mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
- "filesystem" -> "file system" - remove doubled words - use EXIT_* macros instead of literal numbers - update `syntax-check' exclusion files
2256 lines
55 KiB
C
2256 lines
55 KiB
C
/* Copyright (C) 1995, 1996, 1997, 1998, 2000, 2001, 2002, 2003, 2004,
|
||
* 2005, 2006, 2007, 2008, 2009, 2010, 2011, 2012
|
||
* Free Software Foundation, Inc.
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public License
|
||
* as published by the Free Software Foundation; either version 3 of
|
||
* the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||
* 02110-1301 USA
|
||
*/
|
||
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include "libguile/bdw-gc.h"
|
||
#include "libguile/_scm.h"
|
||
|
||
#include <stdlib.h>
|
||
#if HAVE_UNISTD_H
|
||
#include <unistd.h>
|
||
#endif
|
||
#include <stdio.h>
|
||
|
||
#ifdef HAVE_STRING_H
|
||
#include <string.h> /* for memset used by FD_ZERO on Solaris 10 */
|
||
#endif
|
||
|
||
#if HAVE_SYS_TIME_H
|
||
#include <sys/time.h>
|
||
#endif
|
||
|
||
#if HAVE_PTHREAD_NP_H
|
||
# include <pthread_np.h>
|
||
#endif
|
||
|
||
#include <assert.h>
|
||
#include <fcntl.h>
|
||
#include <nproc.h>
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/root.h"
|
||
#include "libguile/eval.h"
|
||
#include "libguile/async.h"
|
||
#include "libguile/ports.h"
|
||
#include "libguile/threads.h"
|
||
#include "libguile/dynwind.h"
|
||
#include "libguile/iselect.h"
|
||
#include "libguile/fluids.h"
|
||
#include "libguile/continuations.h"
|
||
#include "libguile/gc.h"
|
||
#include "libguile/init.h"
|
||
#include "libguile/scmsigs.h"
|
||
#include "libguile/strings.h"
|
||
#include "libguile/weaks.h"
|
||
|
||
#include <full-read.h>
|
||
|
||
|
||
|
||
|
||
/* First some libgc shims. */
|
||
|
||
/* Make sure GC_fn_type is defined; it is missing from the public
|
||
headers of GC 7.1 and earlier. */
|
||
#ifndef HAVE_GC_FN_TYPE
|
||
typedef void * (* GC_fn_type) (void *);
|
||
#endif
|
||
|
||
|
||
#ifndef GC_SUCCESS
|
||
#define GC_SUCCESS 0
|
||
#endif
|
||
|
||
#ifndef GC_UNIMPLEMENTED
|
||
#define GC_UNIMPLEMENTED 3
|
||
#endif
|
||
|
||
/* Likewise struct GC_stack_base is missing before 7.1. */
|
||
#ifndef HAVE_GC_STACK_BASE
|
||
struct GC_stack_base {
|
||
void * mem_base; /* Base of memory stack. */
|
||
#ifdef __ia64__
|
||
void * reg_base; /* Base of separate register stack. */
|
||
#endif
|
||
};
|
||
|
||
static int
|
||
GC_register_my_thread (struct GC_stack_base *stack_base)
|
||
{
|
||
return GC_UNIMPLEMENTED;
|
||
}
|
||
|
||
static void
|
||
GC_unregister_my_thread ()
|
||
{
|
||
}
|
||
|
||
#if !SCM_USE_PTHREAD_THREADS
|
||
/* No threads; we can just use GC_stackbottom. */
|
||
static void *
|
||
get_thread_stack_base ()
|
||
{
|
||
return GC_stackbottom;
|
||
}
|
||
|
||
#elif defined HAVE_PTHREAD_ATTR_GETSTACK && defined HAVE_PTHREAD_GETATTR_NP \
|
||
&& defined PTHREAD_ATTR_GETSTACK_WORKS
|
||
/* This method for GNU/Linux and perhaps some other systems.
|
||
It's not for MacOS X or Solaris 10, since pthread_getattr_np is not
|
||
available on them. */
|
||
static void *
|
||
get_thread_stack_base ()
|
||
{
|
||
pthread_attr_t attr;
|
||
void *start, *end;
|
||
size_t size;
|
||
|
||
pthread_getattr_np (pthread_self (), &attr);
|
||
pthread_attr_getstack (&attr, &start, &size);
|
||
end = (char *)start + size;
|
||
|
||
#if SCM_STACK_GROWS_UP
|
||
return start;
|
||
#else
|
||
return end;
|
||
#endif
|
||
}
|
||
|
||
#elif defined HAVE_PTHREAD_GET_STACKADDR_NP
|
||
/* This method for MacOS X.
|
||
It'd be nice if there was some documentation on pthread_get_stackaddr_np,
|
||
but as of 2006 there's nothing obvious at apple.com. */
|
||
static void *
|
||
get_thread_stack_base ()
|
||
{
|
||
return pthread_get_stackaddr_np (pthread_self ());
|
||
}
|
||
|
||
#elif HAVE_PTHREAD_ATTR_GET_NP
|
||
/* This one is for FreeBSD 9. */
|
||
static void *
|
||
get_thread_stack_base ()
|
||
{
|
||
pthread_attr_t attr;
|
||
void *start, *end;
|
||
size_t size;
|
||
|
||
pthread_attr_init (&attr);
|
||
pthread_attr_get_np (pthread_self (), &attr);
|
||
pthread_attr_getstack (&attr, &start, &size);
|
||
pthread_attr_destroy (&attr);
|
||
|
||
end = (char *)start + size;
|
||
|
||
#if SCM_STACK_GROWS_UP
|
||
return start;
|
||
#else
|
||
return end;
|
||
#endif
|
||
}
|
||
|
||
#else
|
||
#error Threads enabled with old BDW-GC, but missing get_thread_stack_base impl. Please upgrade to libgc >= 7.1.
|
||
#endif
|
||
|
||
static int
|
||
GC_get_stack_base (struct GC_stack_base *stack_base)
|
||
{
|
||
stack_base->mem_base = get_thread_stack_base ();
|
||
#ifdef __ia64__
|
||
/* Calculate and store off the base of this thread's register
|
||
backing store (RBS). Unfortunately our implementation(s) of
|
||
scm_ia64_register_backing_store_base are only reliable for the
|
||
main thread. For other threads, therefore, find out the current
|
||
top of the RBS, and use that as a maximum. */
|
||
stack_base->reg_base = scm_ia64_register_backing_store_base ();
|
||
{
|
||
ucontext_t ctx;
|
||
void *bsp;
|
||
getcontext (&ctx);
|
||
bsp = scm_ia64_ar_bsp (&ctx);
|
||
if (stack_base->reg_base > bsp)
|
||
stack_base->reg_base = bsp;
|
||
}
|
||
#endif
|
||
return GC_SUCCESS;
|
||
}
|
||
|
||
static void *
|
||
GC_call_with_stack_base(void * (*fn) (struct GC_stack_base*, void*), void *arg)
|
||
{
|
||
struct GC_stack_base stack_base;
|
||
|
||
stack_base.mem_base = (void*)&stack_base;
|
||
#ifdef __ia64__
|
||
/* FIXME: Untested. */
|
||
{
|
||
ucontext_t ctx;
|
||
getcontext (&ctx);
|
||
stack_base.reg_base = scm_ia64_ar_bsp (&ctx);
|
||
}
|
||
#endif
|
||
|
||
return fn (&stack_base, arg);
|
||
}
|
||
#endif /* HAVE_GC_STACK_BASE */
|
||
|
||
|
||
/* Now define with_gc_active and with_gc_inactive. */
|
||
|
||
#if (defined(HAVE_GC_DO_BLOCKING) && defined (HAVE_DECL_GC_DO_BLOCKING) && defined (HAVE_GC_CALL_WITH_GC_ACTIVE))
|
||
|
||
/* We have a sufficiently new libgc (7.2 or newer). */
|
||
|
||
static void*
|
||
with_gc_inactive (GC_fn_type func, void *data)
|
||
{
|
||
return GC_do_blocking (func, data);
|
||
}
|
||
|
||
static void*
|
||
with_gc_active (GC_fn_type func, void *data)
|
||
{
|
||
return GC_call_with_gc_active (func, data);
|
||
}
|
||
|
||
#else
|
||
|
||
/* libgc not new enough, so never actually deactivate GC.
|
||
|
||
Note that though GC 7.1 does have a GC_do_blocking, it doesn't have
|
||
GC_call_with_gc_active. */
|
||
|
||
static void*
|
||
with_gc_inactive (GC_fn_type func, void *data)
|
||
{
|
||
return func (data);
|
||
}
|
||
|
||
static void*
|
||
with_gc_active (GC_fn_type func, void *data)
|
||
{
|
||
return func (data);
|
||
}
|
||
|
||
#endif /* HAVE_GC_DO_BLOCKING */
|
||
|
||
|
||
|
||
static void
|
||
to_timespec (SCM t, scm_t_timespec *waittime)
|
||
{
|
||
if (scm_is_pair (t))
|
||
{
|
||
waittime->tv_sec = scm_to_ulong (SCM_CAR (t));
|
||
waittime->tv_nsec = scm_to_ulong (SCM_CDR (t)) * 1000;
|
||
}
|
||
else
|
||
{
|
||
double time = scm_to_double (t);
|
||
double sec = scm_c_truncate (time);
|
||
|
||
waittime->tv_sec = (long) sec;
|
||
waittime->tv_nsec = (long) ((time - sec) * 1000000000);
|
||
}
|
||
}
|
||
|
||
|
||
/*** Queues */
|
||
|
||
/* Note: We annotate with "GC-robust" assignments whose purpose is to avoid
|
||
the risk of false references leading to unbounded retained space as
|
||
described in "Bounding Space Usage of Conservative Garbage Collectors",
|
||
H.J. Boehm, 2001. */
|
||
|
||
/* Make an empty queue data structure.
