1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-17 11:10:18 +02:00
guile/lightening/x86.c
2019-04-25 18:12:23 +02:00

870 lines
23 KiB
C

/*
* Copyright (C) 2012-2019 Free Software Foundation, Inc.
*
* This file is part of GNU lightning.
*
* GNU lightning is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published
* by the Free Software Foundation; either version 3, or (at your option)
* any later version.
*
* GNU lightning is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* Authors:
* Paulo Cesar Pereira de Andrade
*/
/*
* Types
*/
#if __X32 || __CYGWIN__
typedef jit_pointer_t jit_va_list_t;
#else
typedef struct jit_va_list {
int32_t gpoff;
int32_t fpoff;
jit_pointer_t over;
jit_pointer_t save;
/* Declared explicitly as int64 for the x32 abi */
int64_t rdi;
int64_t rsi;
int64_t rdx;
int64_t rcx;
int64_t r8;
int64_t r9;
jit_float64_t xmm0;
jit_float64_t _up0;
jit_float64_t xmm1;
jit_float64_t _up1;
jit_float64_t xmm2;
jit_float64_t _up2;
jit_float64_t xmm3;
jit_float64_t _up3;
jit_float64_t xmm4;
jit_float64_t _up4;
jit_float64_t xmm5;
jit_float64_t _up5;
jit_float64_t xmm6;
jit_float64_t _up6;
jit_float64_t xmm7;
jit_float64_t _up7;
} jit_va_list_t;
#endif
jit_cpu_t jit_cpu;
#include "x86-cpu.c"
#include "x86-sse.c"
jit_bool_t
jit_get_cpu(void)
{
union {
struct {
uint32_t sse3 : 1;
uint32_t pclmulqdq : 1;
uint32_t dtes64 : 1; /* amd reserved */
uint32_t monitor : 1;
uint32_t ds_cpl : 1; /* amd reserved */
uint32_t vmx : 1; /* amd reserved */
uint32_t smx : 1; /* amd reserved */
uint32_t est : 1; /* amd reserved */
uint32_t tm2 : 1; /* amd reserved */
uint32_t ssse3 : 1;
uint32_t cntx_id : 1; /* amd reserved */
uint32_t __reserved0 : 1;
uint32_t fma : 1;
uint32_t cmpxchg16b : 1;
uint32_t xtpr : 1; /* amd reserved */
uint32_t pdcm : 1; /* amd reserved */
uint32_t __reserved1 : 1;
uint32_t pcid : 1; /* amd reserved */
uint32_t dca : 1; /* amd reserved */
uint32_t sse4_1 : 1;
uint32_t sse4_2 : 1;
uint32_t x2apic : 1; /* amd reserved */
uint32_t movbe : 1; /* amd reserved */
uint32_t popcnt : 1;
uint32_t tsc : 1; /* amd reserved */
uint32_t aes : 1;
uint32_t xsave : 1;
uint32_t osxsave : 1;
uint32_t avx : 1;
uint32_t __reserved2 : 1; /* amd F16C */
uint32_t __reserved3 : 1;
uint32_t __alwayszero : 1; /* amd RAZ */
} bits;
jit_uword_t cpuid;
} ecx;
union {
struct {
uint32_t fpu : 1;
uint32_t vme : 1;
uint32_t de : 1;
uint32_t pse : 1;
uint32_t tsc : 1;
uint32_t msr : 1;
uint32_t pae : 1;
uint32_t mce : 1;
uint32_t cmpxchg8b : 1;
uint32_t apic : 1;
uint32_t __reserved0 : 1;
uint32_t sep : 1;
uint32_t mtrr : 1;
uint32_t pge : 1;
uint32_t mca : 1;
uint32_t cmov : 1;
uint32_t pat : 1;
uint32_t pse36 : 1;
uint32_t psn : 1; /* amd reserved */
uint32_t clfsh : 1;
uint32_t __reserved1 : 1;
