
SCM_ASSYNT (SCM_SYMBOLP (formal), s_formals, s_lambda);
if (scm_c_improper_memq (formal, SCM_CDR (formals)))
scm_misc_error (s_lambda, s_duplicate_formals, SCM_EOL);
formals = SCM_CDR (formals);
}
if (!SCM_NULLP (formals) && !SCM_SYMBOLP (formals))
scm_misc_error (s_lambda, s_formals, SCM_EOL);
return scm_cons2 (SCM_IM_LAMBDA, SCM_CAR (x),
scm_m_body (SCM_IM_LAMBDA, SCM_CDR (x), s_lambda));
}
/* The bindings ((v1 i1) (v2 i2) ... (vn in)) are transformed to the lists
* (vn ... v2 v1) and (i1 i2 ... in). That is, the list of variables is
* reversed here, the list of inits gets reversed during evaluation. */
static void
transform_bindings (SCM bindings, SCM *rvarloc, SCM *initloc, const char *what)
{
SCM rvars = SCM_EOL;
*rvarloc = SCM_EOL;
*initloc = SCM_EOL;
SCM_ASSYNT (scm_ilength (bindings) >= 1, s_bindings, what);
do
{
SCM binding = SCM_CAR (bindings);
SCM_ASSYNT (scm_ilength (binding) == 2, s_bindings, what);
SCM_ASSYNT (SCM_SYMBOLP (SCM_CAR (binding)), s_variable, what);
if (scm_c_improper_memq (SCM_CAR (binding), rvars))
scm_misc_error (what, s_duplicate_bindings, SCM_EOL);
rvars = scm_cons (SCM_CAR (binding), rvars);
*initloc = scm_list_1 (SCM_CADR (binding));
initloc = SCM_CDRLOC (*initloc);
bindings = SCM_CDR (bindings);
}
while (!SCM_NULLP (bindings));
*rvarloc = rvars;
}
SCM_SYNTAX(s_let, "let", scm_i_makbimacro, scm_m_let);
SCM_GLOBAL_SYMBOL(scm_sym_let, s_let);
SCM
scm_m_let (SCM xorig, SCM env)
{
SCM x = SCM_CDR (xorig);
SCM temp;
SCM_ASSYNT (SCM_CONSP (x), s_bindings, s_let);
temp = SCM_CAR (x);
if (SCM_NULLP (temp)
|| (scm_ilength (temp) == 1 && SCM_CONSP (SCM_CAR (temp))))
{
/* null or single binding, let* is faster */
SCM bindings = temp;
SCM body = scm_m_body (SCM_IM_LET, SCM_CDR (x), s_let);
return scm_m_letstar (scm_cons2 (SCM_CAR (xorig), bindings, body), env);
}
else if (SCM_CONSP (temp))
{
/* plain let */
SCM bindings = temp;
SCM rvars, inits, body;
transform_bindings (bindings, &rvars, &inits, "let");
body = scm_m_body (SCM_IM_LET, SCM_CDR (x), "let");
return scm_cons2 (SCM_IM_LET, rvars, scm_cons (inits, body));
}
else
{
/* named let: Transform (let name ((var init) ...) body ...) into
* ((letrec ((name (lambda (var ...) body ...))) name) init ...) */
SCM name = temp;
SCM vars = SCM_EOL;
SCM *varloc = &vars;
SCM inits = SCM_EOL;
SCM *initloc = &inits;
SCM bindings;
SCM_ASSYNT (SCM_SYMBOLP (name), s_bindings, s_let);
x = SCM_CDR (x);
SCM_ASSYNT (SCM_CONSP (x), s_bindings, s_let);
bindings = SCM_CAR (x);
SCM_ASSYNT (scm_ilength (bindings) >= 0, s_bindings, s_let);
while (!SCM_NULLP (bindings))
{ /* vars and inits both in order */
SCM binding = SCM_CAR (bindings);
SCM_ASSYNT (scm_ilength (binding) == 2, s_bindings, s_let);
SCM_ASSYNT (SCM_SYMBOLP (SCM_CAR (binding)), s_variable, s_let);
*varloc = scm_list_1 (SCM_CAR (binding));
varloc = SCM_CDRLOC (*varloc);
*initloc = scm_list_1 (SCM_CADR (binding));
initloc = SCM_CDRLOC (*initloc);
bindings = SCM_CDR (bindings);
}
{
SCM lambda_body = scm_m_body (SCM_IM_LET, SCM_CDR (x), "let");
SCM lambda_form = scm_cons2 (scm_sym_lambda, vars, lambda_body);
SCM rvar = scm_list_1 (name);
SCM init = scm_list_1 (lambda_form);
SCM body = scm_m_body (SCM_IM_LET, scm_list_1 (name), "let");
SCM letrec = scm_cons2 (SCM_IM_LETREC, rvar, scm_cons (init, body));
return scm_cons (letrec, inits);
}
}
}
SCM_SYNTAX (s_letstar, "let*", scm_i_makbimacro, scm_m_letstar);
SCM_GLOBAL_SYMBOL (scm_sym_letstar, s_letstar);
/* (let* ((v1 i1) (v2 i2) ...) body) with variables v1 .. vk and initializers
* i1 .. ik is transformed into the form (#@let* (v1 i1 v2 i2 ...) body*). */
SCM
scm_m_letstar (SCM xorig, SCM env SCM_UNUSED)
{
SCM bindings;
SCM x = SCM_CDR (xorig);
SCM vars = SCM_EOL;
SCM *varloc = &vars;
SCM_ASSYNT (SCM_CONSP (x), s_bindings, s_letstar);
bindings = SCM_CAR (x);
SCM_ASSYNT (scm_ilength (bindings) >= 0, s_bindings, s_letstar);
while (!SCM_NULLP (bindings))
{
SCM binding = SCM_CAR (bindings);
SCM_ASSYNT (scm_ilength (binding) == 2, s_bindings, s_letstar);
SCM_ASSYNT (SCM_SYMBOLP (SCM_CAR (binding)), s_variable, s_letstar);
*varloc = scm_list_2 (SCM_CAR (binding), SCM_CADR (binding));
varloc = SCM_CDRLOC (SCM_CDR (*varloc));
bindings = SCM_CDR (bindings);
}
return scm_cons2 (SCM_IM_LETSTAR, vars,
scm_m_body (SCM_IM_LETSTAR, SCM_CDR (x), s_letstar));
}
SCM_SYNTAX(s_letrec, "letrec", scm_i_makbimacro, scm_m_letrec);
SCM_GLOBAL_SYMBOL(scm_sym_letrec, s_letrec);
SCM
scm_m_letrec (SCM xorig, SCM env)
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (SCM_CONSP (x), s_bindings, s_letrec);
if (SCM_NULLP (SCM_CAR (x)))
{
/* null binding, let* faster */
SCM body = scm_m_body (SCM_IM_LETREC, SCM_CDR (x), s_letrec);
return scm_m_letstar (scm_cons2 (SCM_CAR (xorig), SCM_EOL, body), env);
}
else
{
SCM rvars, inits, body;
transform_bindings (SCM_CAR (x), &rvars, &inits, "letrec");
body = scm_m_body (SCM_IM_LETREC, SCM_CDR (x), "letrec");
return scm_cons2 (SCM_IM_LETREC, rvars, scm_cons (inits, body));
}
}
SCM_SYNTAX (s_or, "or", scm_i_makbimacro, scm_m_or);
SCM_GLOBAL_SYMBOL (scm_sym_or, s_or);
SCM
scm_m_or (SCM xorig, SCM env SCM_UNUSED)
{
long len = scm_ilength (SCM_CDR (xorig));
SCM_ASSYNT (len >= 0, s_test, s_or);
if (len >= 1)
return scm_cons (SCM_IM_OR, SCM_CDR (xorig));
else
return SCM_BOOL_F;
}
SCM_SYNTAX (s_quasiquote, "quasiquote", scm_makacro, scm_m_quasiquote);
SCM_GLOBAL_SYMBOL (scm_sym_quasiquote, s_quasiquote);
/* Internal function to handle a quasiquotation: 'form' is the parameter in
* the call (quasiquotation form), 'env' is the environment where unquoted
* expressions will be evaluated, and 'depth' is the current quasiquotation
* nesting level and is known to be greater than zero. */
static SCM
iqq (SCM form, SCM env, unsigned long int depth)
{
if (SCM_CONSP (form))
{
SCM tmp = SCM_CAR (form);
if (SCM_EQ_P (tmp, scm_sym_quasiquote))
{
SCM args = SCM_CDR (form);
SCM_ASSYNT (scm_ilength (args) == 1, s_expression, s_quasiquote);
return scm_list_2 (tmp, iqq (SCM_CAR (args), env, depth + 1));
}
else if (SCM_EQ_P (tmp, scm_sym_unquote))
{
SCM args = SCM_CDR (form);
SCM_ASSYNT (scm_ilength (args) == 1, s_expression, s_quasiquote);
if (depth - 1 == 0)
return scm_eval_car (args, env);
else
return scm_list_2 (tmp, iqq (SCM_CAR (args), env, depth - 1));
}
else if (SCM_CONSP (tmp)
&& SCM_EQ_P (SCM_CAR (tmp), scm_sym_uq_splicing))
{
SCM args = SCM_CDR (tmp);
SCM_ASSYNT (scm_ilength (args) == 1, s_expression, s_quasiquote);
if (depth - 1 == 0)
{
SCM list = scm_eval_car (args, env);
SCM rest = SCM_CDR (form);
SCM_ASSYNT (scm_ilength (list) >= 0, s_splicing, s_quasiquote);
return scm_append (scm_list_2 (list, iqq (rest, env, depth)));
}
else
return scm_cons (iqq (SCM_CAR (form), env, depth - 1),
iqq (SCM_CDR (form), env, depth));
}
else
return scm_cons (iqq (SCM_CAR (form), env, depth),
iqq (SCM_CDR (form), env, depth));
}
else if (SCM_VECTORP (form))
{
size_t i = SCM_VECTOR_LENGTH (form);
SCM const *const data = SCM_VELTS (form);
SCM tmp = SCM_EOL;
while (i != 0)
tmp = scm_cons (data[--i], tmp);
scm_remember_upto_here_1 (form);
return scm_vector (iqq (tmp, env, depth));
}
else
return form;
}
SCM
scm_m_quasiquote (SCM xorig, SCM env)
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (scm_ilength (x) == 1, s_expression, s_quasiquote);
return iqq (SCM_CAR (x), env, 1);
}
SCM_SYNTAX (s_quote, "quote", scm_i_makbimacro, scm_m_quote);
SCM_GLOBAL_SYMBOL (scm_sym_quote, s_quote);
SCM
scm_m_quote (SCM xorig, SCM env SCM_UNUSED)
{
SCM_ASSYNT (scm_ilength (SCM_CDR (xorig)) == 1, s_expression, s_quote);
return scm_cons (SCM_IM_QUOTE, SCM_CDR (xorig));
}
/* Will go into the RnRS module when Guile is factorized.
SCM_SYNTAX (s_set_x, "set!", scm_i_makbimacro, scm_m_set_x); */
static const char s_set_x[] = "set!";
SCM_GLOBAL_SYMBOL (scm_sym_set_x, s_set_x);
SCM
scm_m_set_x (SCM xorig, SCM env SCM_UNUSED)
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (scm_ilength (x) == 2, s_expression, s_set_x);
SCM_ASSYNT (SCM_SYMBOLP (SCM_CAR (x)), s_variable, s_set_x);
return scm_cons (SCM_IM_SET_X, x);
}
/* Start of the memoizers for non-R5RS builtin macros. */
SCM_SYNTAX (s_atapply, "@apply", scm_i_makbimacro, scm_m_apply);
SCM_GLOBAL_SYMBOL (scm_sym_atapply, s_atapply);
SCM_GLOBAL_SYMBOL (scm_sym_apply, s_atapply + 1);
SCM
scm_m_apply (SCM xorig, SCM env SCM_UNUSED)
{
SCM_ASSYNT (scm_ilength (SCM_CDR (xorig)) == 2, s_expression, s_atapply);
return scm_cons (SCM_IM_APPLY, SCM_CDR (xorig));
}
/* (@bind ((var exp) ...) body ...)
This will assign the values of the `exp's to the global variables
named by `var's (symbols, not evaluated), creating them if they
don't exist, executes body, and then restores the previous values of
the `var's. Additionally, whenever control leaves body, the values
of the `var's are saved and restored when control returns. It is an
error when a symbol appears more than once among the `var's.
All `exp's are evaluated before any `var' is set.
Think of this as `let' for dynamic scope.
It is memoized into (#@bind ((var ...) . (reversed-val ...)) body ...).
XXX - also implement `@bind*'.