|
||
*/
|
||
static SCM
|
||
make_queue ()
|
||
{
|
||
return scm_cons (SCM_EOL, SCM_EOL);
|
||
}
|
||
|
||
/* Put T at the back of Q and return a handle that can be used with
|
||
remqueue to remove T from Q again.
|
||
*/
|
||
static SCM
|
||
enqueue (SCM q, SCM t)
|
||
{
|
||
SCM c = scm_cons (t, SCM_EOL);
|
||
SCM_CRITICAL_SECTION_START;
|
||
if (scm_is_null (SCM_CDR (q)))
|
||
SCM_SETCDR (q, c);
|
||
else
|
||
SCM_SETCDR (SCM_CAR (q), c);
|
||
SCM_SETCAR (q, c);
|
||
SCM_CRITICAL_SECTION_END;
|
||
return c;
|
||
}
|
||
|
||
/* Remove the element that the handle C refers to from the queue Q. C
|
||
must have been returned from a call to enqueue. The return value
|
||
is zero when the element referred to by C has already been removed.
|
||
Otherwise, 1 is returned.
|
||
*/
|
||
static int
|
||
remqueue (SCM q, SCM c)
|
||
{
|
||
SCM p, prev = q;
|
||
SCM_CRITICAL_SECTION_START;
|
||
for (p = SCM_CDR (q); !scm_is_null (p); p = SCM_CDR (p))
|
||
{
|
||
if (scm_is_eq (p, c))
|
||
{
|
||
if (scm_is_eq (c, SCM_CAR (q)))
|
||
SCM_SETCAR (q, SCM_CDR (c));
|
||
SCM_SETCDR (prev, SCM_CDR (c));
|
||
|
||
/* GC-robust */
|
||
SCM_SETCDR (c, SCM_EOL);
|
||
|
||
SCM_CRITICAL_SECTION_END;
|
||
return 1;
|
||
}
|
||
prev = p;
|
||
}
|
||
SCM_CRITICAL_SECTION_END;
|
||
return 0;
|
||
}
|
||
|
||
/* Remove the front-most element from the queue Q and return it.
|
||
Return SCM_BOOL_F when Q is empty.
|
||
*/
|
||
static SCM
|
||
dequeue (SCM q)
|
||
{
|
||
SCM c;
|
||
SCM_CRITICAL_SECTION_START;
|
||
c = SCM_CDR (q);
|
||
if (scm_is_null (c))
|
||
{
|
||
SCM_CRITICAL_SECTION_END;
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
{
|
||
SCM_SETCDR (q, SCM_CDR (c));
|
||
if (scm_is_null (SCM_CDR (q)))
|
||
SCM_SETCAR (q, SCM_EOL);
|
||
SCM_CRITICAL_SECTION_END;
|
||
|
||
/* GC-robust */
|
||
SCM_SETCDR (c, SCM_EOL);
|
||
|
||
return SCM_CAR (c);
|
||
}
|
||
}
|
||
|
||
/*** Thread smob routines */
|
||
|
||
|
||
static int
|
||
thread_print (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
/* On a Gnu system pthread_t is an unsigned long, but on mingw it's a
|
||
struct. A cast like "(unsigned long) t->pthread" is a syntax error in
|
||
the struct case, hence we go via a union, and extract according to the
|
||
size of pthread_t. */
|
||
union {
|
||
scm_i_pthread_t p;
|
||
unsigned short us;
|
||
unsigned int ui;
|
||
unsigned long ul;
|
||
scm_t_uintmax um;
|
||
} u;
|
||
scm_i_thread *t = SCM_I_THREAD_DATA (exp);
|
||
scm_i_pthread_t p = t->pthread;
|
||
scm_t_uintmax id;
|
||
u.p = p;
|
||
if (sizeof (p) == sizeof (unsigned short))
|
||
id = u.us;
|
||
else if (sizeof (p) == sizeof (unsigned int))
|
||
id = u.ui;
|
||
else if (sizeof (p) == sizeof (unsigned long))
|
||
id = u.ul;
|
||
else
|
||
id = u.um;
|
||
|
||
scm_puts ("#<thread ", port);
|
||
scm_uintprint (id, 10, port);
|
||
scm_puts (" (", port);
|
||
scm_uintprint ((scm_t_bits)t, 16, port);
|
||
scm_puts (")>", port);
|
||
return 1;
|
||
}
|
||
|
||
|
||
/*** Blocking on queues. */
|
||
|
||
/* See also scm_i_queue_async_cell for how such a block is
|
||
interrputed.
|
||
*/
|
||
|
||
/* Put the current thread on QUEUE and go to sleep, waiting for it to
|
||
be woken up by a call to 'unblock_from_queue', or to be
|
||
interrupted. Upon return of this function, the current thread is
|
||
no longer on QUEUE, even when the sleep has been interrupted.
|
||
|
||
The caller of block_self must hold MUTEX. It will be atomically
|
||
unlocked while sleeping, just as with scm_i_pthread_cond_wait.
|
||
|
||
SLEEP_OBJECT is an arbitrary SCM value that is kept alive as long
|
||
as MUTEX is needed.
|
||
|
||
When WAITTIME is not NULL, the sleep will be aborted at that time.
|
||
|
||
The return value of block_self is an errno value. It will be zero
|
||
when the sleep has been successfully completed by a call to
|
||
unblock_from_queue, EINTR when it has been interrupted by the
|
||
delivery of a system async, and ETIMEDOUT when the timeout has
|
||
expired.
|
||
|
||
The system asyncs themselves are not executed by block_self.
|
||
*/
|
||
static int
|
||
block_self (SCM queue, SCM sleep_object, scm_i_pthread_mutex_t *mutex,
|
||
const scm_t_timespec *waittime)
|
||
{
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
SCM q_handle;
|
||
int err;
|
||
|
||
if (scm_i_setup_sleep (t, sleep_object, mutex, -1))
|
||
err = EINTR;
|
||
else
|
||
{
|
||
t->block_asyncs++;
|
||
q_handle = enqueue (queue, t->handle);
|
||
if (waittime == NULL)
|
||
err = scm_i_scm_pthread_cond_wait (&t->sleep_cond, mutex);
|
||
else
|
||
err = scm_i_scm_pthread_cond_timedwait (&t->sleep_cond, mutex, waittime);
|
||
|
||
/* When we are still on QUEUE, we have been interrupted. We
|
||
report this only when no other error (such as a timeout) has
|
||
happened above.
|
||
*/
|
||
if (remqueue (queue, q_handle) && err == 0)
|
||
err = EINTR;
|
||
t->block_asyncs--;
|
||
scm_i_reset_sleep (t);
|
||
}
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Wake up the first thread on QUEUE, if any. The awoken thread is
|
||
returned, or #f if the queue was empty.
|
||
*/
|
||
static SCM
|
||
unblock_from_queue (SCM queue)
|
||
{
|
||
SCM thread = dequeue (queue);
|
||
if (scm_is_true (thread))
|
||
scm_i_pthread_cond_signal (&SCM_I_THREAD_DATA(thread)->sleep_cond);
|
||
return thread;
|
||
}
|
||
|
||
|
||
/* Getting into and out of guile mode.
|
||
*/
|
||
|
||
/* Key used to attach a cleanup handler to a given thread. Also, if
|
||
thread-local storage is unavailable, this key is used to retrieve the
|
||
current thread with `pthread_getspecific ()'. */
|
||
scm_i_pthread_key_t scm_i_thread_key;
|
||
|
||
|
||
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
|
||
|
||
/* When thread-local storage (TLS) is available, a pointer to the
|
||
current-thread object is kept in TLS. Note that storing the thread-object
|
||
itself in TLS (rather than a pointer to some malloc'd memory) is not
|
||
possible since thread objects may live longer than the actual thread they
|
||
represent. */
|
||
SCM_THREAD_LOCAL scm_i_thread *scm_i_current_thread = NULL;
|
||
|
||
#endif /* SCM_HAVE_THREAD_STORAGE_CLASS */
|
||
|
||
|
||
static scm_i_pthread_mutex_t thread_admin_mutex = SCM_I_PTHREAD_MUTEX_INITIALIZER;
|
||
static scm_i_thread *all_threads = NULL;
|
||
static int thread_count;
|
||
|
||
static SCM scm_i_default_dynamic_state;
|
||
|
||
/* Run when a fluid is collected. */
|
||
void
|
||
scm_i_reset_fluid (size_t n)
|
||
{
|
||
scm_i_thread *t;
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
for (t = all_threads; t; t = t->next_thread)
|
||
if (SCM_I_DYNAMIC_STATE_P (t->dynamic_state))
|
||
{
|
||
SCM v = SCM_I_DYNAMIC_STATE_FLUIDS (t->dynamic_state);
|
||
|
||
if (n < SCM_SIMPLE_VECTOR_LENGTH (v))
|
||
SCM_SIMPLE_VECTOR_SET (v, n, SCM_UNDEFINED);
|
||
}
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
}
|
||
|
||
/* Perform first stage of thread initialisation, in non-guile mode.