uint32_t ds : 1; /* amd reserved */
uint32_t acpi : 1; /* amd reserved */
uint32_t mmx : 1;
uint32_t fxsr : 1;
uint32_t sse : 1;
uint32_t sse2 : 1;
uint32_t ss : 1; /* amd reserved */
uint32_t htt : 1;
uint32_t tm : 1; /* amd reserved */
uint32_t __reserved2 : 1;
uint32_t pbe : 1; /* amd reserved */
} bits;
jit_uword_t cpuid;
} edx;
#if __X32
int ac, flags;
#endif
jit_uword_t eax, ebx;
#if __X32
/* adapted from glibc __sysconf */
__asm__ volatile ("pushfl;\n\t"
"popl %0;\n\t"
"movl $0x240000, %1;\n\t"
"xorl %0, %1;\n\t"
"pushl %1;\n\t"
"popfl;\n\t"
"pushfl;\n\t"
"popl %1;\n\t"
"xorl %0, %1;\n\t"
"pushl %0;\n\t"
"popfl"
: "=r" (flags), "=r" (ac));
/* i386 or i486 without cpuid */
if ((ac & (1 << 21)) == 0)
/* probably without x87 as well */
return false;
#endif
/* query %eax = 1 function */
__asm__ volatile (
#if __X32 || __X64_32
"xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1"
#else
"xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1"
#endif
: "=a" (eax), "=r" (ebx),
"=c" (ecx.cpuid), "=d" (edx.cpuid)
: "0" (1));
jit_cpu.fpu = edx.bits.fpu;
jit_cpu.cmpxchg8b = edx.bits.cmpxchg8b;
jit_cpu.cmov = edx.bits.cmov;
jit_cpu.mmx = edx.bits.mmx;
jit_cpu.sse = edx.bits.sse;
jit_cpu.sse2 = edx.bits.sse2;
jit_cpu.sse3 = ecx.bits.sse3;
jit_cpu.pclmulqdq = ecx.bits.pclmulqdq;
jit_cpu.ssse3 = ecx.bits.ssse3;
jit_cpu.fma = ecx.bits.fma;
jit_cpu.cmpxchg16b = ecx.bits.cmpxchg16b;
jit_cpu.sse4_1 = ecx.bits.sse4_1;
jit_cpu.sse4_2 = ecx.bits.sse4_2;
jit_cpu.movbe = ecx.bits.movbe;
jit_cpu.popcnt = ecx.bits.popcnt;
jit_cpu.aes = ecx.bits.aes;
jit_cpu.avx = ecx.bits.avx;
/* query %eax = 0x80000001 function */
__asm__ volatile (
#if __X64
# if __X64_32
"xchgl %%ebx, %1; cpuid; xchgl %%ebx, %1"
# else
"xchgq %%rbx, %1; cpuid; xchgq %%rbx, %1"
# endif
: "=a" (eax), "=r" (ebx),
"=c" (ecx.cpuid), "=d" (edx.cpuid)
: "0" (0x80000001));
jit_cpu.lahf = ecx.cpuid & 1;
#endif
return jit_cpu.sse2;
}
jit_bool_t
jit_init(jit_state_t *_jit)
{
return jit_cpu.sse2;
}
void
jit_epilog(jit_state_t *_jit)
{
/* TODO: Restore registers. */
}
static jit_bool_t
is_fpr_arg(enum jit_operand_abi arg)
{
switch (arg)
{
case JIT_OPERAND_ABI_UINT8:
case JIT_OPERAND_ABI_INT8:
case JIT_OPERAND_ABI_UINT16:
case JIT_OPERAND_ABI_INT16:
case JIT_OPERAND_ABI_UINT32:
case JIT_OPERAND_ABI_INT32:
case JIT_OPERAND_ABI_UINT64:
case JIT_OPERAND_ABI_INT64:
case JIT_OPERAND_ABI_POINTER:
return 0;
case JIT_OPERAND_ABI_FLOAT:
case JIT_OPERAND_ABI_DOUBLE:
return 1;
default:
abort();
}
}
static jit_bool_t
is_gpr_arg(enum jit_operand_abi arg)
{
return !is_fpr_arg(arg);
}
static void
abi_imm_to_gpr(jit_state_t *_jit, enum jit_operand_abi abi, jit_gpr_t dst,
intptr_t imm)
{
switch (abi) {
case JIT_OPERAND_ABI_UINT8:
ASSERT(0 <= imm);