*/
SCM_SYNTAX (s_atbind, "@bind", scm_i_makbimacro, scm_m_atbind);
SCM
scm_m_atbind (SCM xorig, SCM env)
{
SCM x = SCM_CDR (xorig);
SCM top_level = scm_env_top_level (env);
SCM vars = SCM_EOL, var;
SCM exps = SCM_EOL;
SCM_ASSYNT (scm_ilength (x) > 1, s_expression, s_atbind);
x = SCM_CAR (x);
while (SCM_NIMP (x))
{
SCM rest;
SCM sym_exp = SCM_CAR (x);
SCM_ASSYNT (scm_ilength (sym_exp) == 2, s_bindings, s_atbind);
SCM_ASSYNT (SCM_SYMBOLP (SCM_CAR (sym_exp)), s_bindings, s_atbind);
x = SCM_CDR (x);
for (rest = x; SCM_NIMP (rest); rest = SCM_CDR (rest))
if (SCM_EQ_P (SCM_CAR (sym_exp), SCM_CAAR (rest)))
scm_misc_error (s_atbind, s_duplicate_bindings, SCM_EOL);
/* The first call to scm_sym2var will look beyond the current
module, while the second call wont. */
var = scm_sym2var (SCM_CAR (sym_exp), top_level, SCM_BOOL_F);
if (SCM_FALSEP (var))
var = scm_sym2var (SCM_CAR (sym_exp), top_level, SCM_BOOL_T);
vars = scm_cons (var, vars);
exps = scm_cons (SCM_CADR (sym_exp), exps);
}
return scm_cons (SCM_IM_BIND,
scm_cons (scm_cons (scm_reverse_x (vars, SCM_EOL), exps),
SCM_CDDR (xorig)));
}
SCM_SYNTAX(s_atcall_cc, "@call-with-current-continuation", scm_i_makbimacro, scm_m_cont);
SCM_GLOBAL_SYMBOL(scm_sym_atcall_cc, s_atcall_cc);
SCM
scm_m_cont (SCM xorig, SCM env SCM_UNUSED)
{
SCM_ASSYNT (scm_ilength (SCM_CDR (xorig)) == 1,
s_expression, s_atcall_cc);
return scm_cons (SCM_IM_CONT, SCM_CDR (xorig));
}
SCM_SYNTAX (s_at_call_with_values, "@call-with-values", scm_i_makbimacro, scm_m_at_call_with_values);
SCM_GLOBAL_SYMBOL(scm_sym_at_call_with_values, s_at_call_with_values);
SCM
scm_m_at_call_with_values (SCM xorig, SCM env SCM_UNUSED)
{
SCM_ASSYNT (scm_ilength (SCM_CDR (xorig)) == 2,
s_expression, s_at_call_with_values);
return scm_cons (SCM_IM_CALL_WITH_VALUES, SCM_CDR (xorig));
}
SCM_SYNTAX (s_future, "future", scm_i_makbimacro, scm_m_future);
SCM_GLOBAL_SYMBOL (scm_sym_future, s_future);
/* Like promises, futures are implemented as closures with an empty
* parameter list. Thus, (future <expression>) is transformed into
* (#@future '() <expression>), where the empty list represents the
* empty parameter list. This representation allows for easy creation
* of the closure during evaluation. */
SCM
scm_m_future (SCM expr, SCM env)
{
const SCM new_expr = memoize_as_thunk_prototype (expr, env);
SCM_SETCAR (new_expr, SCM_IM_FUTURE);
return new_expr;
}
SCM_SYNTAX (s_gset_x, "set!", scm_i_makbimacro, scm_m_generalized_set_x);
SCM_SYMBOL (scm_sym_setter, "setter");
SCM
scm_m_generalized_set_x (SCM xorig, SCM env SCM_UNUSED)
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (2 == scm_ilength (x), s_expression, s_set_x);
if (SCM_SYMBOLP (SCM_CAR (x)))
return scm_cons (SCM_IM_SET_X, x);
else if (SCM_CONSP (SCM_CAR (x)))
return scm_cons (scm_list_2 (scm_sym_setter, SCM_CAAR (x)),
scm_append (scm_list_2 (SCM_CDAR (x), SCM_CDR (x))));
else
scm_misc_error (s_set_x, s_variable, SCM_EOL);
}
static const char* s_atslot_ref = "@slot-ref";
/* @slot-ref is bound privately in the (oop goops) module from goops.c. As
* soon as the module system allows us to more freely create bindings in
* arbitrary modules during the startup phase, the code from goops.c should be
* moved here. */
SCM
scm_m_atslot_ref (SCM xorig, SCM env SCM_UNUSED)
#define FUNC_NAME s_atslot_ref
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (scm_ilength (x) == 2, s_expression, FUNC_NAME);
SCM_VALIDATE_INUM (SCM_ARG2, SCM_CADR (x));
return scm_cons (SCM_IM_SLOT_REF, x);
}
#undef FUNC_NAME
static const char* s_atslot_set_x = "@slot-set!";
/* @slot-set! is bound privately in the (oop goops) module from goops.c. As
* soon as the module system allows us to more freely create bindings in
* arbitrary modules during the startup phase, the code from goops.c should be
* moved here. */
SCM
scm_m_atslot_set_x (SCM xorig, SCM env SCM_UNUSED)
#define FUNC_NAME s_atslot_set_x
{
SCM x = SCM_CDR (xorig);
SCM_ASSYNT (scm_ilength (x) == 3, s_expression, FUNC_NAME);
SCM_VALIDATE_INUM (SCM_ARG2, SCM_CADR (x));
return scm_cons (SCM_IM_SLOT_SET_X, x);
}
#undef FUNC_NAME
#if SCM_ENABLE_ELISP
SCM_SYNTAX (s_nil_cond, "nil-cond", scm_i_makbimacro, scm_m_nil_cond);
SCM
scm_m_nil_cond (SCM xorig, SCM env SCM_UNUSED)
{
long len = scm_ilength (SCM_CDR (xorig));
SCM_ASSYNT (len >= 1 && (len & 1) == 1, s_expression, "nil-cond");
return scm_cons (SCM_IM_NIL_COND, SCM_CDR (xorig));
}
SCM_SYNTAX (s_atfop, "@fop", scm_i_makbimacro, scm_m_atfop);
SCM
scm_m_atfop (SCM xorig, SCM env SCM_UNUSED)
{
SCM x = SCM_CDR (xorig), var;
SCM_ASSYNT (scm_ilength (x) >= 1, s_expression, "@fop");
var = scm_symbol_fref (SCM_CAR (x));
/* Passing the symbol name as the `subr' arg here isn't really
right, but without it it can be very difficult to work out from
the error message which function definition was missing. In any
case, we shouldn't really use SCM_ASSYNT here at all, but instead
something equivalent to (signal void-function (list SYM)) in
Elisp. */
SCM_ASSYNT (SCM_VARIABLEP (var),
"Symbol's function definition is void",
SCM_SYMBOL_CHARS (SCM_CAR (x)));
/* Support `defalias'. */
while (SCM_SYMBOLP (SCM_VARIABLE_REF (var)))
{
var = scm_symbol_fref (SCM_VARIABLE_REF (var));
SCM_ASSYNT (SCM_VARIABLEP (var),
"Symbol's function definition is void",
SCM_SYMBOL_CHARS (SCM_CAR (x)));
}
/* Use `var' here rather than `SCM_VARIABLE_REF (var)' because the
former allows for automatically picking up redefinitions of the
corresponding symbol. */
SCM_SETCAR (x, var);
/* If the variable contains a procedure, leave the
`transformer-macro' in place so that the procedure's arguments
get properly transformed, and change the initial @fop to
SCM_IM_APPLY. */
if (!SCM_MACROP (SCM_VARIABLE_REF (var)))
{
SCM_SETCAR (xorig, SCM_IM_APPLY);
return xorig;
}
/* Otherwise (the variable contains a macro), the arguments should
not be transformed, so cut the `transformer-macro' out and return
the resulting expression starting with the variable. */
SCM_SETCDR (x, SCM_CDADR (x));
return x;
}
#endif /* SCM_ENABLE_ELISP */
/* Start of the memoizers for deprecated macros. */
#if (SCM_ENABLE_DEPRECATED == 1)
SCM_SYNTAX (s_undefine, "undefine", scm_makacro, scm_m_undefine);
SCM
scm_m_undefine (SCM x, SCM env)
{
SCM arg1 = x;
x = SCM_CDR (x);
SCM_ASSYNT (SCM_TOP_LEVEL (env), "bad placement ", s_undefine);
SCM_ASSYNT (SCM_CONSP (x) && SCM_NULLP (SCM_CDR (x)),
s_expression, s_undefine);
x = SCM_CAR (x);
SCM_ASSYNT (SCM_SYMBOLP (x), s_variable, s_undefine);
arg1 = scm_sym2var (x, scm_env_top_level (env), SCM_BOOL_F);
SCM_ASSYNT (!SCM_FALSEP (arg1) && !SCM_UNBNDP (SCM_VARIABLE_REF (arg1)),
"variable already unbound ", s_undefine);
SCM_VARIABLE_SET (arg1, SCM_UNDEFINED);
#ifdef SICP
return x;
#else
return SCM_UNSPECIFIED;
#endif
}
#endif
SCM
scm_m_expand_body (SCM xorig, SCM env)
{
SCM x = SCM_CDR (xorig), defs = SCM_EOL;
char *what = SCM_ISYMCHARS (SCM_CAR (xorig)) + 2;
while (SCM_NIMP (x))
{
SCM form = SCM_CAR (x);
if (!SCM_CONSP (form))
break;
if (!SCM_SYMBOLP (SCM_CAR (form)))
break;
form = scm_macroexp (scm_cons_source (form,
SCM_CAR (form),
SCM_CDR (form)),
env);
if (SCM_EQ_P (SCM_IM_DEFINE, SCM_CAR (form)))
{
defs = scm_cons (SCM_CDR (form), defs);
x = SCM_CDR (x);
}
else if (!SCM_IMP (defs))
{
break;
}
else if (SCM_EQ_P (SCM_IM_BEGIN, SCM_CAR (form)))
{
x = scm_append (scm_list_2 (SCM_CDR (form), SCM_CDR (x)));
}
else
{
x = scm_cons (form, SCM_CDR (x));
break;
}
}
if (!SCM_NULLP (defs))
{
SCM rvars, inits, body, letrec;
transform_bindings (defs, &rvars, &inits, what);
body = scm_m_body (SCM_IM_DEFINE, x, what);
letrec = scm_cons2 (SCM_IM_LETREC, rvars, scm_cons (inits, body));
SCM_SETCAR (xorig, letrec);
SCM_SETCDR (xorig, SCM_EOL);
}
else
{
SCM_ASSYNT (SCM_CONSP (x), s_body, what);
SCM_SETCAR (xorig, SCM_CAR (x));
SCM_SETCDR (xorig, SCM_CDR (x));
}
return xorig;
}
SCM
scm_macroexp (SCM x, SCM env)
{
SCM res, proc, orig_sym;
/* Don't bother to produce error messages here. We get them when we
eventually execute the code for real. */
macro_tail:
orig_sym = SCM_CAR (x);
if (!SCM_SYMBOLP (orig_sym))
return x;
{
SCM *proc_ptr = scm_lookupcar1 (x, env, 0);
if (proc_ptr == NULL)
{
/* We have lost the race. */
goto macro_tail;
}
proc = *proc_ptr;
}
/* Only handle memoizing macros. `Acros' and `macros' are really
special forms and should not be evaluated here. */
if (!SCM_MACROP (proc)
|| (SCM_MACRO_TYPE (proc) != 2 && !SCM_BUILTIN_MACRO_P (proc)))
return x;
SCM_SETCAR (x, orig_sym); /* Undo memoizing effect of lookupcar */
res = scm_call_2 (SCM_MACRO_CODE (proc), x, env);
if (scm_ilength (res) <= 0)
res = scm_list_2 (SCM_IM_BEGIN, res);
SCM_DEFER_INTS;
SCM_SETCAR (x, SCM_CAR (res));
SCM_SETCDR (x, SCM_CDR (res));
SCM_ALLOW_INTS;
goto macro_tail;
}
#define SCM_BIT7(x) (127 & SCM_UNPACK (x))
/* A function object to implement "apply" for non-closure functions. */
static SCM f_apply;
/* An endless list consisting of #<undefined> objects: */
static SCM undefineds;
/* scm_unmemocopy takes a memoized expression together with its
* environment and rewrites it to its original form. Thus, it is the
* inversion of the rewrite rules above. The procedure is not
* optimized for speed. It's used in scm_iprin1 when printing the
* code of a closure, in scm_procedure_source, in display_frame when
* generating the source for a stackframe in a backtrace, and in
* display_expression.
*
* Unmemoizing is not a reliable process. You cannot in general
* expect to get the original source back.
*
* However, GOOPS currently relies on this for method compilation.
* This ought to change.
*/
static SCM
build_binding_list (SCM names, SCM inits)
{
SCM bindings = SCM_EOL;
while (!SCM_NULLP (names))
{
SCM binding = scm_list_2 (SCM_CAR (names), SCM_CAR (inits));
bindings = scm_cons (binding, bindings);
names = SCM_CDR (names);
inits = SCM_CDR (inits);
}
return bindings;
}
static SCM
unmemocopy (SCM x, SCM env)
{
SCM ls, z;
SCM p;
if (!SCM_CONSP (x))
return x;
p = scm_whash_lookup (scm_source_whash, x);
switch (SCM_ITAG7 (SCM_CAR (x)))
{
case SCM_BIT7 (SCM_IM_AND):
ls = z = scm_cons (scm_sym_and, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_BEGIN):
ls = z = scm_cons (scm_sym_begin, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_CASE):
ls = z = scm_cons (scm_sym_case, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_COND):
ls = z = scm_cons (scm_sym_cond, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_DO):
{
/* format: (#@do (i1 ... ik) (nk nk-1 ...) (test) (body) s1 ... sk),
* where ix is an initializer for a local variable, nx is the name of
* the local variable, test is the test clause of the do loop, body is
* the body of the do loop and sx are the step clauses for the local
* variables. */
SCM names, inits, test, memoized_body, steps, bindings;
x = SCM_CDR (x);
inits = scm_reverse (unmemocopy (SCM_CAR (x), env));
x = SCM_CDR (x);
names = SCM_CAR (x);
env = SCM_EXTEND_ENV (names, SCM_EOL, env);
x = SCM_CDR (x);
test = unmemocopy (SCM_CAR (x), env);
x = SCM_CDR (x);
memoized_body = SCM_CAR (x);
x = SCM_CDR (x);
steps = scm_reverse (unmemocopy (x, env));
/* build transformed binding list */
bindings = SCM_EOL;
while (!SCM_NULLP (names))
{
SCM name = SCM_CAR (names);
SCM init = SCM_CAR (inits);
SCM step = SCM_CAR (steps);
step = SCM_EQ_P (step, name) ? SCM_EOL : scm_list_1 (step);
bindings = scm_cons (scm_cons2 (name, init, step), bindings);
names = SCM_CDR (names);
inits = SCM_CDR (inits);
steps = SCM_CDR (steps);
}
z = scm_cons (test, SCM_UNSPECIFIED);
ls = scm_cons2 (scm_sym_do, bindings, z);
x = scm_cons (SCM_BOOL_F, memoized_body);
break;
}
case SCM_BIT7 (SCM_IM_IF):
ls = z = scm_cons (scm_sym_if, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_LET):
{
/* format: (#@let (nk nk-1 ...) (i1 ... ik) b1 ...),
* where nx is the name of a local variable, ix is an initializer for
* the local variable and by are the body clauses. */
SCM names, inits, bindings;
x = SCM_CDR (x);
names = SCM_CAR (x);
x = SCM_CDR (x);
inits = scm_reverse (unmemocopy (SCM_CAR (x), env));
env = SCM_EXTEND_ENV (names, SCM_EOL, env);
bindings = build_binding_list (names, inits);
z = scm_cons (bindings, SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_let, z);
break;
}
case SCM_BIT7 (SCM_IM_LETREC):
{
/* format: (#@letrec (nk nk-1 ...) (i1 ... ik) b1 ...),
* where nx is the name of a local variable, ix is an initializer for
* the local variable and by are the body clauses. */
SCM names, inits, bindings;
x = SCM_CDR (x);
names = SCM_CAR (x);
env = SCM_EXTEND_ENV (names, SCM_EOL, env);
x = SCM_CDR (x);
inits = scm_reverse (unmemocopy (SCM_CAR (x), env));
bindings = build_binding_list (names, inits);
z = scm_cons (bindings, SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_letrec, z);
break;
}
case SCM_BIT7 (SCM_IM_LETSTAR):
{
SCM b, y;
x = SCM_CDR (x);
b = SCM_CAR (x);
y = SCM_EOL;
if SCM_IMP (b)
{
env = SCM_EXTEND_ENV (SCM_EOL, SCM_EOL, env);
goto letstar;
}
y = z = scm_acons (SCM_CAR (b),
unmemocar (
scm_cons (unmemocopy (SCM_CADR (b), env), SCM_EOL), env),
SCM_UNSPECIFIED);
env = SCM_EXTEND_ENV (SCM_CAR (b), SCM_BOOL_F, env);
b = SCM_CDDR (b);
if (SCM_IMP (b))
{
SCM_SETCDR (y, SCM_EOL);
z = scm_cons (y, SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_let, z);
break;
}
do
{
SCM_SETCDR (z, scm_acons (SCM_CAR (b),
unmemocar (
scm_list_1 (unmemocopy (SCM_CADR (b), env)), env),
SCM_UNSPECIFIED));
z = SCM_CDR (z);
env = SCM_EXTEND_ENV (SCM_CAR (b), SCM_BOOL_F, env);
b = SCM_CDDR (b);
}
while (SCM_NIMP (b));
SCM_SETCDR (z, SCM_EOL);
letstar:
z = scm_cons (y, SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_letstar, z);
break;
}
case SCM_BIT7 (SCM_IM_OR):
ls = z = scm_cons (scm_sym_or, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_LAMBDA):
x = SCM_CDR (x);
z = scm_cons (SCM_CAR (x), SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_lambda, z);
env = SCM_EXTEND_ENV (SCM_CAR (x), SCM_EOL, env);
break;
case SCM_BIT7 (SCM_IM_QUOTE):
ls = z = scm_cons (scm_sym_quote, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_IM_SET_X):
ls = z = scm_cons (scm_sym_set_x, SCM_UNSPECIFIED);
break;
case SCM_BIT7 (SCM_MAKISYM (0)):
z = SCM_CAR (x);
switch (SCM_ISYMNUM (z))
{
case (SCM_ISYMNUM (SCM_IM_DEFINE)):
{
SCM n;
x = SCM_CDR (x);
n = SCM_CAR (x);
z = scm_cons (n, SCM_UNSPECIFIED);
ls = scm_cons (scm_sym_define, z);
if (!SCM_NULLP (env))
env = scm_cons (scm_cons (scm_cons (n, SCM_CAAR (env)),
SCM_CDAR (env)),
SCM_CDR (env));
break;
}
case (SCM_ISYMNUM (SCM_IM_APPLY)):
ls = z = scm_cons (scm_sym_atapply, SCM_UNSPECIFIED);
goto loop;
case (SCM_ISYMNUM (SCM_IM_CONT)):
ls = z = scm_cons (scm_sym_atcall_cc, SCM_UNSPECIFIED);
goto loop;
case (SCM_ISYMNUM (SCM_IM_DELAY)):
ls = z = scm_cons (scm_sym_delay, SCM_UNSPECIFIED);
x = SCM_CDR (x);
goto loop;
case (SCM_ISYMNUM (SCM_IM_FUTURE)):
ls = z = scm_cons (scm_sym_future, SCM_UNSPECIFIED);
x = SCM_CDR (x);
goto loop;
case (SCM_ISYMNUM (SCM_IM_CALL_WITH_VALUES)):
ls = z = scm_cons (scm_sym_at_call_with_values, SCM_UNSPECIFIED);
goto loop;
case (SCM_ISYMNUM (SCM_IM_ELSE)):
ls = z = scm_cons (scm_sym_else, SCM_UNSPECIFIED);
goto loop;
default:
/* appease the Sun compiler god: */ ;
}
default:
ls = z = unmemocar (scm_cons (unmemocopy (SCM_CAR (x), env),
SCM_UNSPECIFIED),
env);
}
loop:
x = SCM_CDR (x);
while (SCM_CONSP (x))
{
SCM form = SCM_CAR (x);
if (!SCM_ISYMP (form))
{
SCM copy = scm_cons (unmemocopy (form, env), SCM_UNSPECIFIED);
SCM_SETCDR (z, unmemocar (copy, env));
z = SCM_CDR (z);
}
else if (SCM_EQ_P (form, SCM_IM_ARROW))
{
SCM_SETCDR (z, scm_cons (scm_sym_arrow, SCM_UNSPECIFIED));
z = SCM_CDR (z);
}
x = SCM_CDR (x);
}
SCM_SETCDR (z, x);
if (!SCM_FALSEP (p))
scm_whash_insert (scm_source_whash, ls, p);
return ls;
}
SCM
scm_unmemocopy (SCM x, SCM env)
{
if (!SCM_NULLP (env))
/* Make a copy of the lowest frame to protect it from
modifications by SCM_IM_DEFINE */
return unmemocopy (x, scm_cons (SCM_CAR (env), SCM_CDR (env)));
else
return unmemocopy (x, env);
}
int
scm_badargsp (SCM formals, SCM args)
{
while (!SCM_NULLP (formals))
{
if (!SCM_CONSP (formals))
return 0;
if (SCM_NULLP (args))
return 1;
formals = SCM_CDR (formals);
args = SCM_CDR (args);
}
return !SCM_NULLP (args) ? 1 : 0;
}
SCM
scm_eval_args (SCM l, SCM env, SCM proc)
{
SCM results = SCM_EOL, *lloc = &results, res;
while (SCM_CONSP (l))
{
res = EVALCAR (l, env);
*lloc = scm_list_1 (res);
lloc = SCM_CDRLOC (*lloc);
l = SCM_CDR (l);
}
if (!SCM_NULLP (l))
scm_wrong_num_args (proc);
return results;
}
SCM
scm_eval_body (SCM code, SCM env)
{
SCM next;
again:
next = SCM_CDR (code);
while (!SCM_NULLP (next))
{
if (SCM_IMP (SCM_CAR (code)))
{
if (SCM_ISYMP (SCM_CAR (code)))
{
scm_rec_mutex_lock (&source_mutex);
/* check for race condition */
if (SCM_ISYMP (SCM_CAR (code)))
code = scm_m_expand_body (code, env);
scm_rec_mutex_unlock (&source_mutex);
goto again;
}
}
else
SCM_XEVAL (SCM_CAR (code), env);
code = next;
next = SCM_CDR (code);
}
return SCM_XEVALCAR (code, env);
}
#endif /* !DEVAL */
/* SECTION: This code is specific for the debugging support. One
* branch is read when DEVAL isn't defined, the other when DEVAL is
* defined.
