mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
* libguile/arrays.h: * libguile/arrays.c: As stated. * libguile/init.c: Remove call to scm_init_generalized_arrays(). Elsewhere fix references to generalized-arrays.*.
838 lines
24 KiB
C
838 lines
24 KiB
C
/* Copyright 1999-2001,2003,2005-2006,2009-2010,2012-2014,2017-2019
|
||
Free Software Foundation, Inc.
|
||
|
||
This file is part of Guile.
|
||
|
||
Guile is free software: you can redistribute it and/or modify it
|
||
under the terms of the GNU Lesser General Public License as published
|
||
by the Free Software Foundation, either version 3 of the License, or
|
||
(at your option) any later version.
|
||
|
||
Guile is distributed in the hope that it will be useful, but WITHOUT
|
||
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
|
||
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
License for more details.
|
||
|
||
You should have received a copy of the GNU Lesser General Public
|
||
License along with Guile. If not, see
|
||
<https://www.gnu.org/licenses/>. */
|
||
|
||
|
||
/* Original Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <math.h>
|
||
#include <stdio.h>
|
||
#include <string.h>
|
||
#include <sys/types.h>
|
||
#include <unistd.h>
|
||
|
||
#include "scm.h"
|
||
#if SCM_ENABLE_MINI_GMP
|
||
#include "mini-gmp.h"
|
||
#else
|
||
#include <gmp.h>
|
||
#endif
|
||
|
||
#include "arrays.h"
|
||
#include "feature.h"
|
||
#include "generalized-vectors.h"
|
||
#include "gsubr.h"
|
||
#include "list.h"
|
||
#include "modules.h"
|
||
#include "numbers.h"
|
||
#include "numbers.h"
|
||
#include "pairs.h"
|
||
#include "smob.h"
|
||
#include "srfi-4.h"
|
||
#include "stime.h"
|
||
#include "strings.h"
|
||
#include "symbols.h"
|
||
#include "variable.h"
|
||
#include "vectors.h"
|
||
|
||
#include "random.h"
|
||
|
||
|
||
|
||
/*
|
||
* A plugin interface for RNGs
|
||
*
|
||
* Using this interface, it is possible for the application to tell
|
||
* libguile to use a different RNG. This is desirable if it is
|
||
* necessary to use the same RNG everywhere in the application in
|
||
* order to prevent interference, if the application uses RNG
|
||
* hardware, or if the application has special demands on the RNG.
|
||
*
|
||
* Look in random.h and how the default generator is "plugged in" in
|
||
* scm_init_random().
|
||
*/
|
||
|
||
scm_t_rng scm_the_rng;
|
||
|
||
|
||
/*
|
||
* The prepackaged RNG
|
||
*
|
||
* This is the MWC (Multiply With Carry) random number generator
|
||
* described by George Marsaglia at the Department of Statistics and
|
||
* Supercomputer Computations Research Institute, The Florida State
|
||
* University (http://stat.fsu.edu/~geo).
|
||
*
|
||
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
|
||
* passes all tests in the DIEHARD test suite
|
||
* (http://stat.fsu.edu/~geo/diehard.html)
|
||
*/
|
||
|
||
typedef struct scm_t_i_rstate {
|
||
scm_t_rstate rstate;
|
||
uint32_t w;
|
||
uint32_t c;
|
||
} scm_t_i_rstate;
|
||
|
||
|
||
#define A 2131995753UL
|
||
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265359
|
||
#endif
|
||
|
||
static uint32_t
|
||
scm_i_uniform32 (scm_t_rstate *state)
|
||
{
|
||
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
|
||
uint64_t x = (uint64_t) A * istate->w + istate->c;
|
||
uint32_t w = x & 0xffffffffUL;
|
||
istate->w = w;
|
||
istate->c = x >> 32L;
|
||
return w;
|
||
}
|
||
|
||
static void
|
||
scm_i_init_rstate (scm_t_rstate *state, const char *seed, int n)
|
||
{
|
||
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
|
||
uint32_t w = 0L;
|
||
uint32_t c = 0L;
|
||
int i, m;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
m = i % 8;
|
||
if (m < 4)
|
||
w += seed[i] << (8 * m);
|
||
else
|
||
c += seed[i] << (8 * (m - 4));
|
||
}
|
||
if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
|
||
++c;
|
||
istate->w = w;
|
||
istate->c = c;
|
||
}
|
||
|
||
static scm_t_rstate *
|
||
scm_i_copy_rstate (scm_t_rstate *state)
|
||
{
|
||
scm_t_rstate *new_state;
|
||
|
||
new_state = scm_gc_malloc_pointerless (state->rng->rstate_size,