ASSERT(imm <= UINT8_MAX);
break;
case JIT_OPERAND_ABI_INT8:
ASSERT(INT8_MIN <= imm);
ASSERT(imm <= INT8_MAX);
break;
case JIT_OPERAND_ABI_UINT16:
ASSERT(0 <= imm);
ASSERT(imm <= UINT16_MAX);
break;
case JIT_OPERAND_ABI_INT16:
ASSERT(INT16_MIN <= imm);
ASSERT(imm <= INT16_MAX);
break;
case JIT_OPERAND_ABI_UINT32:
ASSERT(0 <= imm);
ASSERT(imm <= UINT32_MAX);
break;
case JIT_OPERAND_ABI_INT32:
ASSERT(INT32_MIN <= imm);
ASSERT(imm <= INT32_MAX);
break;
#if __WORDSIZE > 32
case JIT_OPERAND_ABI_UINT64:
case JIT_OPERAND_ABI_INT64:
break;
#endif
case JIT_OPERAND_ABI_POINTER:
break;
default:
abort();
}
jit_movi (_jit, dst, imm);
}
static void
abi_gpr_to_mem(jit_state_t *_jit, enum jit_operand_abi abi,
jit_gpr_t base, ptrdiff_t offset, jit_gpr_t src)
{
switch (abi) {
case JIT_OPERAND_ABI_UINT8:
case JIT_OPERAND_ABI_INT8:
jit_stxi_c(_jit, offset, base, src);
break;
case JIT_OPERAND_ABI_UINT16:
case JIT_OPERAND_ABI_INT16:
jit_stxi_s(_jit, offset, base, src);
break;
case JIT_OPERAND_ABI_UINT32:
case JIT_OPERAND_ABI_INT32:
#if __WORDSIZE == 32
case JIT_OPERAND_ABI_POINTER:
#endif
jit_stxi_i(_jit, offset, base, src);
break;
#if __WORDSIZE == 64
case JIT_OPERAND_ABI_UINT64:
case JIT_OPERAND_ABI_INT64:
case JIT_OPERAND_ABI_POINTER:
jit_stxi_l(_jit, offset, base, src);
break;
#endif
default:
abort();
}
}
static void
abi_fpr_to_mem(jit_state_t *_jit, enum jit_operand_abi abi,
jit_gpr_t base, ptrdiff_t offset, jit_fpr_t src)
{
switch (abi) {
case JIT_OPERAND_ABI_FLOAT:
jit_stxi_f(_jit, offset, base, src);
break;
case JIT_OPERAND_ABI_DOUBLE:
jit_stxi_d(_jit, offset, base, src);
break;
default:
abort();
}
}
static void
abi_mem_to_gpr(jit_state_t *_jit, enum jit_operand_abi abi,
jit_gpr_t dst, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_OPERAND_ABI_UINT8:
jit_ldxi_uc(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_INT8:
jit_ldxi_c(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_UINT16:
jit_ldxi_us(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_INT16:
jit_ldxi_s(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_UINT32:
jit_ldxi_ui(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_INT32:
jit_ldxi_i(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_UINT64:
jit_ldxi_l(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_INT64:
jit_ldxi_l(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_POINTER:
jit_ldxi_l(_jit, dst, base, offset);
break;
default:
abort();
}
}
static void
abi_mem_to_fpr(jit_state_t *_jit, enum jit_operand_abi abi,
jit_fpr_t dst, jit_gpr_t base, ptrdiff_t offset)
{
switch (abi) {
case JIT_OPERAND_ABI_FLOAT:
jit_ldxi_f(_jit, dst, base, offset);
break;
case JIT_OPERAND_ABI_DOUBLE:
jit_ldxi_d(_jit, dst, base, offset);
break;
default:
abort();
}
}
static void