*/
#ifndef DEVAL
#define SCM_APPLY scm_apply
#define PREP_APPLY(proc, args)
#define ENTER_APPLY
#define RETURN(x) do { return x; } while (0)
#ifdef STACK_CHECKING
#ifndef NO_CEVAL_STACK_CHECKING
#define EVAL_STACK_CHECKING
#endif
#endif
#else /* !DEVAL */
#undef SCM_CEVAL
#define SCM_CEVAL scm_deval /* Substitute all uses of scm_ceval */
#undef SCM_APPLY
#define SCM_APPLY scm_dapply
#undef PREP_APPLY
#define PREP_APPLY(p, l) \
{ ++debug.info; debug.info->a.proc = p; debug.info->a.args = l; }
#undef ENTER_APPLY
#define ENTER_APPLY \
do { \
SCM_SET_ARGSREADY (debug);\
if (scm_check_apply_p && SCM_TRAPS_P)\
if (SCM_APPLY_FRAME_P || (SCM_TRACE_P && PROCTRACEP (proc)))\
{\
SCM tmp, tail = SCM_BOOL(SCM_TRACED_FRAME_P (debug)); \
SCM_SET_TRACED_FRAME (debug); \
SCM_TRAPS_P = 0;\
if (SCM_CHEAPTRAPS_P)\
{\
tmp = scm_make_debugobj (&debug);\
scm_call_3 (SCM_APPLY_FRAME_HDLR, scm_sym_apply_frame, tmp, tail);\
}\
else\
{\
int first;\
tmp = scm_make_continuation (&first);\
if (first)\
scm_call_3 (SCM_APPLY_FRAME_HDLR, scm_sym_apply_frame, tmp, tail);\
}\
SCM_TRAPS_P = 1;\
}\
} while (0)
#undef RETURN
#define RETURN(e) do { proc = (e); goto exit; } while (0)
#ifdef STACK_CHECKING
#ifndef EVAL_STACK_CHECKING
#define EVAL_STACK_CHECKING
#endif
#endif
/* scm_ceval_ptr points to the currently selected evaluator.
* *fixme*: Although efficiency is important here, this state variable
* should probably not be a global. It should be related to the
* current repl.
*/
SCM (*scm_ceval_ptr) (SCM x, SCM env);
/* scm_last_debug_frame contains a pointer to the last debugging
* information stack frame. It is accessed very often from the
* debugging evaluator, so it should probably not be indirectly
* addressed. Better to save and restore it from the current root at
* any stack swaps.
*/
/* scm_debug_eframe_size is the number of slots available for pseudo
* stack frames at each real stack frame.
*/
long scm_debug_eframe_size;
int scm_debug_mode, scm_check_entry_p, scm_check_apply_p, scm_check_exit_p;
long scm_eval_stack;
scm_t_option scm_eval_opts[] = {
{ SCM_OPTION_INTEGER, "stack", 22000, "Size of thread stacks (in machine words)." }
};
scm_t_option scm_debug_opts[] = {
{ SCM_OPTION_BOOLEAN, "cheap", 1,
"*Flyweight representation of the stack at traps." },
{ SCM_OPTION_BOOLEAN, "breakpoints", 0, "*Check for breakpoints." },
{ SCM_OPTION_BOOLEAN, "trace", 0, "*Trace mode." },
{ SCM_OPTION_BOOLEAN, "procnames", 1,
"Record procedure names at definition." },
{ SCM_OPTION_BOOLEAN, "backwards", 0,
"Display backtrace in anti-chronological order." },
{ SCM_OPTION_INTEGER, "width", 79, "Maximal width of backtrace." },
{ SCM_OPTION_INTEGER, "indent", 10, "Maximal indentation in backtrace." },
{ SCM_OPTION_INTEGER, "frames", 3,
"Maximum number of tail-recursive frames in backtrace." },
{ SCM_OPTION_INTEGER, "maxdepth", 1000,
"Maximal number of stored backtrace frames." },
{ SCM_OPTION_INTEGER, "depth", 20, "Maximal length of printed backtrace." },
{ SCM_OPTION_BOOLEAN, "backtrace", 0, "Show backtrace on error." },
{ SCM_OPTION_BOOLEAN, "debug", 0, "Use the debugging evaluator." },
{ SCM_OPTION_INTEGER, "stack", 20000, "Stack size limit (measured in words; 0 = no check)." },
{ SCM_OPTION_SCM, "show-file-name", (unsigned long)SCM_BOOL_T, "Show file names and line numbers in backtraces when not `#f'. A value of `base' displays only base names, while `#t' displays full names."}
};
scm_t_option scm_evaluator_trap_table[] = {
{ SCM_OPTION_BOOLEAN, "traps", 0, "Enable evaluator traps." },
{ SCM_OPTION_BOOLEAN, "enter-frame", 0, "Trap when eval enters new frame." },
{ SCM_OPTION_BOOLEAN, "apply-frame", 0, "Trap when entering apply." },
{ SCM_OPTION_BOOLEAN, "exit-frame", 0, "Trap when exiting eval or apply." },
{ SCM_OPTION_SCM, "enter-frame-handler", (unsigned long)SCM_BOOL_F, "Handler for enter-frame traps." },
{ SCM_OPTION_SCM, "apply-frame-handler", (unsigned long)SCM_BOOL_F, "Handler for apply-frame traps." },
{ SCM_OPTION_SCM, "exit-frame-handler", (unsigned long)SCM_BOOL_F, "Handler for exit-frame traps." }
};
SCM_DEFINE (scm_eval_options_interface, "eval-options-interface", 0, 1, 0,
(SCM setting),
"Option interface for the evaluation options. Instead of using\n"
"this procedure directly, use the procedures @code{eval-enable},\n"
"@code{eval-disable}, @code{eval-set!} and @code{eval-options}.")
#define FUNC_NAME s_scm_eval_options_interface
{
SCM ans;
SCM_DEFER_INTS;
ans = scm_options (setting,
scm_eval_opts,
SCM_N_EVAL_OPTIONS,
FUNC_NAME);
scm_eval_stack = SCM_EVAL_STACK * sizeof (void *);
SCM_ALLOW_INTS;
return ans;
}
#undef FUNC_NAME
SCM_DEFINE (scm_evaluator_traps, "evaluator-traps-interface", 0, 1, 0,
(SCM setting),
"Option interface for the evaluator trap options.")
#define FUNC_NAME s_scm_evaluator_traps
{
SCM ans;
SCM_DEFER_INTS;
ans = scm_options (setting,
scm_evaluator_trap_table,
SCM_N_EVALUATOR_TRAPS,
FUNC_NAME);
SCM_RESET_DEBUG_MODE;
SCM_ALLOW_INTS;
return ans;
}
#undef FUNC_NAME
static SCM
deval_args (SCM l, SCM env, SCM proc, SCM *lloc)
{
SCM *results = lloc, res;
while (SCM_CONSP (l))
{
res = EVALCAR (l, env);
*lloc = scm_list_1 (res);
lloc = SCM_CDRLOC (*lloc);
l = SCM_CDR (l);
}
if (!SCM_NULLP (l))
scm_wrong_num_args (proc);
return *results;
}
#endif /* !DEVAL */
/* SECTION: This code is compiled twice.
*/
/* Update the toplevel environment frame ENV so that it refers to the
* current module. */
#define UPDATE_TOPLEVEL_ENV(env) \
do { \
SCM p = scm_current_module_lookup_closure (); \
if (p != SCM_CAR (env)) \
env = scm_top_level_env (p); \
} while (0)
/* This is the evaluator. Like any real monster, it has three heads:
*
* scm_ceval is the non-debugging evaluator, scm_deval is the debugging
* version. Both are implemented using a common code base, using the
* following mechanism: SCM_CEVAL is a macro, which is either defined to
* scm_ceval or scm_deval. Thus, there is no function SCM_CEVAL, but the code
* for SCM_CEVAL actually compiles to either scm_ceval or scm_deval. When
* SCM_CEVAL is defined to scm_ceval, it is known that the macro DEVAL is not
* defined. When SCM_CEVAL is defined to scm_deval, then the macro DEVAL is
* known to be defined. Thus, in SCM_CEVAL parts for the debugging evaluator
* are enclosed within #ifdef DEVAL ... #endif.
*
* All three (scm_ceval, scm_deval and their common implementation SCM_CEVAL)
* take two input parameters, x and env: x is a single expression to be
* evalutated. env is the environment in which bindings are searched.
*
* x is known to be a cell (i. e. a pair or any other non-immediate). Since x
* is a single expression, it is necessarily in a tail position. If x is just
* a call to another function like in the expression (foo exp1 exp2 ...), the
* realization of that call therefore _must_not_ increase stack usage (the
* evaluation of exp1, exp2 etc., however, may do so). This is realized by
* making extensive use of 'goto' statements within the evaluator: The gotos
* replace recursive calls to SCM_CEVAL, thus re-using the same stack frame
* that SCM_CEVAL was already using. If, however, x represents some form that
* requires to evaluate a sequence of expressions like (begin exp1 exp2 ...),
* then recursive calls to SCM_CEVAL are performed for all but the last
* expression of that sequence. */
#if 0
SCM
scm_ceval (SCM x, SCM env)
{}
#endif
#if 0
SCM
scm_deval (SCM x, SCM env)
{}
#endif
SCM
SCM_CEVAL (SCM x, SCM env)
{
SCM proc, arg1;
#ifdef DEVAL
scm_t_debug_frame debug;
scm_t_debug_info *debug_info_end;
debug.prev = scm_last_debug_frame;
debug.status = 0;
/*
* The debug.vect contains twice as much scm_t_debug_info frames as the
* user has specified with (debug-set! frames <n>).
*
* Even frames are eval frames, odd frames are apply frames.
*/
debug.vect = (scm_t_debug_info *) alloca (scm_debug_eframe_size
* sizeof (scm_t_debug_info));
debug.info = debug.vect;
debug_info_end = debug.vect + scm_debug_eframe_size;
scm_last_debug_frame = &debug;
#endif
#ifdef EVAL_STACK_CHECKING
if (scm_stack_checking_enabled_p && SCM_STACK_OVERFLOW_P (&proc))
{
#ifdef DEVAL
debug.info->e.exp = x;
debug.info->e.env = env;
#endif
scm_report_stack_overflow ();
}
#endif
#ifdef DEVAL
goto start;
#endif
loop:
#ifdef DEVAL
SCM_CLEAR_ARGSREADY (debug);
if (SCM_OVERFLOWP (debug))
--debug.info;
/*
* In theory, this should be the only place where it is necessary to
* check for space in debug.vect since both eval frames and
* available space are even.
*
* For this to be the case, however, it is necessary that primitive
* special forms which jump back to `loop', `begin' or some similar
* label call PREP_APPLY.