|
||
*/
|
||
static void
|
||
guilify_self_1 (struct GC_stack_base *base)
|
||
{
|
||
scm_i_thread t;
|
||
|
||
/* We must arrange for SCM_I_CURRENT_THREAD to point to a valid value
|
||
before allocating anything in this thread, because allocation could
|
||
cause GC to run, and GC could cause finalizers, which could invoke
|
||
Scheme functions, which need the current thread to be set. */
|
||
|
||
t.pthread = scm_i_pthread_self ();
|
||
t.handle = SCM_BOOL_F;
|
||
t.result = SCM_BOOL_F;
|
||
t.cleanup_handler = SCM_BOOL_F;
|
||
t.mutexes = SCM_EOL;
|
||
t.held_mutex = NULL;
|
||
t.join_queue = SCM_EOL;
|
||
t.dynamic_state = SCM_BOOL_F;
|
||
t.dynwinds = SCM_EOL;
|
||
t.active_asyncs = SCM_EOL;
|
||
t.block_asyncs = 1;
|
||
t.pending_asyncs = 1;
|
||
t.critical_section_level = 0;
|
||
t.base = base->mem_base;
|
||
#ifdef __ia64__
|
||
t.register_backing_store_base = base->reg-base;
|
||
#endif
|
||
t.continuation_root = SCM_EOL;
|
||
t.continuation_base = t.base;
|
||
scm_i_pthread_cond_init (&t.sleep_cond, NULL);
|
||
t.sleep_mutex = NULL;
|
||
t.sleep_object = SCM_BOOL_F;
|
||
t.sleep_fd = -1;
|
||
|
||
if (pipe2 (t.sleep_pipe, O_CLOEXEC) != 0)
|
||
/* FIXME: Error conditions during the initialization phase are handled
|
||
gracelessly since public functions such as `scm_init_guile ()'
|
||
currently have type `void'. */
|
||
abort ();
|
||
|
||
scm_i_pthread_mutex_init (&t.admin_mutex, NULL);
|
||
t.current_mark_stack_ptr = NULL;
|
||
t.current_mark_stack_limit = NULL;
|
||
t.canceled = 0;
|
||
t.exited = 0;
|
||
t.guile_mode = 0;
|
||
|
||
/* The switcheroo. */
|
||
{
|
||
scm_i_thread *t_ptr = &t;
|
||
|
||
GC_disable ();
|
||
t_ptr = GC_malloc (sizeof (scm_i_thread));
|
||
memcpy (t_ptr, &t, sizeof t);
|
||
|
||
scm_i_pthread_setspecific (scm_i_thread_key, t_ptr);
|
||
|
||
#ifdef SCM_HAVE_THREAD_STORAGE_CLASS
|
||
/* Cache the current thread in TLS for faster lookup. */
|
||
scm_i_current_thread = t_ptr;
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
t_ptr->next_thread = all_threads;
|
||
all_threads = t_ptr;
|
||
thread_count++;
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
|
||
GC_enable ();
|
||
}
|
||
}
|
||
|
||
/* Perform second stage of thread initialisation, in guile mode.
|
||
*/
|
||
static void
|
||
guilify_self_2 (SCM parent)
|
||
{
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
t->guile_mode = 1;
|
||
|
||
SCM_NEWSMOB (t->handle, scm_tc16_thread, t);
|
||
|
||
t->continuation_root = scm_cons (t->handle, SCM_EOL);
|
||
t->continuation_base = t->base;
|
||
t->vm = SCM_BOOL_F;
|
||
|
||
if (scm_is_true (parent))
|
||
t->dynamic_state = scm_make_dynamic_state (parent);
|
||
else
|
||
t->dynamic_state = scm_i_make_initial_dynamic_state ();
|
||
|
||
t->join_queue = make_queue ();
|
||
t->block_asyncs = 0;
|
||
}
|
||
|
||
|
||
/*** Fat mutexes */
|
||
|
||
/* We implement our own mutex type since we want them to be 'fair', we
|
||
want to do fancy things while waiting for them (like running
|
||
asyncs) and we might want to add things that are nice for
|
||
debugging.
|
||
*/
|
||
|
||
typedef struct {
|
||
scm_i_pthread_mutex_t lock;
|
||
SCM owner;
|
||
int level; /* how much the owner owns us. <= 1 for non-recursive mutexes */
|
||
|
||
int recursive; /* allow recursive locking? */
|
||
int unchecked_unlock; /* is it an error to unlock an unlocked mutex? */
|
||
int allow_external_unlock; /* is it an error to unlock a mutex that is not
|
||
owned by the current thread? */
|
||
|
||
SCM waiting; /* the threads waiting for this mutex. */
|
||
} fat_mutex;
|
||
|
||
#define SCM_MUTEXP(x) SCM_SMOB_PREDICATE (scm_tc16_mutex, x)
|
||
#define SCM_MUTEX_DATA(x) ((fat_mutex *) SCM_SMOB_DATA (x))
|
||
|
||
static SCM
|
||
call_cleanup (void *data)
|
||
{
|
||
SCM *proc_p = data;
|
||
return scm_call_0 (*proc_p);
|
||
}
|
||
|
||
/* Perform thread tear-down, in guile mode.
|
||
*/
|
||
static void *
|
||
do_thread_exit (void *v)
|
||
{
|
||
scm_i_thread *t = (scm_i_thread *) v;
|
||
|
||
/* Ensure the signal handling thread has been launched, because we might be
|
||
shutting it down. This needs to be done in Guile mode. */
|
||
scm_i_ensure_signal_delivery_thread ();
|
||
|
||
if (!scm_is_false (t->cleanup_handler))
|
||
{
|
||
SCM ptr = t->cleanup_handler;
|
||
|
||
t->cleanup_handler = SCM_BOOL_F;
|
||
t->result = scm_internal_catch (SCM_BOOL_T,
|
||
call_cleanup, &ptr,
|
||
scm_handle_by_message_noexit, NULL);
|
||
}
|
||
|
||
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
|
||
|
||
t->exited = 1;
|
||
close (t->sleep_pipe[0]);
|
||
close (t->sleep_pipe[1]);
|
||
while (scm_is_true (unblock_from_queue (t->join_queue)))
|
||
;
|
||
|
||
while (!scm_is_null (t->mutexes))
|
||
{
|
||
SCM mutex = SCM_WEAK_PAIR_CAR (t->mutexes);
|
||
|
||
if (!SCM_UNBNDP (mutex))
|
||
{
|
||
fat_mutex *m = SCM_MUTEX_DATA (mutex);
|
||
|
||
scm_i_pthread_mutex_lock (&m->lock);
|
||
|
||
/* Since MUTEX is in `t->mutexes', T must be its owner. */
|
||
assert (scm_is_eq (m->owner, t->handle));
|
||
|
||
unblock_from_queue (m->waiting);
|
||
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
}
|
||
|
||
t->mutexes = SCM_WEAK_PAIR_CDR (t->mutexes);
|
||
}
|
||
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
|
||
return NULL;
|
||
}
|
||
|
||
static void *
|
||
do_thread_exit_trampoline (struct GC_stack_base *sb, void *v)
|
||
{
|
||
/* Won't hurt if we are already registered. */
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
GC_register_my_thread (sb);
|
||
#endif
|
||
|
||
return scm_with_guile (do_thread_exit, v);
|
||
}
|
||
|
||
static void
|
||
on_thread_exit (void *v)
|
||
{
|
||
/* This handler is executed in non-guile mode. */
|
||
scm_i_thread *t = (scm_i_thread *) v, **tp;
|
||
|
||
/* If we were canceled, we were unable to clear `t->guile_mode', so do
|
||
it here. */
|
||
t->guile_mode = 0;
|
||
|
||
/* If this thread was cancelled while doing a cond wait, it will
|
||
still have a mutex locked, so we unlock it here. */
|
||
if (t->held_mutex)
|
||
{
|
||
scm_i_pthread_mutex_unlock (t->held_mutex);
|
||
t->held_mutex = NULL;
|
||
}
|
||
|
||
/* Reinstate the current thread for purposes of scm_with_guile
|
||
guile-mode cleanup handlers. Only really needed in the non-TLS
|
||
case but it doesn't hurt to be consistent. */
|
||
scm_i_pthread_setspecific (scm_i_thread_key, t);
|
||
|
||
/* Scheme-level thread finalizers and other cleanup needs to happen in
|
||
guile mode. */
|
||
GC_call_with_stack_base (do_thread_exit_trampoline, t);
|
||
|
||
/* Removing ourself from the list of all threads needs to happen in
|
||
non-guile mode since all SCM values on our stack become
|
||
unprotected once we are no longer in the list. */
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
for (tp = &all_threads; *tp; tp = &(*tp)->next_thread)
|
||
if (*tp == t)
|
||
{
|
||
*tp = t->next_thread;
|
||
|
||
/* GC-robust */
|
||
t->next_thread = NULL;
|
||
|
||
break;
|
||
}
|
||
thread_count--;
|
||
|
||
/* If there's only one other thread, it could be the signal delivery
|
||
thread, so we need to notify it to shut down by closing its read pipe.
|
||
If it's not the signal delivery thread, then closing the read pipe isn't
|
||
going to hurt. */
|
||
if (thread_count <= 1)
|
||
scm_i_close_signal_pipe ();
|
||
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
|
||
scm_i_pthread_setspecific (scm_i_thread_key, NULL);
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
GC_unregister_my_thread ();
|
||
#endif
|
||
}
|
||
|
||
static scm_i_pthread_once_t init_thread_key_once = SCM_I_PTHREAD_ONCE_INIT;
|
||
|
||
static void
|
||
init_thread_key (void)
|
||
{
|
||
scm_i_pthread_key_create (&scm_i_thread_key, on_thread_exit);
|
||
}
|
||
|
||
/* Perform any initializations necessary to make the current thread
|
||
known to Guile (via SCM_I_CURRENT_THREAD), initializing Guile itself,
|
||
if necessary.
|
||
|
||
BASE is the stack base to use with GC.
|
||
|
||
PARENT is the dynamic state to use as the parent, ot SCM_BOOL_F in
|
||
which case the default dynamic state is used.
|
||
|
||
Returns zero when the thread was known to guile already; otherwise
|
||
return 1.
|
||
|
||
Note that it could be the case that the thread was known
|
||
to Guile, but not in guile mode (because we are within a
|
||
scm_without_guile call). Check SCM_I_CURRENT_THREAD->guile_mode to
|
||
be sure. New threads are put into guile mode implicitly. */
|
||
|
||
static int
|
||
scm_i_init_thread_for_guile (struct GC_stack_base *base, SCM parent)
|
||
{
|
||
scm_i_pthread_once (&init_thread_key_once, init_thread_key);
|
||
|
||
if (SCM_I_CURRENT_THREAD)
|
||
{
|
||
/* Thread is already known to Guile.
|
||
*/
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
/* This thread has not been guilified yet.