|
||
"random-state");
|
||
return memcpy (new_state, state, state->rng->rstate_size);
|
||
}
|
||
|
||
SCM_SYMBOL(scm_i_rstate_tag, "multiply-with-carry");
|
||
|
||
static void
|
||
scm_i_rstate_from_datum (scm_t_rstate *state, SCM value)
|
||
#define FUNC_NAME "scm_i_rstate_from_datum"
|
||
{
|
||
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
|
||
uint32_t w, c;
|
||
long length;
|
||
|
||
SCM_VALIDATE_LIST_COPYLEN (SCM_ARG1, value, length);
|
||
SCM_ASSERT (length == 3, value, SCM_ARG1, FUNC_NAME);
|
||
SCM_ASSERT (scm_is_eq (SCM_CAR (value), scm_i_rstate_tag),
|
||
value, SCM_ARG1, FUNC_NAME);
|
||
SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADR (value), w);
|
||
SCM_VALIDATE_UINT_COPY (SCM_ARG1, SCM_CADDR (value), c);
|
||
|
||
istate->w = w;
|
||
istate->c = c;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM
|
||
scm_i_rstate_to_datum (scm_t_rstate *state)
|
||
{
|
||
scm_t_i_rstate *istate = (scm_t_i_rstate*) state;
|
||
return scm_list_3 (scm_i_rstate_tag,
|
||
scm_from_uint32 (istate->w),
|
||
scm_from_uint32 (istate->c));
|
||
}
|
||
|
||
|
||
/*
|
||
* Random number library functions
|
||
*/
|
||
|
||
scm_t_rstate *
|
||
scm_c_make_rstate (const char *seed, int n)
|
||
{
|
||
scm_t_rstate *state;
|
||
|
||
state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
|
||
"random-state");
|
||
state->rng = &scm_the_rng;
|
||
state->normal_next = 0.0;
|
||
state->rng->init_rstate (state, seed, n);
|
||
return state;
|
||
}
|
||
|
||
scm_t_rstate *
|
||
scm_c_rstate_from_datum (SCM datum)
|
||
{
|
||
scm_t_rstate *state;
|
||
|
||
state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
|
||
"random-state");
|
||
state->rng = &scm_the_rng;
|
||
state->normal_next = 0.0;
|
||
state->rng->from_datum (state, datum);
|
||
return state;
|
||
}
|
||
|
||
scm_t_rstate *
|
||
scm_c_default_rstate ()
|
||
#define FUNC_NAME "scm_c_default_rstate"
|
||
{
|
||
SCM state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
if (!SCM_RSTATEP (state))
|
||
SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
|
||
return SCM_RSTATE (state);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
double
|
||
scm_c_uniform01 (scm_t_rstate *state)
|
||
{
|
||
double x = (double) state->rng->random_bits (state) / (double) 0xffffffffUL;
|
||
return ((x + (double) state->rng->random_bits (state))
|
||
/ (double) 0xffffffffUL);
|
||
}
|
||
|
||
double
|
||
scm_c_normal01 (scm_t_rstate *state)
|
||
{
|
||
if (state->normal_next != 0.0)
|
||
{
|
||
double ret = state->normal_next;
|
||
|
||
state->normal_next = 0.0;
|
||
|
||
return ret;
|
||
}
|
||
else
|
||
{
|
||
double r, a, n;
|
||
|
||
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
|
||
a = 2.0 * M_PI * scm_c_uniform01 (state);
|
||
|
||
n = r * sin (a);
|
||
state->normal_next = r * cos (a);
|
||
|
||
return n;
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_exp1 (scm_t_rstate *state)
|
||
{
|
||
return - log (scm_c_uniform01 (state));
|
||
}
|
||
|
||
unsigned char scm_masktab[256];
|
||
|
||
static inline uint32_t
|
||
scm_i_mask32 (uint32_t m)
|
||
{
|
||
return (m < 0x100
|
||
? scm_masktab[m]
|
||
: (m < 0x10000
|
||
? scm_masktab[m >> 8] << 8 | 0xff
|
||
: (m < 0x1000000
|
||
? scm_masktab[m >> 16] << 16 | 0xffff
|
||
: ((uint32_t) scm_masktab[m >> 24]) << 24 | 0xffffff)));
|
||
}
|
||
|
||
uint32_t
|
||
scm_c_random (scm_t_rstate *state, uint32_t m)
|
||
{
|
||
uint32_t r, mask = scm_i_mask32 (m);
|
||
while ((r = state->rng->random_bits (state) & mask) >= m);
|
||
return r;
|
||
}
|
||
|
||
uint64_t
|
||
scm_c_random64 (scm_t_rstate *state, uint64_t m)
|
||
{
|
||
uint64_t r;
|
||
uint32_t mask;
|
||
|
||
if (m <= UINT32_MAX)
|
||
return scm_c_random (state, (uint32_t) m);
|
||
|
||
mask = scm_i_mask32 (m >> 32);
|
||
while ((r = ((uint64_t) (state->rng->random_bits (state) & mask) << 32)
|
||
| state->rng->random_bits (state)) >= m)
|
||
;
|
||
return r;
|
||
}
|
||
|
||
/*
|
||
SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
|
||
|
||
Takes a random state (source of random bits) and a bignum m.