*/
else if (++debug.info >= debug_info_end)
{
SCM_SET_OVERFLOW (debug);
debug.info -= 2;
}
start:
debug.info->e.exp = x;
debug.info->e.env = env;
if (scm_check_entry_p && SCM_TRAPS_P)
{
if (SCM_ENTER_FRAME_P
|| (SCM_BREAKPOINTS_P && scm_c_source_property_breakpoint_p (x)))
{
SCM stackrep;
SCM tail = SCM_BOOL (SCM_TAILRECP (debug));
SCM_SET_TAILREC (debug);
if (SCM_CHEAPTRAPS_P)
stackrep = scm_make_debugobj (&debug);
else
{
int first;
SCM val = scm_make_continuation (&first);
if (first)
stackrep = val;
else
{
x = val;
if (SCM_IMP (x))
RETURN (x);
else
/* This gives the possibility for the debugger to
modify the source expression before evaluation. */
goto dispatch;
}
}
SCM_TRAPS_P = 0;
scm_call_4 (SCM_ENTER_FRAME_HDLR,
scm_sym_enter_frame,
stackrep,
tail,
scm_unmemocopy (x, env));
SCM_TRAPS_P = 1;
}
}
#endif
dispatch:
SCM_TICK;
switch (SCM_TYP7 (x))
{
case scm_tc7_symbol:
/* Only happens when called at top level. */
x = scm_cons (x, SCM_UNDEFINED);
RETURN (*scm_lookupcar (x, env, 1));
case SCM_BIT7 (SCM_IM_AND):
x = SCM_CDR (x);
while (!SCM_NULLP (SCM_CDR (x)))
{
SCM test_result = EVALCAR (x, env);
if (SCM_FALSEP (test_result) || SCM_NILP (test_result))
RETURN (SCM_BOOL_F);
else
x = SCM_CDR (x);
}
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto carloop;
case SCM_BIT7 (SCM_IM_BEGIN):
x = SCM_CDR (x);
if (SCM_NULLP (x))
RETURN (SCM_UNSPECIFIED);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
begin:
/* If we are on toplevel with a lookup closure, we need to sync
with the current module. */
if (SCM_CONSP (env) && !SCM_CONSP (SCM_CAR (env)))
{
UPDATE_TOPLEVEL_ENV (env);
while (!SCM_NULLP (SCM_CDR (x)))
{
EVALCAR (x, env);
UPDATE_TOPLEVEL_ENV (env);
x = SCM_CDR (x);
}
goto carloop;
}
else
goto nontoplevel_begin;
nontoplevel_begin:
while (!SCM_NULLP (SCM_CDR (x)))
{
SCM form = SCM_CAR (x);
if (SCM_IMP (form))
{
if (SCM_ISYMP (form))
{
scm_rec_mutex_lock (&source_mutex);
/* check for race condition */
if (SCM_ISYMP (SCM_CAR (x)))
x = scm_m_expand_body (x, env);
scm_rec_mutex_unlock (&source_mutex);
goto nontoplevel_begin;
}
else
SCM_VALIDATE_NON_EMPTY_COMBINATION (form);
}
else
SCM_CEVAL (form, env);
x = SCM_CDR (x);
}
carloop:
{
/* scm_eval last form in list */
SCM last_form = SCM_CAR (x);
if (SCM_CONSP (last_form))
{
/* This is by far the most frequent case. */
x = last_form;
goto loop; /* tail recurse */
}
else if (SCM_IMP (last_form))
RETURN (SCM_EVALIM (last_form, env));
else if (SCM_VARIABLEP (last_form))
RETURN (SCM_VARIABLE_REF (last_form));
else if (SCM_SYMBOLP (last_form))
RETURN (*scm_lookupcar (x, env, 1));
else
RETURN (last_form);
}
case SCM_BIT7 (SCM_IM_CASE):
x = SCM_CDR (x);
{
SCM key = EVALCAR (x, env);
x = SCM_CDR (x);
while (!SCM_NULLP (x))
{
SCM clause = SCM_CAR (x);
SCM labels = SCM_CAR (clause);
if (SCM_EQ_P (labels, SCM_IM_ELSE))
{
x = SCM_CDR (clause);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto begin;
}
while (!SCM_NULLP (labels))
{
SCM label = SCM_CAR (labels);
if (SCM_EQ_P (label, key) || !SCM_FALSEP (scm_eqv_p (label, key)))
{
x = SCM_CDR (clause);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto begin;
}
labels = SCM_CDR (labels);
}
x = SCM_CDR (x);
}
}
RETURN (SCM_UNSPECIFIED);
case SCM_BIT7 (SCM_IM_COND):
x = SCM_CDR (x);
while (!SCM_NULLP (x))
{
SCM clause = SCM_CAR (x);
if (SCM_EQ_P (SCM_CAR (clause), SCM_IM_ELSE))
{
x = SCM_CDR (clause);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto begin;
}
else
{
arg1 = EVALCAR (clause, env);
if (!SCM_FALSEP (arg1) && !SCM_NILP (arg1))
{
x = SCM_CDR (clause);
if (SCM_NULLP (x))
RETURN (arg1);
else if (!SCM_EQ_P (SCM_CAR (x), SCM_IM_ARROW))
{
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto begin;
}
else
{
proc = SCM_CDR (x);
proc = EVALCAR (proc, env);
PREP_APPLY (proc, scm_list_1 (arg1));
ENTER_APPLY;
goto evap1;
}
}
x = SCM_CDR (x);
}
}
RETURN (SCM_UNSPECIFIED);
case SCM_BIT7 (SCM_IM_DO):
x = SCM_CDR (x);
{
/* Compute the initialization values and the initial environment. */
SCM init_forms = SCM_CAR (x);
SCM init_values = SCM_EOL;
while (!SCM_NULLP (init_forms))
{
init_values = scm_cons (EVALCAR (init_forms, env), init_values);
init_forms = SCM_CDR (init_forms);
}
x = SCM_CDR (x);
env = SCM_EXTEND_ENV (SCM_CAR (x), init_values, env);
}
x = SCM_CDR (x);
{
SCM test_form = SCM_CAR (x);
SCM body_forms = SCM_CADR (x);
SCM step_forms = SCM_CDDR (x);
SCM test_result = EVALCAR (test_form, env);
while (SCM_FALSEP (test_result) || SCM_NILP (test_result))
{
{
/* Evaluate body forms. */
SCM temp_forms;
for (temp_forms = body_forms;
!SCM_NULLP (temp_forms);
temp_forms = SCM_CDR (temp_forms))
{
SCM form = SCM_CAR (temp_forms);
/* Dirk:FIXME: We only need to eval forms, that may have a
* side effect here. This is only true for forms that start
* with a pair. All others are just constants. However,
* since in the common case there is no constant expression
* in a body of a do form, we just check for immediates here
* and have SCM_CEVAL take care of other cases. In the long
* run it would make sense to get rid of this test and have
* the macro transformer of 'do' eliminate all forms that
* have no sideeffect. */
if (!SCM_IMP (form))
SCM_CEVAL (form, env);
}
}
{
/* Evaluate the step expressions. */
SCM temp_forms;
SCM step_values = SCM_EOL;
for (temp_forms = step_forms;
!SCM_NULLP (temp_forms);
temp_forms = SCM_CDR (temp_forms))
{
SCM value = EVALCAR (temp_forms, env);
step_values = scm_cons (value, step_values);
}
env = SCM_EXTEND_ENV (SCM_CAAR (env),
step_values,
SCM_CDR (env));
}
test_result = EVALCAR (test_form, env);
}
}
x = SCM_CDAR (x);
if (SCM_NULLP (x))
RETURN (SCM_UNSPECIFIED);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto nontoplevel_begin;
case SCM_BIT7 (SCM_IM_IF):
x = SCM_CDR (x);
{
SCM test_result = EVALCAR (x, env);
if (!SCM_FALSEP (test_result) && !SCM_NILP (test_result))
x = SCM_CDR (x);
else
{
x = SCM_CDDR (x);
if (SCM_NULLP (x))
RETURN (SCM_UNSPECIFIED);
}
}
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto carloop;
case SCM_BIT7 (SCM_IM_LET):
x = SCM_CDR (x);
{
SCM init_forms = SCM_CADR (x);
SCM init_values = SCM_EOL;
do
{
init_values = scm_cons (EVALCAR (init_forms, env), init_values);
init_forms = SCM_CDR (init_forms);
}
while (!SCM_NULLP (init_forms));
env = SCM_EXTEND_ENV (SCM_CAR (x), init_values, env);
}
x = SCM_CDDR (x);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto nontoplevel_begin;
case SCM_BIT7 (SCM_IM_LETREC):
x = SCM_CDR (x);
env = SCM_EXTEND_ENV (SCM_CAR (x), undefineds, env);
x = SCM_CDR (x);
{
SCM init_forms = SCM_CAR (x);
SCM init_values = SCM_EOL;
do
{
init_values = scm_cons (EVALCAR (init_forms, env), init_values);
init_forms = SCM_CDR (init_forms);
}
while (!SCM_NULLP (init_forms));
SCM_SETCDR (SCM_CAR (env), init_values);
}
x = SCM_CDR (x);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto nontoplevel_begin;
case SCM_BIT7 (SCM_IM_LETSTAR):
x = SCM_CDR (x);
{
SCM bindings = SCM_CAR (x);
if (SCM_NULLP (bindings))
env = SCM_EXTEND_ENV (SCM_EOL, SCM_EOL, env);
else
{
do
{
SCM name = SCM_CAR (bindings);
SCM init = SCM_CDR (bindings);
env = SCM_EXTEND_ENV (name, EVALCAR (init, env), env);
bindings = SCM_CDR (init);
}
while (!SCM_NULLP (bindings));
}
}
x = SCM_CDR (x);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto nontoplevel_begin;
case SCM_BIT7 (SCM_IM_OR):
x = SCM_CDR (x);
while (!SCM_NULLP (SCM_CDR (x)))
{
SCM val = EVALCAR (x, env);
if (!SCM_FALSEP (val) && !SCM_NILP (val))
RETURN (val);
else
x = SCM_CDR (x);
}
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto carloop;
case SCM_BIT7 (SCM_IM_LAMBDA):
RETURN (scm_closure (SCM_CDR (x), env));
case SCM_BIT7 (SCM_IM_QUOTE):
RETURN (SCM_CADR (x));
case SCM_BIT7 (SCM_IM_SET_X):
x = SCM_CDR (x);
{
SCM *location;
SCM variable = SCM_CAR (x);
if (SCM_ILOCP (variable))
location = scm_ilookup (variable, env);
else if (SCM_VARIABLEP (variable))
location = SCM_VARIABLE_LOC (variable);
else /* (SCM_SYMBOLP (variable)) is known to be true */
location = scm_lookupcar (x, env, 1);
x = SCM_CDR (x);
*location = EVALCAR (x, env);
}
RETURN (SCM_UNSPECIFIED);
/* new syntactic forms go here. */
case SCM_BIT7 (SCM_MAKISYM (0)):
proc = SCM_CAR (x);
switch (SCM_ISYMNUM (proc))
{
case (SCM_ISYMNUM (SCM_IM_DEFINE)):
/* Top level defines are handled directly by the memoizer and thus
* will never generate memoized code with SCM_IM_DEFINE. Internal
* defines which occur at valid positions will be transformed into
* letrec expressions. Thus, whenever the executor detects
* SCM_IM_DEFINE, this must come from an internal definition at an
* illegal position. */
scm_misc_error (NULL, "Bad define placement", SCM_EOL);
case (SCM_ISYMNUM (SCM_IM_APPLY)):
x = SCM_CDR (x);
proc = EVALCAR (x, env);
PREP_APPLY (proc, SCM_EOL);
x = SCM_CDR (x);
arg1 = EVALCAR (x, env);
apply_proc:
/* Go here to tail-apply a procedure. PROC is the procedure and
* ARG1 is the list of arguments. PREP_APPLY must have been called
* before jumping to apply_proc. */
if (SCM_CLOSUREP (proc))
{
SCM formals = SCM_CLOSURE_FORMALS (proc);
#ifdef DEVAL
debug.info->a.args = arg1;
#endif
if (scm_badargsp (formals, arg1))
scm_wrong_num_args (proc);
ENTER_APPLY;
/* Copy argument list */
if (SCM_NULL_OR_NIL_P (arg1))
env = SCM_EXTEND_ENV (formals, SCM_EOL, SCM_ENV (proc));
else
{
SCM args = scm_list_1 (SCM_CAR (arg1));
SCM tail = args;
arg1 = SCM_CDR (arg1);
while (!SCM_NULL_OR_NIL_P (arg1))
{
SCM new_tail = scm_list_1 (SCM_CAR (arg1));
SCM_SETCDR (tail, new_tail);
tail = new_tail;
arg1 = SCM_CDR (arg1);
}
env = SCM_EXTEND_ENV (formals, args, SCM_ENV (proc));
}
x = SCM_CLOSURE_BODY (proc);
goto nontoplevel_begin;
}
else
{
ENTER_APPLY;
RETURN (SCM_APPLY (proc, arg1, SCM_EOL));
}
case (SCM_ISYMNUM (SCM_IM_CONT)):
{
int first;
SCM val = scm_make_continuation (&first);
if (!first)
RETURN (val);
else
{
arg1 = val;
proc = SCM_CDR (x);
proc = scm_eval_car (proc, env);
PREP_APPLY (proc, scm_list_1 (arg1));
ENTER_APPLY;
goto evap1;
}
}
case (SCM_ISYMNUM (SCM_IM_DELAY)):
RETURN (scm_makprom (scm_closure (SCM_CDR (x), env)));
case (SCM_ISYMNUM (SCM_IM_FUTURE)):
RETURN (scm_i_make_future (scm_closure (SCM_CDR (x), env)));
/* PLACEHOLDER for case (SCM_ISYMNUM (SCM_IM_DISPATCH)): The
following code (type_dispatch) is intended to be the tail
of the case clause for the internal macro
SCM_IM_DISPATCH. Please don't remove it from this
location without discussing it with Mikael
<djurfeldt@nada.kth.se> */
/* The type dispatch code is duplicated below
* (c.f. objects.c:scm_mcache_compute_cmethod) since that
* cuts down execution time for type dispatch to 50%. */
type_dispatch: /* inputs: x, arg1 */
/* Type dispatch means to determine from the types of the function
* arguments (i. e. the 'signature' of the call), which method from
* a generic function is to be called. This process of selecting
* the right method takes some time. To speed it up, guile uses
* caching: Together with the macro call to dispatch the signatures
* of some previous calls to that generic function from the same
* place are stored (in the code!) in a cache that we call the
* 'method cache'. This is done since it is likely, that
* consecutive calls to dispatch from that position in the code will
* have the same signature. Thus, the type dispatch works as
* follows: First, determine a hash value from the signature of the
* actual arguments. Second, use this hash value as an index to
* find that same signature in the method cache stored at this
* position in the code. If found, you have also found the
* corresponding method that belongs to that signature. If the
* signature is not found in the method cache, you have to perform a
* full search over all signatures stored with the generic
* function. */
{
unsigned long int specializers;
unsigned long int hash_value;