|
||
*/
|
||
|
||
scm_i_pthread_mutex_lock (&scm_i_init_mutex);
|
||
if (scm_initialized_p == 0)
|
||
{
|
||
/* First thread ever to enter Guile. Run the full
|
||
initialization.
|
||
*/
|
||
scm_i_init_guile (base);
|
||
|
||
#if defined (HAVE_GC_ALLOW_REGISTER_THREADS) && SCM_USE_PTHREAD_THREADS
|
||
/* Allow other threads to come in later. */
|
||
GC_allow_register_threads ();
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
|
||
}
|
||
else
|
||
{
|
||
/* Guile is already initialized, but this thread enters it for
|
||
the first time. Only initialize this thread.
|
||
*/
|
||
scm_i_pthread_mutex_unlock (&scm_i_init_mutex);
|
||
|
||
/* Register this thread with libgc. */
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
GC_register_my_thread (base);
|
||
#endif
|
||
|
||
guilify_self_1 (base);
|
||
guilify_self_2 (parent);
|
||
}
|
||
return 1;
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_init_guile ()
|
||
{
|
||
struct GC_stack_base stack_base;
|
||
|
||
if (GC_get_stack_base (&stack_base) == GC_SUCCESS)
|
||
scm_i_init_thread_for_guile (&stack_base,
|
||
scm_i_default_dynamic_state);
|
||
else
|
||
{
|
||
fprintf (stderr, "Failed to get stack base for current thread.\n");
|
||
exit (EXIT_FAILURE);
|
||
}
|
||
}
|
||
|
||
struct with_guile_args
|
||
{
|
||
GC_fn_type func;
|
||
void *data;
|
||
SCM parent;
|
||
};
|
||
|
||
static void *
|
||
with_guile_trampoline (void *data)
|
||
{
|
||
struct with_guile_args *args = data;
|
||
|
||
return scm_c_with_continuation_barrier (args->func, args->data);
|
||
}
|
||
|
||
static void *
|
||
with_guile_and_parent (struct GC_stack_base *base, void *data)
|
||
{
|
||
void *res;
|
||
int new_thread;
|
||
scm_i_thread *t;
|
||
struct with_guile_args *args = data;
|
||
|
||
new_thread = scm_i_init_thread_for_guile (base, args->parent);
|
||
t = SCM_I_CURRENT_THREAD;
|
||
if (new_thread)
|
||
{
|
||
/* We are in Guile mode. */
|
||
assert (t->guile_mode);
|
||
|
||
res = scm_c_with_continuation_barrier (args->func, args->data);
|
||
|
||
/* Leave Guile mode. */
|
||
t->guile_mode = 0;
|
||
}
|
||
else if (t->guile_mode)
|
||
{
|
||
/* Already in Guile mode. */
|
||
res = scm_c_with_continuation_barrier (args->func, args->data);
|
||
}
|
||
else
|
||
{
|
||
/* We are not in Guile mode, either because we are not within a
|
||
scm_with_guile, or because we are within a scm_without_guile.
|
||
|
||
This call to scm_with_guile() could happen from anywhere on the
|
||
stack, and in particular lower on the stack than when it was
|
||
when this thread was first guilified. Thus, `base' must be
|
||
updated. */
|
||
#if SCM_STACK_GROWS_UP
|
||
if (SCM_STACK_PTR (base->mem_base) < t->base)
|
||
t->base = SCM_STACK_PTR (base->mem_base);
|
||
#else
|
||
if (SCM_STACK_PTR (base->mem_base) > t->base)
|
||
t->base = SCM_STACK_PTR (base->mem_base);
|
||
#endif
|
||
|
||
t->guile_mode = 1;
|
||
res = with_gc_active (with_guile_trampoline, args);
|
||
t->guile_mode = 0;
|
||
}
|
||
return res;
|
||
}
|
||
|
||
static void *
|
||
scm_i_with_guile_and_parent (void *(*func)(void *), void *data, SCM parent)
|
||
{
|
||
struct with_guile_args args;
|
||
|
||
args.func = func;
|
||
args.data = data;
|
||
args.parent = parent;
|
||
|
||
return GC_call_with_stack_base (with_guile_and_parent, &args);
|
||
}
|
||
|
||
void *
|
||
scm_with_guile (void *(*func)(void *), void *data)
|
||
{
|
||
return scm_i_with_guile_and_parent (func, data,
|
||
scm_i_default_dynamic_state);
|
||
}
|
||
|
||
void *
|
||
scm_without_guile (void *(*func)(void *), void *data)
|
||
{
|
||
void *result;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
if (t->guile_mode)
|
||
{
|
||
SCM_I_CURRENT_THREAD->guile_mode = 0;
|
||
result = with_gc_inactive (func, data);
|
||
SCM_I_CURRENT_THREAD->guile_mode = 1;
|
||
}
|
||
else
|
||
/* Otherwise we're not in guile mode, so nothing to do. */
|
||
result = func (data);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/*** Thread creation */
|
||
|
||
typedef struct {
|
||
SCM parent;
|
||
SCM thunk;
|
||
SCM handler;
|
||
SCM thread;
|
||
scm_i_pthread_mutex_t mutex;
|
||
scm_i_pthread_cond_t cond;
|
||
} launch_data;
|
||
|
||
static void *
|
||
really_launch (void *d)
|
||
{
|
||
launch_data *data = (launch_data *)d;
|
||
SCM thunk = data->thunk, handler = data->handler;
|
||
scm_i_thread *t;
|
||
|
||
t = SCM_I_CURRENT_THREAD;
|
||
|
||
scm_i_scm_pthread_mutex_lock (&data->mutex);
|
||
data->thread = scm_current_thread ();
|
||
scm_i_pthread_cond_signal (&data->cond);
|
||
scm_i_pthread_mutex_unlock (&data->mutex);
|
||
|
||
if (SCM_UNBNDP (handler))
|
||
t->result = scm_call_0 (thunk);
|
||
else
|
||
t->result = scm_catch (SCM_BOOL_T, thunk, handler);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void *
|
||
launch_thread (void *d)
|
||
{
|
||
launch_data *data = (launch_data *)d;
|
||
scm_i_pthread_detach (scm_i_pthread_self ());
|
||
scm_i_with_guile_and_parent (really_launch, d, data->parent);
|
||
return NULL;
|
||
}
|
||
|
||
SCM_DEFINE (scm_call_with_new_thread, "call-with-new-thread", 1, 1, 0,
|
||
(SCM thunk, SCM handler),
|
||
"Call @code{thunk} in a new thread and with a new dynamic state,\n"
|
||
"returning a new thread object representing the thread. The procedure\n"
|
||
"@var{thunk} is called via @code{with-continuation-barrier}.\n"
|
||
"\n"
|
||
"When @var{handler} is specified, then @var{thunk} is called from\n"
|
||
"within a @code{catch} with tag @code{#t} that has @var{handler} as its\n"
|
||
"handler. This catch is established inside the continuation barrier.\n"
|
||
"\n"
|
||
"Once @var{thunk} or @var{handler} returns, the return value is made\n"
|
||
"the @emph{exit value} of the thread and the thread is terminated.")
|
||
#define FUNC_NAME s_scm_call_with_new_thread
|
||
{
|
||
launch_data data;
|
||
scm_i_pthread_t id;
|
||
int err;
|
||
|
||
SCM_ASSERT (scm_is_true (scm_thunk_p (thunk)), thunk, SCM_ARG1, FUNC_NAME);
|
||
SCM_ASSERT (SCM_UNBNDP (handler) || scm_is_true (scm_procedure_p (handler)),
|
||
handler, SCM_ARG2, FUNC_NAME);
|
||
|
||
GC_collect_a_little ();
|
||
data.parent = scm_current_dynamic_state ();
|
||
data.thunk = thunk;
|
||
data.handler = handler;
|
||
data.thread = SCM_BOOL_F;
|
||
scm_i_pthread_mutex_init (&data.mutex, NULL);
|
||
scm_i_pthread_cond_init (&data.cond, NULL);
|
||
|
||
scm_i_scm_pthread_mutex_lock (&data.mutex);
|
||
err = scm_i_pthread_create (&id, NULL, launch_thread, &data);
|
||
if (err)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&data.mutex);
|
||
errno = err;
|
||
scm_syserror (NULL);
|
||
}
|
||
scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
|
||
scm_i_pthread_mutex_unlock (&data.mutex);
|
||
|
||
return data.thread;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
typedef struct {
|
||
SCM parent;
|
||
scm_t_catch_body body;
|
||
void *body_data;
|
||
scm_t_catch_handler handler;
|
||
void *handler_data;
|
||
SCM thread;
|
||
scm_i_pthread_mutex_t mutex;
|
||
scm_i_pthread_cond_t cond;
|
||
} spawn_data;
|
||
|
||
static void *
|
||
really_spawn (void *d)
|
||
{
|
||
spawn_data *data = (spawn_data *)d;
|
||
scm_t_catch_body body = data->body;
|
||
void *body_data = data->body_data;
|
||
scm_t_catch_handler handler = data->handler;
|
||
void *handler_data = data->handler_data;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
scm_i_scm_pthread_mutex_lock (&data->mutex);
|
||
data->thread = scm_current_thread ();
|
||
scm_i_pthread_cond_signal (&data->cond);
|
||
scm_i_pthread_mutex_unlock (&data->mutex);
|
||
|
||
if (handler == NULL)
|
||
t->result = body (body_data);
|
||
else
|
||
t->result = scm_internal_catch (SCM_BOOL_T,
|
||
body, body_data,
|
||
handler, handler_data);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static void *
|
||
spawn_thread (void *d)
|
||
{
|
||
spawn_data *data = (spawn_data *)d;
|
||
scm_i_pthread_detach (scm_i_pthread_self ());
|
||
scm_i_with_guile_and_parent (really_spawn, d, data->parent);
|
||
return NULL;
|
||
}
|
||
|
||
SCM
|
||
scm_spawn_thread (scm_t_catch_body body, void *body_data,
|
||
scm_t_catch_handler handler, void *handler_data)
|
||
{
|
||
spawn_data data;
|
||
scm_i_pthread_t id;
|
||
int err;
|
||
|
||
data.parent = scm_current_dynamic_state ();
|
||
data.body = body;
|
||
data.body_data = body_data;
|
||
data.handler = handler;
|
||
data.handler_data = handler_data;
|
||
data.thread = SCM_BOOL_F;
|
||
scm_i_pthread_mutex_init (&data.mutex, NULL);
|
||
scm_i_pthread_cond_init (&data.cond, NULL);
|
||
|
||
scm_i_scm_pthread_mutex_lock (&data.mutex);
|
||
err = scm_i_pthread_create (&id, NULL, spawn_thread, &data);
|
||
if (err)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&data.mutex);
|
||
errno = err;
|
||
scm_syserror (NULL);
|
||
}
|
||
scm_i_scm_pthread_cond_wait (&data.cond, &data.mutex);
|
||
scm_i_pthread_mutex_unlock (&data.mutex);
|
||
|
||
return data.thread;
|
||
}
|
||
|
||
SCM_DEFINE (scm_yield, "yield", 0, 0, 0,
|
||
(),
|
||
"Move the calling thread to the end of the scheduling queue.")