abi_imm_to_mem(jit_state_t *_jit, enum jit_operand_abi abi, jit_gpr_t base,
ptrdiff_t offset, intmax_t imm)
{
ASSERT(!is_fpr_arg(abi));
jit_gpr_t tmp = get_temp_gpr(_jit);
abi_imm_to_gpr(_jit, abi, tmp, imm);
abi_gpr_to_mem(_jit, abi, base, offset, tmp);
unget_temp_gpr(_jit);
}
static void
abi_mem_to_mem(jit_state_t *_jit, enum jit_operand_abi abi, jit_gpr_t base,
ptrdiff_t offset, jit_gpr_t src_base, ptrdiff_t src_offset)
{
if (is_gpr_arg (abi)) {
jit_gpr_t tmp = get_temp_gpr(_jit);
abi_mem_to_gpr(_jit, abi, tmp, src_base, src_offset);
abi_gpr_to_mem(_jit, abi, base, offset, tmp);
unget_temp_gpr(_jit);
} else {
jit_fpr_t tmp = get_temp_xpr(_jit);
abi_mem_to_fpr(_jit, abi, tmp, src_base, src_offset);
abi_fpr_to_mem(_jit, abi, base, offset, tmp);
unget_temp_xpr(_jit);
}
}
#define MOVE_KIND(a, b) ((((int) a) << 4) | ((int) b))
#define MOVE_KIND_ENUM(a, b) \
MOVE_##a##_TO_##b = MOVE_KIND(JIT_OPERAND_KIND_##a, JIT_OPERAND_KIND_##b)
enum move_kind {
MOVE_KIND_ENUM(IMM, GPR),
MOVE_KIND_ENUM(GPR, GPR),
MOVE_KIND_ENUM(MEM, GPR),
MOVE_KIND_ENUM(FPR, FPR),
MOVE_KIND_ENUM(MEM, FPR),
MOVE_KIND_ENUM(IMM, MEM),
MOVE_KIND_ENUM(GPR, MEM),
MOVE_KIND_ENUM(FPR, MEM),
MOVE_KIND_ENUM(MEM, MEM)
};
#undef MOVE_KIND_ENUM
static void
move_operand(jit_state_t *_jit, jit_operand_t dst, jit_operand_t src)
{
switch (MOVE_KIND (src.kind, dst.kind)) {
case MOVE_IMM_TO_GPR:
return abi_imm_to_gpr(_jit, src.abi, dst.loc.gpr.gpr, src.loc.imm);
case MOVE_GPR_TO_GPR:
return jit_movr(_jit, dst.loc.gpr.gpr, src.loc.gpr.gpr);
case MOVE_MEM_TO_GPR:
return abi_mem_to_gpr(_jit, src.abi, dst.loc.gpr.gpr, src.loc.mem.base,
src.loc.mem.offset);
case MOVE_FPR_TO_FPR:
return jit_movr_d(_jit, dst.loc.fpr, src.loc.fpr);
case MOVE_MEM_TO_FPR:
return abi_mem_to_fpr(_jit, src.abi, dst.loc.fpr, src.loc.mem.base,
src.loc.mem.offset);
case MOVE_IMM_TO_MEM:
return abi_imm_to_mem(_jit, src.abi, dst.loc.mem.base, dst.loc.mem.offset,
src.loc.imm);
case MOVE_GPR_TO_MEM:
return abi_gpr_to_mem(_jit, src.abi, dst.loc.mem.base, dst.loc.mem.offset,
src.loc.gpr.gpr);
case MOVE_FPR_TO_MEM:
return abi_fpr_to_mem(_jit, src.abi, dst.loc.mem.base, dst.loc.mem.offset,
src.loc.fpr);
case MOVE_MEM_TO_MEM:
return abi_mem_to_mem(_jit, src.abi, dst.loc.mem.base, dst.loc.mem.offset,
src.loc.mem.base, src.loc.mem.offset);
default:
abort();
}
}
// A direct transliteration of "Tilting at windmills with Coq: formal
// verification of a compilation algorithm for parallel moves" by
// Laurence Rideau, Bernard Paul Serpette, and Xavier Leroy:
// https://xavierleroy.org/publi/parallel-move.pdf
enum move_status { TO_MOVE, BEING_MOVED, MOVED };
static inline int
already_in_place(jit_operand_t src, jit_operand_t dst)
{
switch (MOVE_KIND(src.kind, dst.kind)) {
case MOVE_GPR_TO_GPR:
return jit_same_gprs (src.loc.gpr.gpr, dst.loc.gpr.gpr);
case MOVE_FPR_TO_FPR:
return jit_same_fprs (src.loc.fpr, dst.loc.fpr);
case MOVE_MEM_TO_MEM:
return jit_same_gprs (src.loc.mem.base, dst.loc.mem.base) &&
src.loc.mem.offset == dst.loc.mem.offset;
default:
return 0;
}
}
static inline int
write_would_clobber(jit_operand_t src, jit_operand_t dst)
{
if (already_in_place (src, dst))
return 1;
if (MOVE_KIND(src.kind, dst.kind) == MOVE_MEM_TO_GPR)
return jit_same_gprs(src.loc.mem.base, dst.loc.gpr.gpr);
return 0;
}
static inline ptrdiff_t
operand_addend(jit_operand_t op)
{
switch (op.kind) {
case JIT_OPERAND_KIND_GPR:
return op.loc.gpr.addend;
case JIT_OPERAND_KIND_MEM:
return op.loc.mem.addend;
default:
abort();
}
}
static void
move_one(jit_state_t *_jit, jit_operand_t *dst, jit_operand_t *src,
size_t argc, enum move_status *status, size_t i)
{
int tmp_gpr = 0, tmp_fpr = 0;
if (already_in_place(src[i], dst[i]))
return;
status[i] = BEING_MOVED;
for (size_t j = 0; j < argc; j++) {
if (write_would_clobber(src[j], dst[i])) {
switch (status[j]) {
case TO_MOVE:
move_one(_jit, dst, src, argc, status, j);
break;
case BEING_MOVED: {
jit_operand_t tmp;
if (is_fpr_arg (src[j].kind)) {
tmp_fpr = 1;
tmp = jit_operand_fpr(src[j].abi, get_temp_xpr(_jit));
} else {
tmp_gpr = 1;
/* Preserve addend, if any, from source operand, to be applied
at the end. */
tmp = jit_operand_gpr_with_addend(src[j].abi, get_temp_gpr(_jit),
operand_addend(src[j]));
}
move_operand (_jit, tmp, src[j]);
src[j] = tmp;
break;
}
case MOVED:
break;
default:
abort ();
}
}
}
move_operand (_jit, dst[i], src[i]);
status[i] = MOVED;
if (tmp_gpr)
unget_temp_gpr(_jit);
else if (tmp_fpr)
unget_temp_xpr(_jit);
}
static void
apply_addend(jit_state_t *_jit, jit_operand_t dst, jit_operand_t src)
{
switch (MOVE_KIND(src.kind, dst.kind)) {
case MOVE_GPR_TO_GPR:
case MOVE_MEM_TO_GPR:
if (operand_addend(src))
jit_addi(_jit, dst.loc.gpr.gpr, dst.loc.gpr.gpr, operand_addend(src));
break;
case MOVE_GPR_TO_MEM:
case MOVE_MEM_TO_MEM:
if (operand_addend(src)) {
jit_gpr_t tmp = get_temp_gpr(_jit);
abi_mem_to_gpr(_jit, dst.abi, tmp, dst.loc.mem.base, dst.loc.mem.offset);
jit_addi(_jit, tmp, tmp, operand_addend(src));
abi_gpr_to_mem(_jit, dst.abi, dst.loc.mem.base, dst.loc.mem.offset, tmp);
}
break;
default:
break;
}
}
/* Preconditions: No dest operand is IMM. No dest operand aliases
another dest operand. No dest MEM operand uses a base register which
is used as a dest GPR. No dst operand has an addend. The registers
returned by get_temp_gpr and get_temp_fpr do not appear in source or
dest args. */
void
jit_move_operands(jit_state_t *_jit, jit_operand_t *dst, jit_operand_t *src,
size_t argc)
{
// Check preconditions, except the condition about tmp registers.