unsigned long int cache_end_pos;
unsigned long int mask;
SCM method_cache;
{
SCM z = SCM_CDDR (x);
SCM tmp = SCM_CADR (z);
specializers = SCM_INUM (SCM_CAR (z));
/* Compute a hash value for searching the method cache. There
* are two variants for computing the hash value, a (rather)
* complicated one, and a simple one. For the complicated one
* explained below, tmp holds a number that is used in the
* computation. */
if (SCM_INUMP (tmp))
{
/* Use the signature of the actual arguments to determine
* the hash value. This is done as follows: Each class has
* an array of random numbers, that are determined when the
* class is created. The integer 'hashset' is an index into
* that array of random numbers. Now, from all classes that
* are part of the signature of the actual arguments, the
* random numbers at index 'hashset' are taken and summed
* up, giving the hash value. The value of 'hashset' is
* stored at the call to dispatch. This allows to have
* different 'formulas' for calculating the hash value at
* different places where dispatch is called. This allows
* to optimize the hash formula at every individual place
* where dispatch is called, such that hopefully the hash
* value that is computed will directly point to the right
* method in the method cache. */
unsigned long int hashset = SCM_INUM (tmp);
unsigned long int counter = specializers + 1;
SCM tmp_arg = arg1;
hash_value = 0;
while (!SCM_NULLP (tmp_arg) && counter != 0)
{
SCM class = scm_class_of (SCM_CAR (tmp_arg));
hash_value += SCM_INSTANCE_HASH (class, hashset);
tmp_arg = SCM_CDR (tmp_arg);
counter--;
}
z = SCM_CDDR (z);
method_cache = SCM_CADR (z);
mask = SCM_INUM (SCM_CAR (z));
hash_value &= mask;
cache_end_pos = hash_value;
}
else
{
/* This method of determining the hash value is much
* simpler: Set the hash value to zero and just perform a
* linear search through the method cache. */
method_cache = tmp;
mask = (unsigned long int) ((long) -1);
hash_value = 0;
cache_end_pos = SCM_VECTOR_LENGTH (method_cache);
}
}
{
/* Search the method cache for a method with a matching
* signature. Start the search at position 'hash_value'. The
* hashing implementation uses linear probing for conflict
* resolution, that is, if the signature in question is not
* found at the starting index in the hash table, the next table
* entry is tried, and so on, until in the worst case the whole
* cache has been searched, but still the signature has not been
* found. */
SCM z;
do
{
SCM args = arg1; /* list of arguments */
z = SCM_VELTS (method_cache)[hash_value];
while (!SCM_NULLP (args))
{
/* More arguments than specifiers => CLASS != ENV */
SCM class_of_arg = scm_class_of (SCM_CAR (args));
if (!SCM_EQ_P (class_of_arg, SCM_CAR (z)))
goto next_method;
args = SCM_CDR (args);
z = SCM_CDR (z);
}
/* Fewer arguments than specifiers => CAR != ENV */
if (SCM_NULLP (SCM_CAR (z)) || SCM_CONSP (SCM_CAR (z)))
goto apply_cmethod;
next_method:
hash_value = (hash_value + 1) & mask;
} while (hash_value != cache_end_pos);
/* No appropriate method was found in the cache. */
z = scm_memoize_method (x, arg1);
apply_cmethod: /* inputs: z, arg1 */
{
SCM formals = SCM_CMETHOD_FORMALS (z);
env = SCM_EXTEND_ENV (formals, arg1, SCM_CMETHOD_ENV (z));
x = SCM_CMETHOD_BODY (z);
goto nontoplevel_begin;
}
}
}
case (SCM_ISYMNUM (SCM_IM_SLOT_REF)):
x = SCM_CDR (x);
{
SCM instance = EVALCAR (x, env);
unsigned long int slot = SCM_INUM (SCM_CADR (x));
RETURN (SCM_PACK (SCM_STRUCT_DATA (instance) [slot]));
}
case (SCM_ISYMNUM (SCM_IM_SLOT_SET_X)):
x = SCM_CDR (x);
{
SCM instance = EVALCAR (x, env);
unsigned long int slot = SCM_INUM (SCM_CADR (x));
SCM value = EVALCAR (SCM_CDDR (x), env);
SCM_STRUCT_DATA (instance) [slot] = SCM_UNPACK (value);
RETURN (SCM_UNSPECIFIED);
}
#if SCM_ENABLE_ELISP
case (SCM_ISYMNUM (SCM_IM_NIL_COND)):
{
SCM test_form = SCM_CDR (x);
x = SCM_CDR (test_form);
while (!SCM_NULL_OR_NIL_P (x))
{
SCM test_result = EVALCAR (test_form, env);
if (!(SCM_FALSEP (test_result)
|| SCM_NULL_OR_NIL_P (test_result)))
{
if (SCM_EQ_P (SCM_CAR (x), SCM_UNSPECIFIED))
RETURN (test_result);
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto carloop;
}
else
{
test_form = SCM_CDR (x);
x = SCM_CDR (test_form);
}
}
x = test_form;
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto carloop;
}
#endif /* SCM_ENABLE_ELISP */
case (SCM_ISYMNUM (SCM_IM_BIND)):
{
SCM vars, exps, vals;
x = SCM_CDR (x);
vars = SCM_CAAR (x);
exps = SCM_CDAR (x);
vals = SCM_EOL;
while (SCM_NIMP (exps))
{
vals = scm_cons (EVALCAR (exps, env), vals);
exps = SCM_CDR (exps);
}
scm_swap_bindings (vars, vals);
scm_dynwinds = scm_acons (vars, vals, scm_dynwinds);
/* Ignore all but the last evaluation result. */
for (x = SCM_CDR (x); !SCM_NULLP (SCM_CDR (x)); x = SCM_CDR (x))
{
if (SCM_CONSP (SCM_CAR (x)))
SCM_CEVAL (SCM_CAR (x), env);
}
proc = EVALCAR (x, env);
scm_dynwinds = SCM_CDR (scm_dynwinds);
scm_swap_bindings (vars, vals);
RETURN (proc);
}
case (SCM_ISYMNUM (SCM_IM_CALL_WITH_VALUES)):
{
SCM producer;
x = SCM_CDR (x);
producer = EVALCAR (x, env);
x = SCM_CDR (x);
proc = EVALCAR (x, env); /* proc is the consumer. */
arg1 = SCM_APPLY (producer, SCM_EOL, SCM_EOL);
if (SCM_VALUESP (arg1))
arg1 = scm_struct_ref (arg1, SCM_INUM0);
else
arg1 = scm_list_1 (arg1);
PREP_APPLY (proc, arg1);
goto apply_proc;
}
default:
goto evapply;
}
default:
proc = x;
goto evapply;
case scm_tc7_vector:
case scm_tc7_wvect:
#if SCM_HAVE_ARRAYS
case scm_tc7_bvect:
case scm_tc7_byvect:
case scm_tc7_svect:
case scm_tc7_ivect:
case scm_tc7_uvect:
case scm_tc7_fvect:
case scm_tc7_dvect:
case scm_tc7_cvect:
#if SCM_SIZEOF_LONG_LONG != 0
case scm_tc7_llvect:
#endif
#endif
case scm_tc7_number:
case scm_tc7_string:
case scm_tc7_smob:
case scm_tcs_closures:
case scm_tc7_cclo:
case scm_tc7_pws:
case scm_tcs_subrs:
case scm_tcs_struct:
RETURN (x);
case scm_tc7_variable:
RETURN (SCM_VARIABLE_REF(x));
case SCM_BIT7 (SCM_ILOC00):
proc = *scm_ilookup (SCM_CAR (x), env);
goto checkmacro;
case scm_tcs_cons_nimcar:
if (SCM_SYMBOLP (SCM_CAR (x)))
{
SCM orig_sym = SCM_CAR (x);
{
SCM *location = scm_lookupcar1 (x, env, 1);
if (location == NULL)
{
/* we have lost the race, start again. */
goto dispatch;
}
proc = *location;
}
if (SCM_MACROP (proc))
{
SCM_SETCAR (x, orig_sym); /* Undo memoizing effect of
lookupcar */
handle_a_macro: /* inputs: x, env, proc */
#ifdef DEVAL
/* Set a flag during macro expansion so that macro
application frames can be deleted from the backtrace. */
SCM_SET_MACROEXP (debug);
#endif
arg1 = SCM_APPLY (SCM_MACRO_CODE (proc), x,
scm_cons (env, scm_listofnull));
#ifdef DEVAL
SCM_CLEAR_MACROEXP (debug);
#endif
switch (SCM_MACRO_TYPE (proc))
{
case 3:
case 2:
if (scm_ilength (arg1) <= 0)
arg1 = scm_list_2 (SCM_IM_BEGIN, arg1);
#ifdef DEVAL
if (!SCM_CLOSUREP (SCM_MACRO_CODE (proc)))
{
SCM_DEFER_INTS;
SCM_SETCAR (x, SCM_CAR (arg1));
SCM_SETCDR (x, SCM_CDR (arg1));
SCM_ALLOW_INTS;
goto dispatch;
}
/* Prevent memoizing of debug info expression. */
debug.info->e.exp = scm_cons_source (debug.info->e.exp,
SCM_CAR (x),
SCM_CDR (x));
#endif
SCM_DEFER_INTS;
SCM_SETCAR (x, SCM_CAR (arg1));
SCM_SETCDR (x, SCM_CDR (arg1));
SCM_ALLOW_INTS;
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto loop;
#if SCM_ENABLE_DEPRECATED == 1
case 1:
x = arg1;
if (SCM_NIMP (x))
{
PREP_APPLY (SCM_UNDEFINED, SCM_EOL);
goto loop;
}
else
RETURN (arg1);
#endif
case 0:
RETURN (arg1);
}
}
}
else
proc = SCM_CEVAL (SCM_CAR (x), env);
checkmacro:
if (SCM_MACROP (proc))
goto handle_a_macro;
}
evapply: /* inputs: x, proc */
PREP_APPLY (proc, SCM_EOL);
if (SCM_NULLP (SCM_CDR (x))) {
ENTER_APPLY;
evap0:
SCM_ASRTGO (!SCM_IMP (proc), badfun);
switch (SCM_TYP7 (proc))
{ /* no arguments given */
case scm_tc7_subr_0:
RETURN (SCM_SUBRF (proc) ());
case scm_tc7_subr_1o:
RETURN (SCM_SUBRF (proc) (SCM_UNDEFINED));
case scm_tc7_lsubr:
RETURN (SCM_SUBRF (proc) (SCM_EOL));
case scm_tc7_rpsubr:
RETURN (SCM_BOOL_T);
case scm_tc7_asubr:
RETURN (SCM_SUBRF (proc) (SCM_UNDEFINED, SCM_UNDEFINED));
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badfun;
RETURN (SCM_SMOB_APPLY_0 (proc));
case scm_tc7_cclo:
arg1 = proc;
proc = SCM_CCLO_SUBR (proc);
#ifdef DEVAL
debug.info->a.proc = proc;
debug.info->a.args = scm_list_1 (arg1);
#endif
goto evap1;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
#ifdef DEVAL
debug.info->a.proc = proc;
#endif
if (!SCM_CLOSUREP (proc))
goto evap0;
/* fallthrough */
case scm_tcs_closures:
{
const SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_CONSP (formals))
goto umwrongnumargs;
x = SCM_CLOSURE_BODY (proc);
env = SCM_EXTEND_ENV (formals, SCM_EOL, SCM_ENV (proc));
goto nontoplevel_begin;
}
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
{
x = SCM_ENTITY_PROCEDURE (proc);
arg1 = SCM_EOL;
goto type_dispatch;
}
else if (SCM_I_OPERATORP (proc))
{
arg1 = proc;
proc = (SCM_I_ENTITYP (proc)
? SCM_ENTITY_PROCEDURE (proc)
: SCM_OPERATOR_PROCEDURE (proc));
#ifdef DEVAL
debug.info->a.proc = proc;
debug.info->a.args = scm_list_1 (arg1);
#endif
goto evap1;
}
else
goto badfun;
case scm_tc7_subr_1:
case scm_tc7_subr_2:
case scm_tc7_subr_2o:
case scm_tc7_dsubr:
case scm_tc7_cxr:
case scm_tc7_subr_3:
case scm_tc7_lsubr_2:
umwrongnumargs:
unmemocar (x, env);
scm_wrong_num_args (proc);
default:
badfun:
scm_misc_error (NULL, "Wrong type to apply: ~S", scm_list_1 (proc));
}
}
/* must handle macros by here */
x = SCM_CDR (x);
if (SCM_CONSP (x))
arg1 = EVALCAR (x, env);
else
scm_wrong_num_args (proc);
#ifdef DEVAL
debug.info->a.args = scm_list_1 (arg1);
#endif
x = SCM_CDR (x);
{
SCM arg2;
if (SCM_NULLP (x))
{
ENTER_APPLY;
evap1: /* inputs: proc, arg1 */
SCM_ASRTGO (!SCM_IMP (proc), badfun);
switch (SCM_TYP7 (proc))
{ /* have one argument in arg1 */
case scm_tc7_subr_2o:
RETURN (SCM_SUBRF (proc) (arg1, SCM_UNDEFINED));
case scm_tc7_subr_1:
case scm_tc7_subr_1o:
RETURN (SCM_SUBRF (proc) (arg1));
case scm_tc7_dsubr:
if (SCM_INUMP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) ((double) SCM_INUM (arg1))));
}
else if (SCM_REALP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) (SCM_REAL_VALUE (arg1))));
}
else if (SCM_BIGP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) (scm_i_big2dbl (arg1))));
}
SCM_WTA_DISPATCH_1 (*SCM_SUBR_GENERIC (proc), arg1,
SCM_ARG1, SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
case scm_tc7_cxr:
{
unsigned char pattern = (scm_t_bits) SCM_SUBRF (proc);
do
{
SCM_ASSERT (SCM_CONSP (arg1), arg1, SCM_ARG1,
SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
arg1 = (pattern & 1) ? SCM_CAR (arg1) : SCM_CDR (arg1);
pattern >>= 2;
} while (pattern);
RETURN (arg1);
}
case scm_tc7_rpsubr:
RETURN (SCM_BOOL_T);
case scm_tc7_asubr:
RETURN (SCM_SUBRF (proc) (arg1, SCM_UNDEFINED));
case scm_tc7_lsubr:
#ifdef DEVAL
RETURN (SCM_SUBRF (proc) (debug.info->a.args));
#else
RETURN (SCM_SUBRF (proc) (scm_list_1 (arg1)));
#endif
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badfun;
RETURN (SCM_SMOB_APPLY_1 (proc, arg1));
case scm_tc7_cclo:
arg2 = arg1;
arg1 = proc;
proc = SCM_CCLO_SUBR (proc);
#ifdef DEVAL
debug.info->a.args = scm_cons (arg1, debug.info->a.args);
debug.info->a.proc = proc;
#endif
goto evap2;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
#ifdef DEVAL
debug.info->a.proc = proc;
#endif
if (!SCM_CLOSUREP (proc))
goto evap1;
/* fallthrough */
case scm_tcs_closures:
{
/* clos1: */
const SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_NULLP (formals)
|| (SCM_CONSP (formals) && SCM_CONSP (SCM_CDR (formals))))
goto umwrongnumargs;
x = SCM_CLOSURE_BODY (proc);
#ifdef DEVAL
env = SCM_EXTEND_ENV (formals,
debug.info->a.args,
SCM_ENV (proc));
#else
env = SCM_EXTEND_ENV (formals,
scm_list_1 (arg1),
SCM_ENV (proc));
#endif
goto nontoplevel_begin;
}
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