|
||
#define FUNC_NAME s_scm_yield
|
||
{
|
||
return scm_from_bool (scm_i_sched_yield ());
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_cancel_thread, "cancel-thread", 1, 0, 0,
|
||
(SCM thread),
|
||
"Asynchronously force the target @var{thread} to terminate. @var{thread} "
|
||
"cannot be the current thread, and if @var{thread} has already terminated or "
|
||
"been signaled to terminate, this function is a no-op.")
|
||
#define FUNC_NAME s_scm_cancel_thread
|
||
{
|
||
scm_i_thread *t = NULL;
|
||
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
|
||
if (!t->canceled)
|
||
{
|
||
t->canceled = 1;
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
scm_i_pthread_cancel (t->pthread);
|
||
}
|
||
else
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_set_thread_cleanup_x, "set-thread-cleanup!", 2, 0, 0,
|
||
(SCM thread, SCM proc),
|
||
"Set the thunk @var{proc} as the cleanup handler for the thread @var{thread}. "
|
||
"This handler will be called when the thread exits.")
|
||
#define FUNC_NAME s_scm_set_thread_cleanup_x
|
||
{
|
||
scm_i_thread *t;
|
||
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
if (!scm_is_false (proc))
|
||
SCM_VALIDATE_THUNK (2, proc);
|
||
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
scm_i_pthread_mutex_lock (&t->admin_mutex);
|
||
|
||
if (!(t->exited || t->canceled))
|
||
t->cleanup_handler = proc;
|
||
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_thread_cleanup, "thread-cleanup", 1, 0, 0,
|
||
(SCM thread),
|
||
"Return the cleanup handler installed for the thread @var{thread}.")
|
||
#define FUNC_NAME s_scm_thread_cleanup
|
||
{
|
||
scm_i_thread *t;
|
||
SCM ret;
|
||
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
scm_i_pthread_mutex_lock (&t->admin_mutex);
|
||
ret = (t->exited || t->canceled) ? SCM_BOOL_F : t->cleanup_handler;
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
|
||
return ret;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM scm_join_thread (SCM thread)
|
||
{
|
||
return scm_join_thread_timed (thread, SCM_UNDEFINED, SCM_UNDEFINED);
|
||
}
|
||
|
||
SCM_DEFINE (scm_join_thread_timed, "join-thread", 1, 2, 0,
|
||
(SCM thread, SCM timeout, SCM timeoutval),
|
||
"Suspend execution of the calling thread until the target @var{thread} "
|
||
"terminates, unless the target @var{thread} has already terminated. ")
|
||
#define FUNC_NAME s_scm_join_thread_timed
|
||
{
|
||
scm_i_thread *t;
|
||
scm_t_timespec ctimeout, *timeout_ptr = NULL;
|
||
SCM res = SCM_BOOL_F;
|
||
|
||
if (! (SCM_UNBNDP (timeoutval)))
|
||
res = timeoutval;
|
||
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
if (scm_is_eq (scm_current_thread (), thread))
|
||
SCM_MISC_ERROR ("cannot join the current thread", SCM_EOL);
|
||
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
|
||
|
||
if (! SCM_UNBNDP (timeout))
|
||
{
|
||
to_timespec (timeout, &ctimeout);
|
||
timeout_ptr = &ctimeout;
|
||
}
|
||
|
||
if (t->exited)
|
||
res = t->result;
|
||
else
|
||
{
|
||
while (1)
|
||
{
|
||
int err = block_self (t->join_queue, thread, &t->admin_mutex,
|
||
timeout_ptr);
|
||
if (err == 0)
|
||
{
|
||
if (t->exited)
|
||
{
|
||
res = t->result;
|
||
break;
|
||
}
|
||
}
|
||
else if (err == ETIMEDOUT)
|
||
break;
|
||
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
SCM_TICK;
|
||
scm_i_scm_pthread_mutex_lock (&t->admin_mutex);
|
||
|
||
/* Check for exit again, since we just released and
|
||
reacquired the admin mutex, before the next block_self
|
||
call (which would block forever if t has already
|
||
exited). */
|
||
if (t->exited)
|
||
{
|
||
res = t->result;
|
||
break;
|
||
}
|
||
}
|
||
}
|
||
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
|
||
return res;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_thread_p, "thread?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a thread.")
|
||
#define FUNC_NAME s_scm_thread_p
|
||
{
|
||
return SCM_I_IS_THREAD(obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static size_t
|
||
fat_mutex_free (SCM mx)
|
||
{
|
||
fat_mutex *m = SCM_MUTEX_DATA (mx);
|
||
scm_i_pthread_mutex_destroy (&m->lock);
|
||
return 0;
|
||
}
|
||
|
||
static int
|
||
fat_mutex_print (SCM mx, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
fat_mutex *m = SCM_MUTEX_DATA (mx);
|
||
scm_puts ("#<mutex ", port);
|
||
scm_uintprint ((scm_t_bits)m, 16, port);
|
||
scm_puts (">", port);
|
||
return 1;
|
||
}
|
||
|
||
static SCM
|
||
make_fat_mutex (int recursive, int unchecked_unlock, int external_unlock)
|
||
{
|
||
fat_mutex *m;
|
||
SCM mx;
|
||
|
||
m = scm_gc_malloc (sizeof (fat_mutex), "mutex");
|
||
scm_i_pthread_mutex_init (&m->lock, NULL);
|
||
m->owner = SCM_BOOL_F;
|
||
m->level = 0;
|
||
|
||
m->recursive = recursive;
|
||
m->unchecked_unlock = unchecked_unlock;
|
||
m->allow_external_unlock = external_unlock;
|
||
|
||
m->waiting = SCM_EOL;
|
||
SCM_NEWSMOB (mx, scm_tc16_mutex, (scm_t_bits) m);
|
||
m->waiting = make_queue ();
|
||
return mx;
|
||
}
|
||
|
||
SCM scm_make_mutex (void)
|
||
{
|
||
return scm_make_mutex_with_flags (SCM_EOL);
|
||
}
|
||
|
||
SCM_SYMBOL (unchecked_unlock_sym, "unchecked-unlock");
|
||
SCM_SYMBOL (allow_external_unlock_sym, "allow-external-unlock");
|
||
SCM_SYMBOL (recursive_sym, "recursive");
|
||
|
||
SCM_DEFINE (scm_make_mutex_with_flags, "make-mutex", 0, 0, 1,
|
||
(SCM flags),
|
||
"Create a new mutex. ")
|
||
#define FUNC_NAME s_scm_make_mutex_with_flags
|
||
{
|
||
int unchecked_unlock = 0, external_unlock = 0, recursive = 0;
|
||
|
||
SCM ptr = flags;
|
||
while (! scm_is_null (ptr))
|
||
{
|
||
SCM flag = SCM_CAR (ptr);
|
||
if (scm_is_eq (flag, unchecked_unlock_sym))
|
||
unchecked_unlock = 1;
|
||
else if (scm_is_eq (flag, allow_external_unlock_sym))
|
||
external_unlock = 1;
|
||
else if (scm_is_eq (flag, recursive_sym))
|
||
recursive = 1;
|
||
else
|
||
SCM_MISC_ERROR ("unsupported mutex option: ~a", scm_list_1 (flag));
|
||
ptr = SCM_CDR (ptr);
|
||
}
|
||
return make_fat_mutex (recursive, unchecked_unlock, external_unlock);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_make_recursive_mutex, "make-recursive-mutex", 0, 0, 0,
|
||
(void),
|
||
"Create a new recursive mutex. ")
|
||
#define FUNC_NAME s_scm_make_recursive_mutex
|
||
{
|
||
return make_fat_mutex (1, 0, 0);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_SYMBOL (scm_abandoned_mutex_error_key, "abandoned-mutex-error");
|
||
|
||
static SCM
|
||
fat_mutex_lock (SCM mutex, scm_t_timespec *timeout, SCM owner, int *ret)
|
||
{
|
||
fat_mutex *m = SCM_MUTEX_DATA (mutex);
|
||
|
||
SCM new_owner = SCM_UNBNDP (owner) ? scm_current_thread() : owner;
|
||
SCM err = SCM_BOOL_F;
|
||
|
||
struct timeval current_time;
|
||
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
|
||
while (1)
|
||
{
|
||
if (m->level == 0)
|
||
{
|
||
m->owner = new_owner;
|
||
m->level++;
|
||
|
||
if (SCM_I_IS_THREAD (new_owner))
|
||
{
|
||
scm_i_thread *t = SCM_I_THREAD_DATA (new_owner);
|
||
|
||
/* FIXME: The order in which `t->admin_mutex' and
|
||
`m->lock' are taken differs from that in
|
||
`on_thread_exit', potentially leading to deadlocks. */
|
||
scm_i_pthread_mutex_lock (&t->admin_mutex);
|
||
|
||
/* Only keep a weak reference to MUTEX so that it's not
|
||
retained when not referenced elsewhere (bug #27450).