{
uint64_t src_gprs = 0;
uint64_t dst_gprs = 0;
uint64_t dst_fprs = 0;
uint64_t dst_mem_base_gprs = 0;
for (size_t i = 0; i < argc; i++) {
switch (src[i].kind) {
case JIT_OPERAND_KIND_GPR:
src_gprs |= 1ULL << rn(src[i].loc.gpr.gpr);
break;
case JIT_OPERAND_KIND_FPR:
case JIT_OPERAND_KIND_IMM:
case JIT_OPERAND_KIND_MEM:
break;
default:
abort();
}
switch (dst[i].kind) {
case JIT_OPERAND_KIND_GPR: {
ASSERT(dst[i].loc.gpr.addend == 0);
uint64_t bit = 1ULL << rn(dst[i].loc.gpr.gpr);
ASSERT((dst_gprs & bit) == 0);
dst_gprs |= bit;
break;
}
case JIT_OPERAND_KIND_FPR: {
uint64_t bit = 1ULL << rn(dst[i].loc.fpr);
ASSERT((dst_fprs & bit) == 0);
dst_fprs |= bit;
break;
}
case JIT_OPERAND_KIND_MEM: {
ASSERT(dst[i].loc.mem.addend == 0);
uint64_t bit = 1ULL << rn(dst[i].loc.mem.base);
dst_mem_base_gprs |= bit;
break;
}
case JIT_OPERAND_KIND_IMM:
default:
abort();
break;
}
}
ASSERT(((src_gprs | dst_gprs) & dst_mem_base_gprs) == 0);
}
enum move_status status[argc];
for (size_t i = 0; i < argc; i++)
status[i] = TO_MOVE;
for (size_t i = 0; i < argc; i++)
if (status[i] == TO_MOVE)
move_one(_jit, dst, src, argc, status, i);
// Apply addends at the end. We could do it earlier in some cases but
// at least at the end we know that an in-place increment of one
// operand won't alias another.
for (size_t i = 0; i < argc; i++)
apply_addend(_jit, dst[i], src[i]);
}
static const jit_gpr_t abi_gpr_args[] = {
#if __X32
/* No GPRs in args. */
#elif __CYGWIN__
_RCX, _RDX, _R8, _R9
#else
_RDI, _RSI, _RDX, _RCX, _R8, _R9
#endif
};
static const jit_fpr_t abi_fpr_args[] = {
#if __X32
/* No FPRs in args. */
#elif __CYGWIN__
_XMM0, _XMM1, _XMM2, _XMM3
#else
_XMM0, _XMM1, _XMM2, _XMM3, _XMM4, _XMM5, _XMM6, _XMM7
#endif
};
static const int abi_gpr_arg_count = sizeof(abi_gpr_args) / sizeof(abi_gpr_args[0]);
static const int abi_fpr_arg_count = sizeof(abi_fpr_args) / sizeof(abi_fpr_args[0]);
struct abi_arg_iterator
{
const jit_operand_t *args;
size_t argc;
size_t arg_idx;
size_t gpr_idx;
size_t fpr_idx;
size_t stack_size;
size_t stack_padding;
};
static size_t
jit_operand_abi_sizeof(enum jit_operand_abi abi)
{
switch (abi) {
case JIT_OPERAND_ABI_UINT8:
case JIT_OPERAND_ABI_INT8:
return 1;
case JIT_OPERAND_ABI_UINT16:
case JIT_OPERAND_ABI_INT16:
return 2;
case JIT_OPERAND_ABI_UINT32:
case JIT_OPERAND_ABI_INT32:
return 4;
case JIT_OPERAND_ABI_UINT64:
case JIT_OPERAND_ABI_INT64:
return 8;
case JIT_OPERAND_ABI_POINTER:
return CHOOSE_32_64(4, 8);
case JIT_OPERAND_ABI_FLOAT:
return 4;
case JIT_OPERAND_ABI_DOUBLE:
return 8;
default:
abort();
}
}
static size_t
round_size_up_to_words(size_t bytes)
{
size_t word_size = CHOOSE_32_64(4, 8);
size_t words = (bytes + word_size - 1) / word_size;
return words * word_size;
}
static void
reset_abi_arg_iterator(struct abi_arg_iterator *iter, size_t argc,
const jit_operand_t *args)
{
memset(iter, 0, sizeof *iter);
iter->argc = argc;