{
x = SCM_ENTITY_PROCEDURE (proc);
#ifdef DEVAL
arg1 = debug.info->a.args;
#else
arg1 = scm_list_1 (arg1);
#endif
goto type_dispatch;
}
else if (SCM_I_OPERATORP (proc))
{
arg2 = arg1;
arg1 = proc;
proc = (SCM_I_ENTITYP (proc)
? SCM_ENTITY_PROCEDURE (proc)
: SCM_OPERATOR_PROCEDURE (proc));
#ifdef DEVAL
debug.info->a.args = scm_cons (arg1, debug.info->a.args);
debug.info->a.proc = proc;
#endif
goto evap2;
}
else
goto badfun;
case scm_tc7_subr_2:
case scm_tc7_subr_0:
case scm_tc7_subr_3:
case scm_tc7_lsubr_2:
scm_wrong_num_args (proc);
default:
goto badfun;
}
}
if (SCM_CONSP (x))
arg2 = EVALCAR (x, env);
else
scm_wrong_num_args (proc);
{ /* have two or more arguments */
#ifdef DEVAL
debug.info->a.args = scm_list_2 (arg1, arg2);
#endif
x = SCM_CDR (x);
if (SCM_NULLP (x)) {
ENTER_APPLY;
evap2:
SCM_ASRTGO (!SCM_IMP (proc), badfun);
switch (SCM_TYP7 (proc))
{ /* have two arguments */
case scm_tc7_subr_2:
case scm_tc7_subr_2o:
RETURN (SCM_SUBRF (proc) (arg1, arg2));
case scm_tc7_lsubr:
#ifdef DEVAL
RETURN (SCM_SUBRF (proc) (debug.info->a.args));
#else
RETURN (SCM_SUBRF (proc) (scm_list_2 (arg1, arg2)));
#endif
case scm_tc7_lsubr_2:
RETURN (SCM_SUBRF (proc) (arg1, arg2, SCM_EOL));
case scm_tc7_rpsubr:
case scm_tc7_asubr:
RETURN (SCM_SUBRF (proc) (arg1, arg2));
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badfun;
RETURN (SCM_SMOB_APPLY_2 (proc, arg1, arg2));
cclon:
case scm_tc7_cclo:
#ifdef DEVAL
RETURN (SCM_APPLY (SCM_CCLO_SUBR (proc),
scm_cons (proc, debug.info->a.args),
SCM_EOL));
#else
RETURN (SCM_APPLY (SCM_CCLO_SUBR (proc),
scm_cons2 (proc, arg1,
scm_cons (arg2,
scm_eval_args (x,
env,
proc))),
SCM_EOL));
#endif
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
{
x = SCM_ENTITY_PROCEDURE (proc);
#ifdef DEVAL
arg1 = debug.info->a.args;
#else
arg1 = scm_list_2 (arg1, arg2);
#endif
goto type_dispatch;
}
else if (SCM_I_OPERATORP (proc))
{
operatorn:
#ifdef DEVAL
RETURN (SCM_APPLY (SCM_I_ENTITYP (proc)
? SCM_ENTITY_PROCEDURE (proc)
: SCM_OPERATOR_PROCEDURE (proc),
scm_cons (proc, debug.info->a.args),
SCM_EOL));
#else
RETURN (SCM_APPLY (SCM_I_ENTITYP (proc)
? SCM_ENTITY_PROCEDURE (proc)
: SCM_OPERATOR_PROCEDURE (proc),
scm_cons2 (proc, arg1,
scm_cons (arg2,
scm_eval_args (x,
env,
proc))),
SCM_EOL));
#endif
}
else
goto badfun;
case scm_tc7_subr_0:
case scm_tc7_dsubr:
case scm_tc7_cxr:
case scm_tc7_subr_1o:
case scm_tc7_subr_1:
case scm_tc7_subr_3:
scm_wrong_num_args (proc);
default:
goto badfun;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
#ifdef DEVAL
debug.info->a.proc = proc;
#endif
if (!SCM_CLOSUREP (proc))
goto evap2;
/* fallthrough */
case scm_tcs_closures:
{
/* clos2: */
const SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_NULLP (formals)
|| (SCM_CONSP (formals)
&& (SCM_NULLP (SCM_CDR (formals))
|| (SCM_CONSP (SCM_CDR (formals))
&& SCM_CONSP (SCM_CDDR (formals))))))
goto umwrongnumargs;
#ifdef DEVAL
env = SCM_EXTEND_ENV (formals,
debug.info->a.args,
SCM_ENV (proc));
#else
env = SCM_EXTEND_ENV (formals,
scm_list_2 (arg1, arg2),
SCM_ENV (proc));
#endif
x = SCM_CLOSURE_BODY (proc);
goto nontoplevel_begin;
}
}
}
if (!SCM_CONSP (x))
scm_wrong_num_args (proc);
#ifdef DEVAL
debug.info->a.args = scm_cons2 (arg1, arg2,
deval_args (x, env, proc,
SCM_CDRLOC (SCM_CDR (debug.info->a.args))));
#endif
ENTER_APPLY;
evap3:
SCM_ASRTGO (!SCM_IMP (proc), badfun);
switch (SCM_TYP7 (proc))
{ /* have 3 or more arguments */
#ifdef DEVAL
case scm_tc7_subr_3:
if (!SCM_NULLP (SCM_CDR (x)))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) (arg1, arg2,
SCM_CADDR (debug.info->a.args)));
case scm_tc7_asubr:
arg1 = SCM_SUBRF(proc)(arg1, arg2);
arg2 = SCM_CDDR (debug.info->a.args);
do
{
arg1 = SCM_SUBRF(proc)(arg1, SCM_CAR (arg2));
arg2 = SCM_CDR (arg2);
}
while (SCM_NIMP (arg2));
RETURN (arg1);
case scm_tc7_rpsubr:
if (SCM_FALSEP (SCM_SUBRF (proc) (arg1, arg2)))
RETURN (SCM_BOOL_F);
arg1 = SCM_CDDR (debug.info->a.args);
do
{
if (SCM_FALSEP (SCM_SUBRF (proc) (arg2, SCM_CAR (arg1))))
RETURN (SCM_BOOL_F);
arg2 = SCM_CAR (arg1);
arg1 = SCM_CDR (arg1);
}
while (SCM_NIMP (arg1));
RETURN (SCM_BOOL_T);
case scm_tc7_lsubr_2:
RETURN (SCM_SUBRF (proc) (arg1, arg2,
SCM_CDDR (debug.info->a.args)));
case scm_tc7_lsubr:
RETURN (SCM_SUBRF (proc) (debug.info->a.args));
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badfun;
RETURN (SCM_SMOB_APPLY_3 (proc, arg1, arg2,
SCM_CDDR (debug.info->a.args)));
case scm_tc7_cclo:
goto cclon;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
debug.info->a.proc = proc;
if (!SCM_CLOSUREP (proc))
goto evap3;
/* fallthrough */
case scm_tcs_closures:
{
const SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_NULLP (formals)
|| (SCM_CONSP (formals)
&& (SCM_NULLP (SCM_CDR (formals))
|| (SCM_CONSP (SCM_CDR (formals))
&& scm_badargsp (SCM_CDDR (formals), x)))))
goto umwrongnumargs;
SCM_SET_ARGSREADY (debug);
env = SCM_EXTEND_ENV (formals,
debug.info->a.args,
SCM_ENV (proc));
x = SCM_CLOSURE_BODY (proc);
goto nontoplevel_begin;
}
#else /* DEVAL */
case scm_tc7_subr_3:
if (!SCM_NULLP (SCM_CDR (x)))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) (arg1, arg2, EVALCAR (x, env)));
case scm_tc7_asubr:
arg1 = SCM_SUBRF (proc) (arg1, arg2);
do
{
arg1 = SCM_SUBRF(proc)(arg1, EVALCAR(x, env));
x = SCM_CDR(x);
}
while (SCM_NIMP (x));
RETURN (arg1);
case scm_tc7_rpsubr:
if (SCM_FALSEP (SCM_SUBRF (proc) (arg1, arg2)))
RETURN (SCM_BOOL_F);
do
{
arg1 = EVALCAR (x, env);
if (SCM_FALSEP (SCM_SUBRF (proc) (arg2, arg1)))
RETURN (SCM_BOOL_F);
arg2 = arg1;
x = SCM_CDR (x);
}
while (SCM_NIMP (x));
RETURN (SCM_BOOL_T);
case scm_tc7_lsubr_2:
RETURN (SCM_SUBRF (proc) (arg1, arg2, scm_eval_args (x, env, proc)));
case scm_tc7_lsubr:
RETURN (SCM_SUBRF (proc) (scm_cons2 (arg1,
arg2,
scm_eval_args (x, env, proc))));
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badfun;
RETURN (SCM_SMOB_APPLY_3 (proc, arg1, arg2,
scm_eval_args (x, env, proc)));
case scm_tc7_cclo:
goto cclon;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
if (!SCM_CLOSUREP (proc))
goto evap3;
/* fallthrough */
case scm_tcs_closures:
{
const SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_NULLP (formals)
|| (SCM_CONSP (formals)
&& (SCM_NULLP (SCM_CDR (formals))
|| (SCM_CONSP (SCM_CDR (formals))
&& scm_badargsp (SCM_CDDR (formals), x)))))
goto umwrongnumargs;
env = SCM_EXTEND_ENV (formals,
scm_cons2 (arg1,
arg2,
scm_eval_args (x, env, proc)),
SCM_ENV (proc));
x = SCM_CLOSURE_BODY (proc);
goto nontoplevel_begin;
}
#endif /* DEVAL */
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
{
#ifdef DEVAL
arg1 = debug.info->a.args;
#else
arg1 = scm_cons2 (arg1, arg2, scm_eval_args (x, env, proc));
#endif
x = SCM_ENTITY_PROCEDURE (proc);
goto type_dispatch;
}
else if (SCM_I_OPERATORP (proc))
goto operatorn;
else
goto badfun;
case scm_tc7_subr_2:
case scm_tc7_subr_1o:
case scm_tc7_subr_2o:
case scm_tc7_subr_0:
case scm_tc7_dsubr:
case scm_tc7_cxr:
case scm_tc7_subr_1:
scm_wrong_num_args (proc);
default:
goto badfun;
}
}
}
#ifdef DEVAL
exit:
if (scm_check_exit_p && SCM_TRAPS_P)
if (SCM_EXIT_FRAME_P || (SCM_TRACE_P && SCM_TRACED_FRAME_P (debug)))
{
SCM_CLEAR_TRACED_FRAME (debug);
if (SCM_CHEAPTRAPS_P)
arg1 = scm_make_debugobj (&debug);
else
{
int first;
SCM val = scm_make_continuation (&first);
if (first)
arg1 = val;
else
{
proc = val;
goto ret;
}
}
SCM_TRAPS_P = 0;
scm_call_3 (SCM_EXIT_FRAME_HDLR, scm_sym_exit_frame, arg1, proc);
SCM_TRAPS_P = 1;
}
ret:
scm_last_debug_frame = debug.prev;
return proc;
#endif
}
/* SECTION: This code is compiled once.
*/
#ifndef DEVAL
/* Simple procedure calls
*/
SCM
scm_call_0 (SCM proc)
{
return scm_apply (proc, SCM_EOL, SCM_EOL);
}
SCM
scm_call_1 (SCM proc, SCM arg1)
{
return scm_apply (proc, arg1, scm_listofnull);
}
SCM
scm_call_2 (SCM proc, SCM arg1, SCM arg2)
{
return scm_apply (proc, arg1, scm_cons (arg2, scm_listofnull));
}
SCM
scm_call_3 (SCM proc, SCM arg1, SCM arg2, SCM arg3)
{
return scm_apply (proc, arg1, scm_cons2 (arg2, arg3, scm_listofnull));
}
SCM
scm_call_4 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM arg4)
{
return scm_apply (proc, arg1, scm_cons2 (arg2, arg3,
scm_cons (arg4, scm_listofnull)));
}
/* Simple procedure applies
*/
SCM
scm_apply_0 (SCM proc, SCM args)
{
return scm_apply (proc, args, SCM_EOL);
}
SCM
scm_apply_1 (SCM proc, SCM arg1, SCM args)
{
return scm_apply (proc, scm_cons (arg1, args), SCM_EOL);
}
SCM
scm_apply_2 (SCM proc, SCM arg1, SCM arg2, SCM args)
{
return scm_apply (proc, scm_cons2 (arg1, arg2, args), SCM_EOL);
}
SCM
scm_apply_3 (SCM proc, SCM arg1, SCM arg2, SCM arg3, SCM args)
{
return scm_apply (proc, scm_cons (arg1, scm_cons2 (arg2, arg3, args)),
SCM_EOL);
}
/* This code processes the arguments to apply:
(apply PROC ARG1 ... ARGS)
Given a list (ARG1 ... ARGS), this function conses the ARG1
... arguments onto the front of ARGS, and returns the resulting
list. Note that ARGS is a list; thus, the argument to this
function is a list whose last element is a list.
Apply calls this function, and applies PROC to the elements of the
result. apply:nconc2last takes care of building the list of
arguments, given (ARG1 ... ARGS).
Rather than do new consing, apply:nconc2last destroys its argument.
On that topic, this code came into my care with the following
beautifully cryptic comment on that topic: "This will only screw
you if you do (scm_apply scm_apply '( ... ))" If you know what
they're referring to, send me a patch to this comment. */
SCM_DEFINE (scm_nconc2last, "apply:nconc2last", 1, 0, 0,
(SCM lst),
"Given a list (@var{arg1} @dots{} @var{args}), this function\n"
"conses the @var{arg1} @dots{} arguments onto the front of\n"
"@var{args}, and returns the resulting list. Note that\n"
"@var{args} is a list; thus, the argument to this function is\n"
"a list whose last element is a list.\n"
"Note: Rather than do new consing, @code{apply:nconc2last}\n"
"destroys its argument, so use with care.")
#define FUNC_NAME s_scm_nconc2last
{
SCM *lloc;
SCM_VALIDATE_NONEMPTYLIST (1, lst);
lloc = &lst;
while (!SCM_NULLP (SCM_CDR (*lloc))) /* Perhaps should be
SCM_NULL_OR_NIL_P, but not
needed in 99.99% of cases,
and it could seriously hurt
performance. - Neil */
lloc = SCM_CDRLOC (*lloc);
SCM_ASSERT (scm_ilength (SCM_CAR (*lloc)) >= 0, lst, SCM_ARG1, FUNC_NAME);
*lloc = SCM_CAR (*lloc);
return lst;
}
#undef FUNC_NAME
#endif /* !DEVAL */
/* SECTION: When DEVAL is defined this code yields scm_dapply.
* It is compiled twice.
*/
#if 0
SCM
scm_apply (SCM proc, SCM arg1, SCM args)
{}
#endif
#if 0
SCM
scm_dapply (SCM proc, SCM arg1, SCM args)
{}
#endif
/* Apply a function to a list of arguments.
This function is exported to the Scheme level as taking two
required arguments and a tail argument, as if it were:
(lambda (proc arg1 . args) ...)
Thus, if you just have a list of arguments to pass to a procedure,
pass the list as ARG1, and '() for ARGS. If you have some fixed
args, pass the first as ARG1, then cons any remaining fixed args
onto the front of your argument list, and pass that as ARGS. */
SCM
SCM_APPLY (SCM proc, SCM arg1, SCM args)
{
#ifdef DEVAL
scm_t_debug_frame debug;
scm_t_debug_info debug_vect_body;
debug.prev = scm_last_debug_frame;
debug.status = SCM_APPLYFRAME;
debug.vect = &debug_vect_body;
debug.vect[0].a.proc = proc;
debug.vect[0].a.args = SCM_EOL;
scm_last_debug_frame = &debug;
#else
if (SCM_DEBUGGINGP)
return scm_dapply (proc, arg1, args);
#endif
SCM_ASRTGO (SCM_NIMP (proc), badproc);
/* If ARGS is the empty list, then we're calling apply with only two
arguments --- ARG1 is the list of arguments for PROC. Whatever
the case, futz with things so that ARG1 is the first argument to
give to PROC (or SCM_UNDEFINED if no args), and ARGS contains the
rest.
Setting the debug apply frame args this way is pretty messy.