|
||
The weak pair itself is eventually removed when MUTEX
|
||
is unlocked. Note that `t->mutexes' lists mutexes
|
||
currently held by T, so it should be small. */
|
||
t->mutexes = scm_weak_car_pair (mutex, t->mutexes);
|
||
|
||
scm_i_pthread_mutex_unlock (&t->admin_mutex);
|
||
}
|
||
*ret = 1;
|
||
break;
|
||
}
|
||
else if (SCM_I_IS_THREAD (m->owner) && scm_c_thread_exited_p (m->owner))
|
||
{
|
||
m->owner = new_owner;
|
||
err = scm_cons (scm_abandoned_mutex_error_key,
|
||
scm_from_locale_string ("lock obtained on abandoned "
|
||
"mutex"));
|
||
*ret = 1;
|
||
break;
|
||
}
|
||
else if (scm_is_eq (m->owner, new_owner))
|
||
{
|
||
if (m->recursive)
|
||
{
|
||
m->level++;
|
||
*ret = 1;
|
||
}
|
||
else
|
||
{
|
||
err = scm_cons (scm_misc_error_key,
|
||
scm_from_locale_string ("mutex already locked "
|
||
"by thread"));
|
||
*ret = 0;
|
||
}
|
||
break;
|
||
}
|
||
else
|
||
{
|
||
if (timeout != NULL)
|
||
{
|
||
gettimeofday (¤t_time, NULL);
|
||
if (current_time.tv_sec > timeout->tv_sec ||
|
||
(current_time.tv_sec == timeout->tv_sec &&
|
||
current_time.tv_usec * 1000 > timeout->tv_nsec))
|
||
{
|
||
*ret = 0;
|
||
break;
|
||
}
|
||
}
|
||
block_self (m->waiting, mutex, &m->lock, timeout);
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
SCM_TICK;
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
}
|
||
}
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
return err;
|
||
}
|
||
|
||
SCM scm_lock_mutex (SCM mx)
|
||
{
|
||
return scm_lock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
|
||
}
|
||
|
||
SCM_DEFINE (scm_lock_mutex_timed, "lock-mutex", 1, 2, 0,
|
||
(SCM m, SCM timeout, SCM owner),
|
||
"Lock @var{mutex}. If the mutex is already locked, the calling thread "
|
||
"blocks until the mutex becomes available. The function returns when "
|
||
"the calling thread owns the lock on @var{mutex}. Locking a mutex that "
|
||
"a thread already owns will succeed right away and will not block the "
|
||
"thread. That is, Guile's mutexes are @emph{recursive}. ")
|
||
#define FUNC_NAME s_scm_lock_mutex_timed
|
||
{
|
||
SCM exception;
|
||
int ret = 0;
|
||
scm_t_timespec cwaittime, *waittime = NULL;
|
||
|
||
SCM_VALIDATE_MUTEX (1, m);
|
||
|
||
if (! SCM_UNBNDP (timeout) && ! scm_is_false (timeout))
|
||
{
|
||
to_timespec (timeout, &cwaittime);
|
||
waittime = &cwaittime;
|
||
}
|
||
|
||
if (!SCM_UNBNDP (owner) && !scm_is_false (owner))
|
||
SCM_VALIDATE_THREAD (3, owner);
|
||
|
||
exception = fat_mutex_lock (m, waittime, owner, &ret);
|
||
if (!scm_is_false (exception))
|
||
scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
|
||
return ret ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
lock_mutex_return_void (SCM mx)
|
||
{
|
||
(void) scm_lock_mutex (mx);
|
||
}
|
||
|
||
static void
|
||
unlock_mutex_return_void (SCM mx)
|
||
{
|
||
(void) scm_unlock_mutex (mx);
|
||
}
|
||
|
||
void
|
||
scm_dynwind_lock_mutex (SCM mutex)
|
||
{
|
||
scm_dynwind_unwind_handler_with_scm (unlock_mutex_return_void, mutex,
|
||
SCM_F_WIND_EXPLICITLY);
|
||
scm_dynwind_rewind_handler_with_scm (lock_mutex_return_void, mutex,
|
||
SCM_F_WIND_EXPLICITLY);
|
||
}
|
||
|
||
SCM_DEFINE (scm_try_mutex, "try-mutex", 1, 0, 0,
|
||
(SCM mutex),
|
||
"Try to lock @var{mutex}. If the mutex is already locked by someone "
|
||
"else, return @code{#f}. Else lock the mutex and return @code{#t}. ")
|
||
#define FUNC_NAME s_scm_try_mutex
|
||
{
|
||
SCM exception;
|
||
int ret = 0;
|
||
scm_t_timespec cwaittime, *waittime = NULL;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mutex);
|
||
|
||
to_timespec (scm_from_int(0), &cwaittime);
|
||
waittime = &cwaittime;
|
||
|
||
exception = fat_mutex_lock (mutex, waittime, SCM_UNDEFINED, &ret);
|
||
if (!scm_is_false (exception))
|
||
scm_ithrow (SCM_CAR (exception), scm_list_1 (SCM_CDR (exception)), 1);
|
||
return ret ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/*** Fat condition variables */
|
||
|
||
typedef struct {
|
||
scm_i_pthread_mutex_t lock;
|
||
SCM waiting; /* the threads waiting for this condition. */
|
||
} fat_cond;
|
||
|
||
#define SCM_CONDVARP(x) SCM_SMOB_PREDICATE (scm_tc16_condvar, x)
|
||
#define SCM_CONDVAR_DATA(x) ((fat_cond *) SCM_SMOB_DATA (x))
|
||
|
||
static int
|
||
fat_mutex_unlock (SCM mutex, SCM cond,
|
||
const scm_t_timespec *waittime, int relock)
|
||
{
|
||
SCM owner;
|
||
fat_mutex *m = SCM_MUTEX_DATA (mutex);
|
||
fat_cond *c = NULL;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
int err = 0, ret = 0;
|
||
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
|
||
owner = m->owner;
|
||
|
||
if (!scm_is_eq (owner, t->handle))
|
||
{
|
||
if (m->level == 0)
|
||
{
|
||
if (!m->unchecked_unlock)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
scm_misc_error (NULL, "mutex not locked", SCM_EOL);
|
||
}
|
||
owner = t->handle;
|
||
}
|
||
else if (!m->allow_external_unlock)
|
||
{
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
scm_misc_error (NULL, "mutex not locked by current thread", SCM_EOL);
|
||
}
|
||
}
|
||
|
||
if (! (SCM_UNBNDP (cond)))
|
||
{
|
||
c = SCM_CONDVAR_DATA (cond);
|
||
while (1)
|
||
{
|
||
int brk = 0;
|
||
|
||
if (m->level > 0)
|
||
m->level--;
|
||
if (m->level == 0)
|
||
{
|
||
/* Change the owner of MUTEX. */
|
||
t->mutexes = scm_delq_x (mutex, t->mutexes);
|
||
m->owner = unblock_from_queue (m->waiting);
|
||
}
|
||
|
||
t->block_asyncs++;
|
||
|
||
err = block_self (c->waiting, cond, &m->lock, waittime);
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
|
||
if (err == 0)
|
||
{
|
||
ret = 1;
|
||
brk = 1;
|
||
}
|
||
else if (err == ETIMEDOUT)
|
||
{
|
||
ret = 0;
|
||
brk = 1;
|
||
}
|
||
else if (err != EINTR)
|
||
{
|
||
errno = err;
|
||
scm_syserror (NULL);
|
||
}
|
||
|
||
if (brk)
|
||
{
|
||
if (relock)
|
||
scm_lock_mutex_timed (mutex, SCM_UNDEFINED, owner);
|
||
t->block_asyncs--;
|
||
break;
|
||
}
|
||
|
||
t->block_asyncs--;
|
||
scm_async_click ();
|
||
|
||
scm_remember_upto_here_2 (cond, mutex);
|
||
|
||
scm_i_scm_pthread_mutex_lock (&m->lock);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (m->level > 0)
|
||
m->level--;
|
||
if (m->level == 0)
|
||
{
|
||
/* Change the owner of MUTEX. */
|
||
t->mutexes = scm_delq_x (mutex, t->mutexes);
|
||
m->owner = unblock_from_queue (m->waiting);
|
||
}
|
||
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
ret = 1;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
SCM scm_unlock_mutex (SCM mx)
|
||
{
|
||
return scm_unlock_mutex_timed (mx, SCM_UNDEFINED, SCM_UNDEFINED);
|
||
}
|
||
|
||
SCM_DEFINE (scm_unlock_mutex_timed, "unlock-mutex", 1, 2, 0,
|
||
(SCM mx, SCM cond, SCM timeout),
|
||
"Unlocks @var{mutex} if the calling thread owns the lock on "
|
||
"@var{mutex}. Calling unlock-mutex on a mutex not owned by the current "
|
||
"thread results in undefined behaviour. Once a mutex has been unlocked, "
|
||
"one thread blocked on @var{mutex} is awakened and grabs the mutex "
|
||
"lock. Every call to @code{lock-mutex} by this thread must be matched "
|
||
"with a call to @code{unlock-mutex}. Only the last call to "
|
||
"@code{unlock-mutex} will actually unlock the mutex. ")
|
||
#define FUNC_NAME s_scm_unlock_mutex_timed
|
||
{
|
||
scm_t_timespec cwaittime, *waittime = NULL;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
if (! (SCM_UNBNDP (cond)))
|
||
{
|
||
SCM_VALIDATE_CONDVAR (2, cond);
|
||
|
||
if (! (SCM_UNBNDP (timeout)))
|
||
{
|
||
to_timespec (timeout, &cwaittime);
|
||
waittime = &cwaittime;
|
||
}
|
||
}
|
||
|
||
return fat_mutex_unlock (mx, cond, waittime, 0) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_p, "mutex?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a mutex.")