iter->args = args;
}
static void
next_abi_arg(struct abi_arg_iterator *iter, jit_operand_t *arg)
{
ASSERT(iter->arg_idx < iter->argc);
enum jit_operand_abi abi = iter->args[iter->arg_idx].abi;
if (is_gpr_arg(abi) && iter->gpr_idx < abi_gpr_arg_count) {
*arg = jit_operand_gpr (abi, abi_gpr_args[iter->gpr_idx++]);
#ifdef __CYGWIN__
iter->fpr_idx++;
#endif
} else if (is_fpr_arg(abi) && iter->fpr_idx < abi_fpr_arg_count) {
*arg = jit_operand_fpr (abi, abi_fpr_args[iter->fpr_idx++]);
#ifdef __CYGWIN__
iter->gpr_idx++;
#endif
} else {
*arg = jit_operand_mem (abi, JIT_SP, iter->stack_size);
size_t bytes = jit_operand_abi_sizeof (abi);
iter->stack_size += round_size_up_to_words (bytes);
}
iter->arg_idx++;
}
// Precondition: stack is already aligned.
static size_t
prepare_call_args(jit_state_t *_jit, size_t argc, jit_operand_t args[])
{
jit_operand_t dst[argc];
struct abi_arg_iterator iter;
// Compute shuffle destinations and space for spilled arguments.
reset_abi_arg_iterator(&iter, argc, args);
for (size_t i = 0; i < argc; i++)
next_abi_arg(&iter, &dst[i]);
size_t stack_size = iter.stack_size;
// Reserve space for spilled arguments, and fix up SP-relative
// operands.
if (stack_size)
{
// Align stack to 16-byte boundaries on 64-bit targets.
if (__WORDSIZE == 64)
stack_size = (stack_size + 15) & ~15;
jit_subi(_jit, JIT_SP, JIT_SP, stack_size);
for (size_t i = 0; i < argc; i++) {
switch(args[i].kind) {
case JIT_OPERAND_KIND_GPR:
if (jit_same_gprs (args[i].loc.mem.base, JIT_SP))
args[i].loc.gpr.addend += stack_size;
break;
case JIT_OPERAND_KIND_MEM:
if (jit_same_gprs (args[i].loc.mem.base, JIT_SP))
args[i].loc.mem.offset += stack_size;
break;
default:
break;
}
}
}
jit_move_operands(_jit, dst, args, argc);
return stack_size;
}
void
jit_calli(jit_state_t *_jit, jit_pointer_t f, size_t argc, jit_operand_t args[])
{
size_t spill_size = prepare_call_args(_jit, argc, args);
calli(_jit, (jit_word_t)f);
if (spill_size)
jit_addi(_jit, JIT_SP, JIT_SP, spill_size);
}
void
jit_callr(jit_state_t *_jit, jit_gpr_t f, size_t argc, jit_operand_t args[])
{
size_t spill_size = prepare_call_args(_jit, argc, args);
callr(_jit, rn(f));
if (spill_size)
jit_addi(_jit, JIT_SP, JIT_SP, spill_size);
}
void
jit_locate_args(jit_state_t *_jit, size_t argc, jit_operand_t args[])
{
struct abi_arg_iterator iter;
reset_abi_arg_iterator(&iter, argc, args);
for (size_t i = 0; i < argc; i++)
next_abi_arg(&iter, &args[i]);
}
/* Precondition: args are distinct locations of type GPR or FPR. All
addends of arg operands are zero. No GPR arg is SP. */
void
jit_load_args(jit_state_t *_jit, size_t argc, jit_operand_t args[])
{
jit_operand_t src[argc];
memcpy(src, args, sizeof(src[0]) * argc);
jit_locate_args(_jit, argc, src);
jit_move_operands(_jit, args, src, argc);
}
void
jit_flush(void *fptr, void *tptr)
{
}
static void
jit_try_shorten(jit_state_t *_jit, jit_reloc_t reloc)
{
}