Perhaps we should store arg1 and args directly in the frame as
received, and let scm_frame_arguments unpack them, because that's
a relatively rare operation. This works for now; if the Guile
developer archives are still around, see Mikael's post of
11-Apr-97. */
if (SCM_NULLP (args))
{
if (SCM_NULLP (arg1))
{
arg1 = SCM_UNDEFINED;
#ifdef DEVAL
debug.vect[0].a.args = SCM_EOL;
#endif
}
else
{
#ifdef DEVAL
debug.vect[0].a.args = arg1;
#endif
args = SCM_CDR (arg1);
arg1 = SCM_CAR (arg1);
}
}
else
{
args = scm_nconc2last (args);
#ifdef DEVAL
debug.vect[0].a.args = scm_cons (arg1, args);
#endif
}
#ifdef DEVAL
if (SCM_ENTER_FRAME_P && SCM_TRAPS_P)
{
SCM tmp;
if (SCM_CHEAPTRAPS_P)
tmp = scm_make_debugobj (&debug);
else
{
int first;
tmp = scm_make_continuation (&first);
if (!first)
goto entap;
}
SCM_TRAPS_P = 0;
scm_call_2 (SCM_ENTER_FRAME_HDLR, scm_sym_enter_frame, tmp);
SCM_TRAPS_P = 1;
}
entap:
ENTER_APPLY;
#endif
tail:
switch (SCM_TYP7 (proc))
{
case scm_tc7_subr_2o:
args = SCM_NULLP (args) ? SCM_UNDEFINED : SCM_CAR (args);
RETURN (SCM_SUBRF (proc) (arg1, args));
case scm_tc7_subr_2:
if (SCM_NULLP (args) || !SCM_NULLP (SCM_CDR (args)))
scm_wrong_num_args (proc);
args = SCM_CAR (args);
RETURN (SCM_SUBRF (proc) (arg1, args));
case scm_tc7_subr_0:
if (!SCM_UNBNDP (arg1))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) ());
case scm_tc7_subr_1:
if (SCM_UNBNDP (arg1))
scm_wrong_num_args (proc);
case scm_tc7_subr_1o:
if (!SCM_NULLP (args))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) (arg1));
case scm_tc7_dsubr:
if (SCM_UNBNDP (arg1) || !SCM_NULLP (args))
scm_wrong_num_args (proc);
if (SCM_INUMP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) ((double) SCM_INUM (arg1))));
}
else if (SCM_REALP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) (SCM_REAL_VALUE (arg1))));
}
else if (SCM_BIGP (arg1))
RETURN (scm_make_real (SCM_DSUBRF (proc) (scm_i_big2dbl (arg1))));
SCM_WTA_DISPATCH_1 (*SCM_SUBR_GENERIC (proc), arg1,
SCM_ARG1, SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
case scm_tc7_cxr:
if (SCM_UNBNDP (arg1) || !SCM_NULLP (args))
scm_wrong_num_args (proc);
{
unsigned char pattern = (scm_t_bits) SCM_SUBRF (proc);
do
{
SCM_ASSERT (SCM_CONSP (arg1), arg1, SCM_ARG1,
SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
arg1 = (pattern & 1) ? SCM_CAR (arg1) : SCM_CDR (arg1);
pattern >>= 2;
} while (pattern);
RETURN (arg1);
}
case scm_tc7_subr_3:
if (SCM_NULLP (args)
|| SCM_NULLP (SCM_CDR (args))
|| !SCM_NULLP (SCM_CDDR (args)))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) (arg1, SCM_CAR (args), SCM_CADR (args)));
case scm_tc7_lsubr:
#ifdef DEVAL
RETURN (SCM_SUBRF (proc) (SCM_UNBNDP (arg1) ? SCM_EOL : debug.vect[0].a.args));
#else
RETURN (SCM_SUBRF (proc) (SCM_UNBNDP (arg1) ? SCM_EOL : scm_cons (arg1, args)));
#endif
case scm_tc7_lsubr_2:
if (!SCM_CONSP (args))
scm_wrong_num_args (proc);
else
RETURN (SCM_SUBRF (proc) (arg1, SCM_CAR (args), SCM_CDR (args)));
case scm_tc7_asubr:
if (SCM_NULLP (args))
RETURN (SCM_SUBRF (proc) (arg1, SCM_UNDEFINED));
while (SCM_NIMP (args))
{
SCM_ASSERT (SCM_CONSP (args), args, SCM_ARG2, "apply");
arg1 = SCM_SUBRF (proc) (arg1, SCM_CAR (args));
args = SCM_CDR (args);
}
RETURN (arg1);
case scm_tc7_rpsubr:
if (SCM_NULLP (args))
RETURN (SCM_BOOL_T);
while (SCM_NIMP (args))
{
SCM_ASSERT (SCM_CONSP (args), args, SCM_ARG2, "apply");
if (SCM_FALSEP (SCM_SUBRF (proc) (arg1, SCM_CAR (args))))
RETURN (SCM_BOOL_F);
arg1 = SCM_CAR (args);
args = SCM_CDR (args);
}
RETURN (SCM_BOOL_T);
case scm_tcs_closures:
#ifdef DEVAL
arg1 = (SCM_UNBNDP (arg1) ? SCM_EOL : debug.vect[0].a.args);
#else
arg1 = (SCM_UNBNDP (arg1) ? SCM_EOL : scm_cons (arg1, args));
#endif
if (scm_badargsp (SCM_CLOSURE_FORMALS (proc), arg1))
scm_wrong_num_args (proc);
/* Copy argument list */
if (SCM_IMP (arg1))
args = arg1;
else
{
SCM tl = args = scm_cons (SCM_CAR (arg1), SCM_UNSPECIFIED);
for (arg1 = SCM_CDR (arg1); SCM_CONSP (arg1); arg1 = SCM_CDR (arg1))
{
SCM_SETCDR (tl, scm_cons (SCM_CAR (arg1), SCM_UNSPECIFIED));
tl = SCM_CDR (tl);
}
SCM_SETCDR (tl, arg1);
}
args = SCM_EXTEND_ENV (SCM_CLOSURE_FORMALS (proc),
args,
SCM_ENV (proc));
proc = SCM_CLOSURE_BODY (proc);
again:
arg1 = SCM_CDR (proc);
while (!SCM_NULLP (arg1))
{
if (SCM_IMP (SCM_CAR (proc)))
{
if (SCM_ISYMP (SCM_CAR (proc)))
{
scm_rec_mutex_lock (&source_mutex);
/* check for race condition */
if (SCM_ISYMP (SCM_CAR (proc)))
proc = scm_m_expand_body (proc, args);
scm_rec_mutex_unlock (&source_mutex);
goto again;
}
else
SCM_VALIDATE_NON_EMPTY_COMBINATION (SCM_CAR (proc));
}
else
SCM_CEVAL (SCM_CAR (proc), args);
proc = arg1;
arg1 = SCM_CDR (proc);
}
RETURN (EVALCAR (proc, args));
case scm_tc7_smob:
if (!SCM_SMOB_APPLICABLE_P (proc))
goto badproc;
if (SCM_UNBNDP (arg1))
RETURN (SCM_SMOB_APPLY_0 (proc));
else if (SCM_NULLP (args))
RETURN (SCM_SMOB_APPLY_1 (proc, arg1));
else if (SCM_NULLP (SCM_CDR (args)))
RETURN (SCM_SMOB_APPLY_2 (proc, arg1, SCM_CAR (args)));
else
RETURN (SCM_SMOB_APPLY_3 (proc, arg1, SCM_CAR (args), SCM_CDR (args)));
case scm_tc7_cclo:
#ifdef DEVAL
args = (SCM_UNBNDP(arg1) ? SCM_EOL : debug.vect[0].a.args);
arg1 = proc;
proc = SCM_CCLO_SUBR (proc);
debug.vect[0].a.proc = proc;
debug.vect[0].a.args = scm_cons (arg1, args);
#else
args = (SCM_UNBNDP(arg1) ? SCM_EOL : scm_cons (arg1, args));
arg1 = proc;
proc = SCM_CCLO_SUBR (proc);
#endif
goto tail;
case scm_tc7_pws:
proc = SCM_PROCEDURE (proc);
#ifdef DEVAL
debug.vect[0].a.proc = proc;
#endif
goto tail;
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
{
#ifdef DEVAL
args = (SCM_UNBNDP(arg1) ? SCM_EOL : debug.vect[0].a.args);
#else
args = (SCM_UNBNDP(arg1) ? SCM_EOL : scm_cons (arg1, args));
#endif
RETURN (scm_apply_generic (proc, args));
}
else if (SCM_I_OPERATORP (proc))
{
/* operator */
#ifdef DEVAL
args = (SCM_UNBNDP(arg1) ? SCM_EOL : debug.vect[0].a.args);
#else
args = (SCM_UNBNDP(arg1) ? SCM_EOL : scm_cons (arg1, args));
#endif
arg1 = proc;
proc = (SCM_I_ENTITYP (proc)
? SCM_ENTITY_PROCEDURE (proc)
: SCM_OPERATOR_PROCEDURE (proc));
#ifdef DEVAL
debug.vect[0].a.proc = proc;
debug.vect[0].a.args = scm_cons (arg1, args);
#endif
if (SCM_NIMP (proc))
goto tail;
else
goto badproc;
}
else
goto badproc;
default:
badproc:
scm_wrong_type_arg ("apply", SCM_ARG1, proc);
}
#ifdef DEVAL
exit:
if (scm_check_exit_p && SCM_TRAPS_P)
if (SCM_EXIT_FRAME_P || (SCM_TRACE_P && SCM_TRACED_FRAME_P (debug)))
{
SCM_CLEAR_TRACED_FRAME (debug);
if (SCM_CHEAPTRAPS_P)
arg1 = scm_make_debugobj (&debug);
else
{
int first;
SCM val = scm_make_continuation (&first);
if (first)
arg1 = val;
else
{
proc = val;
goto ret;
}
}
SCM_TRAPS_P = 0;
scm_call_3 (SCM_EXIT_FRAME_HDLR, scm_sym_exit_frame, arg1, proc);
SCM_TRAPS_P = 1;
}
ret:
scm_last_debug_frame = debug.prev;
return proc;
#endif
}
/* SECTION: The rest of this file is only read once.
*/
#ifndef DEVAL
/* Trampolines
*
* Trampolines make it possible to move procedure application dispatch
* outside inner loops. The motivation was clean implementation of
* efficient replacements of R5RS primitives in SRFI-1.
*
* The semantics is clear: scm_trampoline_N returns an optimized
* version of scm_call_N (or NULL if the procedure isn't applicable
* on N args).
*
* Applying the optimization to map and for-each increased efficiency
* noticeably. For example, (map abs ls) is now 8 times faster than
* before.
*/
static SCM
call_subr0_0 (SCM proc)
{
return SCM_SUBRF (proc) ();
}
static SCM
call_subr1o_0 (SCM proc)
{
return SCM_SUBRF (proc) (SCM_UNDEFINED);
}
static SCM
call_lsubr_0 (SCM proc)
{
return SCM_SUBRF (proc) (SCM_EOL);
}
SCM
scm_i_call_closure_0 (SCM proc)
{
const SCM env = SCM_EXTEND_ENV (SCM_CLOSURE_FORMALS (proc),
SCM_EOL,
SCM_ENV (proc));
const SCM result = scm_eval_body (SCM_CLOSURE_BODY (proc), env);
return result;
}
scm_t_trampoline_0
scm_trampoline_0 (SCM proc)
{
if (SCM_IMP (proc))
return NULL;
if (SCM_DEBUGGINGP)
return scm_call_0;
switch (SCM_TYP7 (proc))
{
case scm_tc7_subr_0:
return call_subr0_0;
case scm_tc7_subr_1o:
return call_subr1o_0;
case scm_tc7_lsubr:
return call_lsubr_0;
case scm_tcs_closures:
{
SCM formals = SCM_CLOSURE_FORMALS (proc);
if (SCM_NULLP (formals) || !SCM_CONSP (formals))
return scm_i_call_closure_0;
else
return NULL;
}
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
return scm_call_generic_0;
else if (SCM_I_OPERATORP (proc))
return scm_call_0;
return NULL;
case scm_tc7_smob:
if (SCM_SMOB_APPLICABLE_P (proc))
return SCM_SMOB_DESCRIPTOR (proc).apply_0;
else
return NULL;
case scm_tc7_asubr:
case scm_tc7_rpsubr:
case scm_tc7_cclo:
case scm_tc7_pws:
return scm_call_0;
default:
return NULL; /* not applicable on one arg */
}
}
static SCM
call_subr1_1 (SCM proc, SCM arg1)
{
return SCM_SUBRF (proc) (arg1);
}
static SCM
call_subr2o_1 (SCM proc, SCM arg1)
{
return SCM_SUBRF (proc) (arg1, SCM_UNDEFINED);
}
static SCM
call_lsubr_1 (SCM proc, SCM arg1)
{
return SCM_SUBRF (proc) (scm_list_1 (arg1));
}
static SCM
call_dsubr_1 (SCM proc, SCM arg1)
{
if (SCM_INUMP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) ((double) SCM_INUM (arg1))));
}
else if (SCM_REALP (arg1))
{
RETURN (scm_make_real (SCM_DSUBRF (proc) (SCM_REAL_VALUE (arg1))));
}
else if (SCM_BIGP (arg1))
RETURN (scm_make_real (SCM_DSUBRF (proc) (scm_i_big2dbl (arg1))));
SCM_WTA_DISPATCH_1 (*SCM_SUBR_GENERIC (proc), arg1,
SCM_ARG1, SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
}
static SCM
call_cxr_1 (SCM proc, SCM arg1)
{
unsigned char pattern = (scm_t_bits) SCM_SUBRF (proc);
do
{
SCM_ASSERT (SCM_CONSP (arg1), arg1, SCM_ARG1,
SCM_SYMBOL_CHARS (SCM_SNAME (proc)));
arg1 = (pattern & 1) ? SCM_CAR (arg1) : SCM_CDR (arg1);
pattern >>= 2;
} while (pattern);
return arg1;
}
static SCM
call_closure_1 (SCM proc, SCM arg1)
{
const SCM env = SCM_EXTEND_ENV (SCM_CLOSURE_FORMALS (proc),
scm_list_1 (arg1),
SCM_ENV (proc));
const SCM result = scm_eval_body (SCM_CLOSURE_BODY (proc), env);
return result;
}
scm_t_trampoline_1
scm_trampoline_1 (SCM proc)
{
if (SCM_IMP (proc))
return NULL;
if (SCM_DEBUGGINGP)
return scm_call_1;
switch (SCM_TYP7 (proc))
{
case scm_tc7_subr_1:
case scm_tc7_subr_1o:
return call_subr1_1;
case scm_tc7_subr_2o:
return call_subr2o_1;
case scm_tc7_lsubr:
return call_lsubr_1;
case scm_tc7_dsubr:
return call_dsubr_1;
case scm_tc7_cxr:
return call_cxr_1;
case scm_tcs_closures:
{
SCM formals = SCM_CLOSURE_FORMALS (proc);
if (!SCM_NULLP (formals)
&& (!SCM_CONSP (formals) || !SCM_CONSP (SCM_CDR (formals))))
return call_closure_1;
else
return NULL;
}
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
return scm_call_generic_1;
else if (SCM_I_OPERATORP (proc))
return scm_call_1;
return NULL;
case scm_tc7_smob:
if (SCM_SMOB_APPLICABLE_P (proc))
return SCM_SMOB_DESCRIPTOR (proc).apply_1;
else
return NULL;
case scm_tc7_asubr:
case scm_tc7_rpsubr:
case scm_tc7_cclo:
case scm_tc7_pws:
return scm_call_1;
default:
return NULL; /* not applicable on one arg */
}
}
static SCM
call_subr2_2 (SCM proc, SCM arg1, SCM arg2)
{
return SCM_SUBRF (proc) (arg1, arg2);
}
static SCM
call_lsubr2_2 (SCM proc, SCM arg1, SCM arg2)
{
return SCM_SUBRF (proc) (arg1, arg2, SCM_EOL);
}
static SCM
call_lsubr_2 (SCM proc, SCM arg1, SCM arg2)
{
return SCM_SUBRF (proc) (scm_list_2 (arg1, arg2));
}
static SCM
call_closure_2 (SCM proc, SCM arg1, SCM arg2)
{
const SCM env = SCM_EXTEND_ENV (SCM_CLOSURE_FORMALS (proc),
scm_list_2 (arg1, arg2),
SCM_ENV (proc));
const SCM result = scm_eval_body (SCM_CLOSURE_BODY (proc), env);
return result;
}
scm_t_trampoline_2
scm_trampoline_2 (SCM proc)
{
if (SCM_IMP (proc))
return NULL;
if (SCM_DEBUGGINGP)
return scm_call_2;
switch (SCM_TYP7 (proc))
{
case scm_tc7_subr_2:
case scm_tc7_subr_2o:
case scm_tc7_rpsubr:
case scm_tc7_asubr:
return call_subr2_2;
case scm_tc7_lsubr_2:
return call_lsubr2_2;
case scm_tc7_lsubr:
return call_lsubr_2;
case scm_tcs_closures:
{
SCM formals = SCM_CLOSURE_FORMALS (proc);
if (!SCM_NULLP (formals)
&& (!SCM_CONSP (formals)
|| (!SCM_NULLP (SCM_CDR (formals))
&& (!SCM_CONSP (SCM_CDR (formals))
|| !SCM_CONSP (SCM_CDDR (formals))))))
return call_closure_2;
else
return NULL;
}
case scm_tcs_struct:
if (SCM_OBJ_CLASS_FLAGS (proc) & SCM_CLASSF_PURE_GENERIC)
return scm_call_generic_2;
else if (SCM_I_OPERATORP (proc))
return scm_call_2;
return NULL;
case scm_tc7_smob:
if (SCM_SMOB_APPLICABLE_P (proc))
return SCM_SMOB_DESCRIPTOR (proc).apply_2;
else
return NULL;
case scm_tc7_cclo:
case scm_tc7_pws:
return scm_call_2;
default:
return NULL; /* not applicable on two args */
}
}
/* Typechecking for multi-argument MAP and FOR-EACH.