|
||
#define FUNC_NAME s_scm_mutex_p
|
||
{
|
||
return SCM_MUTEXP (obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_owner, "mutex-owner", 1, 0, 0,
|
||
(SCM mx),
|
||
"Return the thread owning @var{mx}, or @code{#f}.")
|
||
#define FUNC_NAME s_scm_mutex_owner
|
||
{
|
||
SCM owner;
|
||
fat_mutex *m = NULL;
|
||
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
m = SCM_MUTEX_DATA (mx);
|
||
scm_i_pthread_mutex_lock (&m->lock);
|
||
owner = m->owner;
|
||
scm_i_pthread_mutex_unlock (&m->lock);
|
||
|
||
return owner;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_level, "mutex-level", 1, 0, 0,
|
||
(SCM mx),
|
||
"Return the lock level of mutex @var{mx}.")
|
||
#define FUNC_NAME s_scm_mutex_level
|
||
{
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
return scm_from_int (SCM_MUTEX_DATA(mx)->level);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_mutex_locked_p, "mutex-locked?", 1, 0, 0,
|
||
(SCM mx),
|
||
"Returns @code{#t} if the mutex @var{mx} is locked.")
|
||
#define FUNC_NAME s_scm_mutex_locked_p
|
||
{
|
||
SCM_VALIDATE_MUTEX (1, mx);
|
||
return SCM_MUTEX_DATA (mx)->level > 0 ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static int
|
||
fat_cond_print (SCM cv, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
fat_cond *c = SCM_CONDVAR_DATA (cv);
|
||
scm_puts ("#<condition-variable ", port);
|
||
scm_uintprint ((scm_t_bits)c, 16, port);
|
||
scm_puts (">", port);
|
||
return 1;
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_condition_variable, "make-condition-variable", 0, 0, 0,
|
||
(void),
|
||
"Make a new condition variable.")
|
||
#define FUNC_NAME s_scm_make_condition_variable
|
||
{
|
||
fat_cond *c;
|
||
SCM cv;
|
||
|
||
c = scm_gc_malloc (sizeof (fat_cond), "condition variable");
|
||
c->waiting = SCM_EOL;
|
||
SCM_NEWSMOB (cv, scm_tc16_condvar, (scm_t_bits) c);
|
||
c->waiting = make_queue ();
|
||
return cv;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_timed_wait_condition_variable, "wait-condition-variable", 2, 1, 0,
|
||
(SCM cv, SCM mx, SCM t),
|
||
"Wait until @var{cond-var} has been signalled. While waiting, "
|
||
"@var{mutex} is atomically unlocked (as with @code{unlock-mutex}) and "
|
||
"is locked again when this function returns. When @var{time} is given, "
|
||
"it specifies a point in time where the waiting should be aborted. It "
|
||
"can be either a integer as returned by @code{current-time} or a pair "
|
||
"as returned by @code{gettimeofday}. When the waiting is aborted the "
|
||
"mutex is locked and @code{#f} is returned. When the condition "
|
||
"variable is in fact signalled, the mutex is also locked and @code{#t} "
|
||
"is returned. ")
|
||
#define FUNC_NAME s_scm_timed_wait_condition_variable
|
||
{
|
||
scm_t_timespec waittime, *waitptr = NULL;
|
||
|
||
SCM_VALIDATE_CONDVAR (1, cv);
|
||
SCM_VALIDATE_MUTEX (2, mx);
|
||
|
||
if (!SCM_UNBNDP (t))
|
||
{
|
||
to_timespec (t, &waittime);
|
||
waitptr = &waittime;
|
||
}
|
||
|
||
return fat_mutex_unlock (mx, cv, waitptr, 1) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
fat_cond_signal (fat_cond *c)
|
||
{
|
||
unblock_from_queue (c->waiting);
|
||
}
|
||
|
||
SCM_DEFINE (scm_signal_condition_variable, "signal-condition-variable", 1, 0, 0,
|
||
(SCM cv),
|
||
"Wake up one thread that is waiting for @var{cv}")
|
||
#define FUNC_NAME s_scm_signal_condition_variable
|
||
{
|
||
SCM_VALIDATE_CONDVAR (1, cv);
|
||
fat_cond_signal (SCM_CONDVAR_DATA (cv));
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
fat_cond_broadcast (fat_cond *c)
|
||
{
|
||
while (scm_is_true (unblock_from_queue (c->waiting)))
|
||
;
|
||
}
|
||
|
||
SCM_DEFINE (scm_broadcast_condition_variable, "broadcast-condition-variable", 1, 0, 0,
|
||
(SCM cv),
|
||
"Wake up all threads that are waiting for @var{cv}. ")
|
||
#define FUNC_NAME s_scm_broadcast_condition_variable
|
||
{
|
||
SCM_VALIDATE_CONDVAR (1, cv);
|
||
fat_cond_broadcast (SCM_CONDVAR_DATA (cv));
|
||
return SCM_BOOL_T;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_condition_variable_p, "condition-variable?", 1, 0, 0,
|
||
(SCM obj),
|
||
"Return @code{#t} if @var{obj} is a condition variable.")
|
||
#define FUNC_NAME s_scm_condition_variable_p
|
||
{
|
||
return SCM_CONDVARP(obj) ? SCM_BOOL_T : SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
/*** Select */
|
||
|
||
struct select_args
|
||
{
|
||
int nfds;
|
||
SELECT_TYPE *read_fds;
|
||
SELECT_TYPE *write_fds;
|
||
SELECT_TYPE *except_fds;
|
||
struct timeval *timeout;
|
||
|
||
int result;
|
||
int errno_value;
|
||
};
|
||
|
||
static void *
|
||
do_std_select (void *args)
|
||
{
|
||
struct select_args *select_args;
|
||
|
||
select_args = (struct select_args *) args;
|
||
|
||
select_args->result =
|
||
select (select_args->nfds,
|
||
select_args->read_fds, select_args->write_fds,
|
||
select_args->except_fds, select_args->timeout);
|
||
select_args->errno_value = errno;
|
||
|
||
return NULL;
|
||
}
|
||
|
||
int
|
||
scm_std_select (int nfds,
|
||
SELECT_TYPE *readfds,
|
||
SELECT_TYPE *writefds,
|
||
SELECT_TYPE *exceptfds,
|
||
struct timeval *timeout)
|
||
{
|
||
fd_set my_readfds;
|
||
int res, eno, wakeup_fd;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
struct select_args args;
|
||
|
||
if (readfds == NULL)
|
||
{
|
||
FD_ZERO (&my_readfds);
|
||
readfds = &my_readfds;
|
||
}
|
||
|
||
while (scm_i_setup_sleep (t, SCM_BOOL_F, NULL, t->sleep_pipe[1]))
|
||
SCM_TICK;
|
||
|
||
wakeup_fd = t->sleep_pipe[0];
|
||
FD_SET (wakeup_fd, readfds);
|
||
if (wakeup_fd >= nfds)
|
||
nfds = wakeup_fd+1;
|
||
|
||
args.nfds = nfds;
|
||
args.read_fds = readfds;
|
||
args.write_fds = writefds;
|
||
args.except_fds = exceptfds;
|
||
args.timeout = timeout;
|
||
|
||
/* Explicitly cooperate with the GC. */
|
||
scm_without_guile (do_std_select, &args);
|
||
|
||
res = args.result;
|
||
eno = args.errno_value;
|
||
|
||
t->sleep_fd = -1;
|
||
scm_i_reset_sleep (t);
|
||
|
||
if (res > 0 && FD_ISSET (wakeup_fd, readfds))
|
||
{
|
||
char dummy;
|
||
full_read (wakeup_fd, &dummy, 1);
|
||
|
||
FD_CLR (wakeup_fd, readfds);
|
||
res -= 1;
|
||
if (res == 0)
|
||
{
|
||
eno = EINTR;
|
||
res = -1;
|
||
}
|
||
}
|
||
errno = eno;
|
||
return res;
|
||
}
|
||
|
||
/* Convenience API for blocking while in guile mode. */
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
|
||
/* It seems reasonable to not run procedures related to mutex and condition
|
||
variables within `GC_do_blocking ()' since, (i) the GC can operate even
|
||
without it, and (ii) the only potential gain would be GC latency. See
|
||
http://thread.gmane.org/gmane.comp.programming.garbage-collection.boehmgc/2245/focus=2251
|
||
for a discussion of the pros and cons. */
|
||
|
||
int
|
||
scm_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
int res = scm_i_pthread_mutex_lock (mutex);
|
||
return res;
|
||
}
|
||
|
||
static void
|
||
do_unlock (void *data)
|
||
{
|
||
scm_i_pthread_mutex_unlock ((scm_i_pthread_mutex_t *)data);
|
||
}
|
||
|
||
void
|
||
scm_dynwind_pthread_mutex_lock (scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
scm_i_scm_pthread_mutex_lock (mutex);
|
||
scm_dynwind_unwind_handler (do_unlock, mutex, SCM_F_WIND_EXPLICITLY);
|
||
}
|
||
|
||
int
|
||
scm_pthread_cond_wait (scm_i_pthread_cond_t *cond, scm_i_pthread_mutex_t *mutex)
|
||
{
|
||
int res;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
t->held_mutex = mutex;
|
||
res = scm_i_pthread_cond_wait (cond, mutex);
|
||
t->held_mutex = NULL;
|
||
|
||
return res;
|
||
}
|
||
|
||
int
|
||
scm_pthread_cond_timedwait (scm_i_pthread_cond_t *cond,
|
||
scm_i_pthread_mutex_t *mutex,
|
||
const scm_t_timespec *wt)
|
||
{
|
||
int res;
|
||
scm_i_thread *t = SCM_I_CURRENT_THREAD;
|
||
|
||
t->held_mutex = mutex;
|
||
res = scm_i_pthread_cond_timedwait (cond, mutex, wt);
|
||
t->held_mutex = NULL;
|
||
|
||
return res;
|
||
}
|
||
|
||
#endif
|
||
|
||
unsigned long
|
||
scm_std_usleep (unsigned long usecs)
|
||
{
|
||
struct timeval tv;
|
||
tv.tv_usec = usecs % 1000000;
|
||
tv.tv_sec = usecs / 1000000;
|
||
scm_std_select (0, NULL, NULL, NULL, &tv);
|
||
return tv.tv_sec * 1000000 + tv.tv_usec;
|
||
}
|
||
|
||
unsigned int
|
||
scm_std_sleep (unsigned int secs)
|
||
{
|
||
struct timeval tv;
|
||
tv.tv_usec = 0;
|
||
tv.tv_sec = secs;
|
||
scm_std_select (0, NULL, NULL, NULL, &tv);
|
||
return tv.tv_sec;
|
||
}
|
||
|
||
/*** Misc */
|
||
|
||
SCM_DEFINE (scm_current_thread, "current-thread", 0, 0, 0,
|
||
(void),
|
||
"Return the thread that called this function.")
|
||
#define FUNC_NAME s_scm_current_thread
|
||
{
|
||
return SCM_I_CURRENT_THREAD->handle;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_c_make_list (size_t n, SCM fill)
|
||
{
|
||
SCM res = SCM_EOL;
|
||
while (n-- > 0)
|
||
res = scm_cons (fill, res);
|
||
return res;
|
||
}
|
||
|
||
SCM_DEFINE (scm_all_threads, "all-threads", 0, 0, 0,
|
||
(void),
|
||
"Return a list of all threads.")
|
||
#define FUNC_NAME s_scm_all_threads
|
||
{
|
||
/* We can not allocate while holding the thread_admin_mutex because
|
||
of the way GC is done.
|
||
*/
|
||
int n = thread_count;
|
||
scm_i_thread *t;
|
||
SCM list = scm_c_make_list (n, SCM_UNSPECIFIED), *l;
|
||
|
||
scm_i_pthread_mutex_lock (&thread_admin_mutex);
|
||
l = &list;
|
||
for (t = all_threads; t && n > 0; t = t->next_thread)
|
||
{
|
||
if (t != scm_i_signal_delivery_thread)
|
||
{
|
||
SCM_SETCAR (*l, t->handle);
|
||
l = SCM_CDRLOC (*l);
|
||
}
|
||
n--;
|
||
}
|
||
*l = SCM_EOL;
|
||
scm_i_pthread_mutex_unlock (&thread_admin_mutex);
|
||
return list;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_thread_exited_p, "thread-exited?", 1, 0, 0,
|
||
(SCM thread),
|
||
"Return @code{#t} iff @var{thread} has exited.\n")
|
||
#define FUNC_NAME s_scm_thread_exited_p
|
||
{
|
||
return scm_from_bool (scm_c_thread_exited_p (thread));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
int
|
||
scm_c_thread_exited_p (SCM thread)
|
||
#define FUNC_NAME s_scm_thread_exited_p
|
||
{
|
||
scm_i_thread *t;
|
||
SCM_VALIDATE_THREAD (1, thread);
|
||
t = SCM_I_THREAD_DATA (thread);
|
||
return t->exited;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_total_processor_count, "total-processor-count", 0, 0, 0,
|
||
(void),
|
||
"Return the total number of processors of the machine, which\n"
|
||
"is guaranteed to be at least 1. A ``processor'' here is a\n"
|
||
"thread execution unit, which can be either:\n\n"
|
||
"@itemize\n"
|
||
"@item an execution core in a (possibly multi-core) chip, in a\n"
|
||
" (possibly multi- chip) module, in a single computer, or\n"
|
||
"@item a thread execution unit inside a core in the case of\n"
|
||
" @dfn{hyper-threaded} CPUs.\n"
|
||
"@end itemize\n\n"
|
||
"Which of the two definitions is used, is unspecified.\n")
|
||
#define FUNC_NAME s_scm_total_processor_count
|
||
{
|
||
return scm_from_ulong (num_processors (NPROC_ALL));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_current_processor_count, "current-processor-count", 0, 0, 0,
|
||
(void),
|
||
"Like @code{total-processor-count}, but return the number of\n"
|
||
"processors available to the current process. See\n"
|
||
"@code{setaffinity} and @code{getaffinity} for more\n"
|
||
"information.\n")
|
||
#define FUNC_NAME s_scm_current_processor_count
|
||
{
|
||
return scm_from_ulong (num_processors (NPROC_CURRENT));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
|
||
static scm_i_pthread_cond_t wake_up_cond;
|
||
static int threads_initialized_p = 0;
|
||
|
||
|
||
/* This mutex is used by SCM_CRITICAL_SECTION_START/END.
|
||
*/
|
||
scm_i_pthread_mutex_t scm_i_critical_section_mutex;
|
||
|
||
static SCM dynwind_critical_section_mutex;
|
||
|
||
void
|
||
scm_dynwind_critical_section (SCM mutex)
|
||
{
|
||
if (scm_is_false (mutex))
|
||
mutex = dynwind_critical_section_mutex;
|
||
scm_dynwind_lock_mutex (mutex);
|
||
scm_dynwind_block_asyncs ();
|
||
}
|
||
|
||
/*** Initialization */
|
||
|
||
scm_i_pthread_mutex_t scm_i_misc_mutex;
|
||
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
pthread_mutexattr_t scm_i_pthread_mutexattr_recursive[1];
|
||
#endif
|
||
|
||
void
|
||
scm_threads_prehistory (void *base)
|
||
{
|
||
#if SCM_USE_PTHREAD_THREADS
|
||
pthread_mutexattr_init (scm_i_pthread_mutexattr_recursive);
|
||
pthread_mutexattr_settype (scm_i_pthread_mutexattr_recursive,
|
||
PTHREAD_MUTEX_RECURSIVE);
|
||
#endif
|
||
|
||
scm_i_pthread_mutex_init (&scm_i_critical_section_mutex,
|
||
scm_i_pthread_mutexattr_recursive);
|
||
scm_i_pthread_mutex_init (&scm_i_misc_mutex, NULL);
|
||
scm_i_pthread_cond_init (&wake_up_cond, NULL);
|
||
|
||
guilify_self_1 ((struct GC_stack_base *) base);
|
||
}
|
||
|
||
scm_t_bits scm_tc16_thread;
|
||
scm_t_bits scm_tc16_mutex;
|
||
scm_t_bits scm_tc16_condvar;
|
||
|
||
void
|
||
scm_init_threads ()
|
||
{
|
||
scm_tc16_thread = scm_make_smob_type ("thread", sizeof (scm_i_thread));
|
||
scm_set_smob_print (scm_tc16_thread, thread_print);
|
||
|
||
scm_tc16_mutex = scm_make_smob_type ("mutex", sizeof (fat_mutex));
|
||
scm_set_smob_print (scm_tc16_mutex, fat_mutex_print);
|
||
scm_set_smob_free (scm_tc16_mutex, fat_mutex_free);
|
||
|
||
scm_tc16_condvar = scm_make_smob_type ("condition-variable",
|
||
sizeof (fat_cond));
|
||
scm_set_smob_print (scm_tc16_condvar, fat_cond_print);
|
||
|
||
scm_i_default_dynamic_state = SCM_BOOL_F;
|
||
guilify_self_2 (SCM_BOOL_F);
|
||
threads_initialized_p = 1;
|
||
|
||
dynwind_critical_section_mutex = scm_make_recursive_mutex ();
|
||
}
|
||
|
||
void
|
||
scm_init_threads_default_dynamic_state ()
|
||
{
|
||
SCM state = scm_make_dynamic_state (scm_current_dynamic_state ());
|
||
scm_i_default_dynamic_state = state;
|
||
}
|
||
|
||
void
|
||
scm_init_thread_procs ()
|
||
{
|
||
#include "libguile/threads.x"
|
||
}
|
||
|
||
|
||
/* IA64-specific things. */
|
||
|
||
#ifdef __ia64__
|
||
# ifdef __hpux
|
||
# include <sys/param.h>
|
||
# include <sys/pstat.h>
|
||
void *
|
||
scm_ia64_register_backing_store_base (void)
|
||
{
|
||
struct pst_vm_status vm_status;
|
||
int i = 0;
|
||
while (pstat_getprocvm (&vm_status, sizeof (vm_status), 0, i++) == 1)
|
||
if (vm_status.pst_type == PS_RSESTACK)
|
||
return (void *) vm_status.pst_vaddr;
|
||
abort ();
|
||
}
|
||
void *
|
||
scm_ia64_ar_bsp (const void *ctx)
|
||
{
|
||
uint64_t bsp;
|
||
__uc_get_ar_bsp (ctx, &bsp);
|
||
return (void *) bsp;
|
||
}
|
||
# endif /* hpux */
|
||
# ifdef linux
|
||
# include <ucontext.h>
|
||
void *
|
||
scm_ia64_register_backing_store_base (void)
|
||
{
|
||
extern void *__libc_ia64_register_backing_store_base;
|
||
return __libc_ia64_register_backing_store_base;
|
||
}
|
||
void *
|
||
scm_ia64_ar_bsp (const void *opaque)
|
||
{
|
||
const ucontext_t *ctx = opaque;
|
||
return (void *) ctx->uc_mcontext.sc_ar_bsp;
|
||
}
|
||
# endif /* linux */
|
||
# ifdef __FreeBSD__
|
||
# include <ucontext.h>
|
||
void *
|
||
scm_ia64_register_backing_store_base (void)
|
||
{
|
||
return (void *)0x8000000000000000;
|
||
}
|
||
void *
|
||
scm_ia64_ar_bsp (const void *opaque)
|
||
{
|
||
const ucontext_t *ctx = opaque;
|
||
return (void *)(ctx->uc_mcontext.mc_special.bspstore
|
||
+ ctx->uc_mcontext.mc_special.ndirty);
|
||
}
|
||
# endif /* __FreeBSD__ */
|
||
#endif /* __ia64__ */
|
||
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|