Verify that each element of the vector ARGV, except for the first,
is a proper list whose length is LEN. Attribute errors to WHO,
and claim that the i'th element of ARGV is WHO's i+2'th argument. */
static inline void
check_map_args (SCM argv,
long len,
SCM gf,
SCM proc,
SCM args,
const char *who)
{
SCM const *ve = SCM_VELTS (argv);
long i;
for (i = SCM_VECTOR_LENGTH (argv) - 1; i >= 1; i--)
{
long elt_len = scm_ilength (ve[i]);
if (elt_len < 0)
{
if (gf)
scm_apply_generic (gf, scm_cons (proc, args));
else
scm_wrong_type_arg (who, i + 2, ve[i]);
}
if (elt_len != len)
scm_out_of_range_pos (who, ve[i], SCM_MAKINUM (i + 2));
}
scm_remember_upto_here_1 (argv);
}
SCM_GPROC (s_map, "map", 2, 0, 1, scm_map, g_map);
/* Note: Currently, scm_map applies PROC to the argument list(s)
sequentially, starting with the first element(s). This is used in
evalext.c where the Scheme procedure `map-in-order', which guarantees
sequential behaviour, is implemented using scm_map. If the
behaviour changes, we need to update `map-in-order'.
*/
SCM
scm_map (SCM proc, SCM arg1, SCM args)
#define FUNC_NAME s_map
{
long i, len;
SCM res = SCM_EOL;
SCM *pres = &res;
SCM const *ve = &args; /* Keep args from being optimized away. */
len = scm_ilength (arg1);
SCM_GASSERTn (len >= 0,
g_map, scm_cons2 (proc, arg1, args), SCM_ARG2, s_map);
SCM_VALIDATE_REST_ARGUMENT (args);
if (SCM_NULLP (args))
{
scm_t_trampoline_1 call = scm_trampoline_1 (proc);
SCM_GASSERT2 (call, g_map, proc, arg1, SCM_ARG1, s_map);
while (SCM_NIMP (arg1))
{
*pres = scm_list_1 (call (proc, SCM_CAR (arg1)));
pres = SCM_CDRLOC (*pres);
arg1 = SCM_CDR (arg1);
}
return res;
}
if (SCM_NULLP (SCM_CDR (args)))
{
SCM arg2 = SCM_CAR (args);
int len2 = scm_ilength (arg2);
scm_t_trampoline_2 call = scm_trampoline_2 (proc);
SCM_GASSERTn (call,
g_map, scm_cons2 (proc, arg1, args), SCM_ARG1, s_map);
SCM_GASSERTn (len2 >= 0,
g_map, scm_cons2 (proc, arg1, args), SCM_ARG3, s_map);
if (len2 != len)
SCM_OUT_OF_RANGE (3, arg2);
while (SCM_NIMP (arg1))
{
*pres = scm_list_1 (call (proc, SCM_CAR (arg1), SCM_CAR (arg2)));
pres = SCM_CDRLOC (*pres);
arg1 = SCM_CDR (arg1);
arg2 = SCM_CDR (arg2);
}
return res;
}
arg1 = scm_cons (arg1, args);
args = scm_vector (arg1);
ve = SCM_VELTS (args);
check_map_args (args, len, g_map, proc, arg1, s_map);
while (1)
{
arg1 = SCM_EOL;
for (i = SCM_VECTOR_LENGTH (args) - 1; i >= 0; i--)
{
if (SCM_IMP (ve[i]))
return res;
arg1 = scm_cons (SCM_CAR (ve[i]), arg1);
SCM_VECTOR_SET (args, i, SCM_CDR (ve[i]));
}
*pres = scm_list_1 (scm_apply (proc, arg1, SCM_EOL));
pres = SCM_CDRLOC (*pres);
}
}
#undef FUNC_NAME
SCM_GPROC (s_for_each, "for-each", 2, 0, 1, scm_for_each, g_for_each);
SCM
scm_for_each (SCM proc, SCM arg1, SCM args)
#define FUNC_NAME s_for_each
{
SCM const *ve = &args; /* Keep args from being optimized away. */
long i, len;
len = scm_ilength (arg1);
SCM_GASSERTn (len >= 0, g_for_each, scm_cons2 (proc, arg1, args),
SCM_ARG2, s_for_each);
SCM_VALIDATE_REST_ARGUMENT (args);
if (SCM_NULLP (args))
{
scm_t_trampoline_1 call = scm_trampoline_1 (proc);
SCM_GASSERT2 (call, g_for_each, proc, arg1, SCM_ARG1, s_for_each);
while (SCM_NIMP (arg1))
{
call (proc, SCM_CAR (arg1));
arg1 = SCM_CDR (arg1);
}
return SCM_UNSPECIFIED;
}
if (SCM_NULLP (SCM_CDR (args)))
{
SCM arg2 = SCM_CAR (args);
int len2 = scm_ilength (arg2);
scm_t_trampoline_2 call = scm_trampoline_2 (proc);
SCM_GASSERTn (call, g_for_each,
scm_cons2 (proc, arg1, args), SCM_ARG1, s_for_each);
SCM_GASSERTn (len2 >= 0, g_for_each,
scm_cons2 (proc, arg1, args), SCM_ARG3, s_for_each);
if (len2 != len)
SCM_OUT_OF_RANGE (3, arg2);
while (SCM_NIMP (arg1))
{
call (proc, SCM_CAR (arg1), SCM_CAR (arg2));
arg1 = SCM_CDR (arg1);
arg2 = SCM_CDR (arg2);
}
return SCM_UNSPECIFIED;
}
arg1 = scm_cons (arg1, args);
args = scm_vector (arg1);
ve = SCM_VELTS (args);
check_map_args (args, len, g_for_each, proc, arg1, s_for_each);
while (1)
{
arg1 = SCM_EOL;
for (i = SCM_VECTOR_LENGTH (args) - 1; i >= 0; i--)
{
if (SCM_IMP (ve[i]))
return SCM_UNSPECIFIED;
arg1 = scm_cons (SCM_CAR (ve[i]), arg1);
SCM_VECTOR_SET (args, i, SCM_CDR (ve[i]));
}
scm_apply (proc, arg1, SCM_EOL);
}
}
#undef FUNC_NAME
SCM
scm_closure (SCM code, SCM env)
{
SCM z;
SCM closcar = scm_cons (code, SCM_EOL);
z = scm_cell (SCM_UNPACK (closcar) + scm_tc3_closure, (scm_t_bits) env);
scm_remember_upto_here (closcar);
return z;
}
scm_t_bits scm_tc16_promise;
SCM
scm_makprom (SCM code)
{
SCM_RETURN_NEWSMOB2 (scm_tc16_promise,
SCM_UNPACK (code),
scm_make_rec_mutex ());
}
static size_t
promise_free (SCM promise)
{
scm_rec_mutex_free (SCM_PROMISE_MUTEX (promise));
return 0;
}
static int
promise_print (SCM exp, SCM port, scm_print_state *pstate)
{
int writingp = SCM_WRITINGP (pstate);
scm_puts ("#<promise ", port);
SCM_SET_WRITINGP (pstate, 1);
scm_iprin1 (SCM_PROMISE_DATA (exp), port, pstate);
SCM_SET_WRITINGP (pstate, writingp);
scm_putc ('>', port);
return !0;
}
SCM_DEFINE (scm_force, "force", 1, 0, 0,
(SCM promise),
"If the promise @var{x} has not been computed yet, compute and\n"
"return @var{x}, otherwise just return the previously computed\n"
"value.")
#define FUNC_NAME s_scm_force
{
SCM_VALIDATE_SMOB (1, promise, promise);
scm_rec_mutex_lock (SCM_PROMISE_MUTEX (promise));
if (!SCM_PROMISE_COMPUTED_P (promise))
{
SCM ans = scm_call_0 (SCM_PROMISE_DATA (promise));
if (!SCM_PROMISE_COMPUTED_P (promise))
{
SCM_SET_PROMISE_DATA (promise, ans);
SCM_SET_PROMISE_COMPUTED (promise);
}
}
scm_rec_mutex_unlock (SCM_PROMISE_MUTEX (promise));
return SCM_PROMISE_DATA (promise);
}
#undef FUNC_NAME
SCM_DEFINE (scm_promise_p, "promise?", 1, 0, 0,
(SCM obj),
"Return true if @var{obj} is a promise, i.e. a delayed computation\n"
"(@pxref{Delayed evaluation,,,r5rs.info,The Revised^5 Report on Scheme}).")
#define FUNC_NAME s_scm_promise_p
{
return SCM_BOOL (SCM_TYP16_PREDICATE (scm_tc16_promise, obj));
}
#undef FUNC_NAME
SCM_DEFINE (scm_cons_source, "cons-source", 3, 0, 0,
(SCM xorig, SCM x, SCM y),
"Create and return a new pair whose car and cdr are @var{x} and @var{y}.\n"
"Any source properties associated with @var{xorig} are also associated\n"
"with the new pair.")
#define FUNC_NAME s_scm_cons_source
{
SCM p, z;
z = scm_cons (x, y);
/* Copy source properties possibly associated with xorig. */
p = scm_whash_lookup (scm_source_whash, xorig);
if (!SCM_IMP (p))
scm_whash_insert (scm_source_whash, z, p);
return z;
}
#undef FUNC_NAME
SCM_DEFINE (scm_copy_tree, "copy-tree", 1, 0, 0,
(SCM obj),
"Recursively copy the data tree that is bound to @var{obj}, and return a\n"
"pointer to the new data structure. @code{copy-tree} recurses down the\n"
"contents of both pairs and vectors (since both cons cells and vector\n"
"cells may point to arbitrary objects), and stops recursing when it hits\n"
"any other object.")
#define FUNC_NAME s_scm_copy_tree
{
SCM ans, tl;
if (SCM_IMP (obj))
return obj;
if (SCM_VECTORP (obj))
{
unsigned long i = SCM_VECTOR_LENGTH (obj);
ans = scm_c_make_vector (i, SCM_UNSPECIFIED);
while (i--)
SCM_VECTOR_SET (ans, i, scm_copy_tree (SCM_VELTS (obj)[i]));
return ans;
}
if (!SCM_CONSP (obj))
return obj;
ans = tl = scm_cons_source (obj,
scm_copy_tree (SCM_CAR (obj)),
SCM_UNSPECIFIED);
for (obj = SCM_CDR (obj); SCM_CONSP (obj); obj = SCM_CDR (obj))
{
SCM_SETCDR (tl, scm_cons (scm_copy_tree (SCM_CAR (obj)),
SCM_UNSPECIFIED));
tl = SCM_CDR (tl);
}
SCM_SETCDR (tl, obj);
return ans;
}
#undef FUNC_NAME
/* We have three levels of EVAL here:
- scm_i_eval (exp, env)
evaluates EXP in environment ENV. ENV is a lexical environment
structure as used by the actual tree code evaluator. When ENV is
a top-level environment, then changes to the current module are
tracked by updating ENV so that it continues to be in sync with
the current module.
- scm_primitive_eval (exp)
evaluates EXP in the top-level environment as determined by the
current module. This is done by constructing a suitable
environment and calling scm_i_eval. Thus, changes to the
top-level module are tracked normally.
- scm_eval (exp, mod)
evaluates EXP while MOD is the current module. This is done by
setting the current module to MOD, invoking scm_primitive_eval on
EXP, and then restoring the current module to the value it had
previously. That is, while EXP is evaluated, changes to the
current module are tracked, but these changes do not persist when
scm_eval returns.
For each level of evals, there are two variants, distinguished by a
_x suffix: the ordinary variant does not modify EXP while the _x
variant can destructively modify EXP into something completely
unintelligible. A Scheme data structure passed as EXP to one of the
_x variants should not ever be used again for anything. So when in
doubt, use the ordinary variant.
*/
SCM
scm_i_eval_x (SCM exp, SCM env)
{
return SCM_XEVAL (exp, env);
}
SCM
scm_i_eval (SCM exp, SCM env)
{
exp = scm_copy_tree (exp);
return SCM_XEVAL (exp, env);
}
SCM
scm_primitive_eval_x (SCM exp)
{
SCM env;
SCM transformer = scm_current_module_transformer ();
if (SCM_NIMP (transformer))
exp = scm_call_1 (transformer, exp);
env = scm_top_level_env (scm_current_module_lookup_closure ());
return scm_i_eval_x (exp, env);
}
SCM_DEFINE (scm_primitive_eval, "primitive-eval", 1, 0, 0,
(SCM exp),
"Evaluate @var{exp} in the top-level environment specified by\n"
"the current module.")
#define FUNC_NAME s_scm_primitive_eval
{
SCM env;
SCM transformer = scm_current_module_transformer ();
if (SCM_NIMP (transformer))
exp = scm_call_1 (transformer, exp);
env = scm_top_level_env (scm_current_module_lookup_closure ());
return scm_i_eval (exp, env);
}
#undef FUNC_NAME
/* Eval does not take the second arg optionally. This is intentional
* in order to be R5RS compatible, and to prepare for the new module
* system, where we would like to make the choice of evaluation
* environment explicit. */
static void
change_environment (void *data)
{
SCM pair = SCM_PACK (data);
SCM new_module = SCM_CAR (pair);
SCM old_module = scm_current_module ();
SCM_SETCDR (pair, old_module);
scm_set_current_module (new_module);
}
static void
restore_environment (void *data)
{
SCM pair = SCM_PACK (data);
SCM old_module = SCM_CDR (pair);
SCM new_module = scm_current_module ();
SCM_SETCAR (pair, new_module);
scm_set_current_module (old_module);
}
static SCM
inner_eval_x (void *data)
{
return scm_primitive_eval_x (SCM_PACK(data));
}
SCM
scm_eval_x (SCM exp, SCM module)
#define FUNC_NAME "eval!"
{
SCM_VALIDATE_MODULE (2, module);
return scm_internal_dynamic_wind
(change_environment, inner_eval_x, restore_environment,
(void *) SCM_UNPACK (exp),
(void *) SCM_UNPACK (scm_cons (module, SCM_BOOL_F)));
}
#undef FUNC_NAME
static SCM
inner_eval (void *data)
{
return scm_primitive_eval (SCM_PACK(data));
}
SCM_DEFINE (scm_eval, "eval", 2, 0, 0,
(SCM exp, SCM module),
"Evaluate @var{exp}, a list representing a Scheme expression,\n"
"in the top-level environment specified by @var{module}.\n"
"While @var{exp} is evaluated (using @code{primitive-eval}),\n"
"@var{module} is made the current module. The current module\n"
"is reset to its previous value when @var{eval} returns.")
#define FUNC_NAME s_scm_eval
{
SCM_VALIDATE_MODULE (2, module);
return scm_internal_dynamic_wind
(change_environment, inner_eval, restore_environment,
(void *) SCM_UNPACK (exp),
(void *) SCM_UNPACK (scm_cons (module, SCM_BOOL_F)));
}
#undef FUNC_NAME
/* At this point, scm_deval and scm_dapply are generated.
*/
#define DEVAL
#include "eval.c"
void
scm_init_eval ()
{
scm_init_opts (scm_evaluator_traps,
scm_evaluator_trap_table,
SCM_N_EVALUATOR_TRAPS);
scm_init_opts (scm_eval_options_interface,
scm_eval_opts,
SCM_N_EVAL_OPTIONS);
scm_tc16_promise = scm_make_smob_type ("promise", 0);
scm_set_smob_mark (scm_tc16_promise, scm_markcdr);
scm_set_smob_free (scm_tc16_promise, promise_free);
scm_set_smob_print (scm_tc16_promise, promise_print);
undefineds = scm_list_1 (SCM_UNDEFINED);
SCM_SETCDR (undefineds, undefineds);
scm_permanent_object (undefineds);
scm_listofnull = scm_list_1 (SCM_EOL);
f_apply = scm_c_define_subr ("apply", scm_tc7_lsubr_2, scm_apply);
scm_permanent_object (f_apply);
#include "libguile/eval.x"
scm_add_feature ("delay");
}
#endif /* !DEVAL */
/*
Local Variables:
c-file-style: "gnu"
End:
*/