|
||
Returns a bignum b, 0 <= b < m.
|
||
|
||
It does this by allocating a bignum b with as many base 65536 digits
|
||
as m, filling b with random bits (in 32 bit chunks) up to the most
|
||
significant 1 in m, and, finally checking if the resultant b is too
|
||
large (>= m). If too large, we simply repeat the process again. (It
|
||
is important to throw away all generated random bits if b >= m,
|
||
otherwise we'll end up with a distorted distribution.)
|
||
|
||
*/
|
||
|
||
SCM
|
||
scm_c_random_bignum (scm_t_rstate *state, SCM m)
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
|
||
/* how many bits would only partially fill the last uint32_t? */
|
||
const size_t end_bits = m_bits % (sizeof (uint32_t) * SCM_CHAR_BIT);
|
||
uint32_t *random_chunks = NULL;
|
||
const uint32_t num_full_chunks =
|
||
m_bits / (sizeof (uint32_t) * SCM_CHAR_BIT);
|
||
const uint32_t num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
|
||
|
||
/* we know the result will be this big */
|
||
mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
|
||
|
||
random_chunks =
|
||
(uint32_t *) scm_gc_calloc (num_chunks * sizeof (uint32_t),
|
||
"random bignum chunks");
|
||
|
||
do
|
||
{
|
||
uint32_t *current_chunk = random_chunks + (num_chunks - 1);
|
||
uint32_t chunks_left = num_chunks;
|
||
|
||
mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
|
||
|
||
if (end_bits)
|
||
{
|
||
/* generate a mask with ones in the end_bits position, i.e. if
|
||
end_bits is 3, then we'd have a mask of ...0000000111 */
|
||
const uint32_t rndbits = state->rng->random_bits (state);
|
||
int rshift = (sizeof (uint32_t) * SCM_CHAR_BIT) - end_bits;
|
||
uint32_t mask = ((uint32_t)-1) >> rshift;
|
||
uint32_t highest_bits = rndbits & mask;
|
||
*current_chunk-- = highest_bits;
|
||
chunks_left--;
|
||
}
|
||
|
||
while (chunks_left)
|
||
{
|
||
/* now fill in the remaining uint32_t sized chunks */
|
||
*current_chunk-- = state->rng->random_bits (state);
|
||
chunks_left--;
|
||
}
|
||
mpz_import (SCM_I_BIG_MPZ (result),
|
||
num_chunks,
|
||
-1,
|
||
sizeof (uint32_t),
|
||
0,
|
||
0,
|
||
random_chunks);
|
||
/* if result >= m, regenerate it (it is important to regenerate
|
||
all bits in order not to get a distorted distribution) */
|
||
} while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
|
||
scm_gc_free (random_chunks,
|
||
num_chunks * sizeof (uint32_t),
|
||
"random bignum chunks");
|
||
return scm_i_normbig (result);
|
||
}
|
||
|
||
/*
|
||
* Scheme level representation of random states.
|
||
*/
|
||
|
||
scm_t_bits scm_tc16_rstate;
|
||
|
||
static SCM
|
||
make_rstate (scm_t_rstate *state)
|
||
{
|
||
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
|
||
}
|
||
|
||
|
||
/*
|
||
* Scheme level interface.
|
||
*/
|
||
|
||
SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*",
|
||
scm_seed_to_random_state
|
||
(scm_from_utf8_string
|
||
("URL:http://stat.fsu.edu/~geo/diehard.html")));
|
||
|
||
SCM_DEFINE (scm_random, "random", 1, 1, 0,
|
||
(SCM n, SCM state),
|
||
"Return a number in [0, N).\n"
|
||
"\n"
|
||
"Accepts a positive integer or real n and returns a\n"
|
||
"number of the same type between zero (inclusive) and\n"
|
||
"N (exclusive). The values returned have a uniform\n"
|
||
"distribution.\n"
|
||
"\n"
|
||
"The optional argument @var{state} must be of the type produced\n"
|
||
"by @code{seed->random-state}. It defaults to the value of the\n"
|
||
"variable @var{*random-state*}. This object is used to maintain\n"
|
||
"the state of the pseudo-random-number generator and is altered\n"
|
||
"as a side effect of the random operation.")
|
||
#define FUNC_NAME s_scm_random
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
scm_t_bits m = (scm_t_bits) SCM_I_INUM (n);
|
||
SCM_ASSERT_RANGE (1, n, SCM_I_INUM (n) > 0);
|
||
#if SCM_SIZEOF_UINTPTR_T <= 4
|
||
return scm_from_uint32 (scm_c_random (SCM_RSTATE (state),
|
||
(uint32_t) m));
|
||
#elif SCM_SIZEOF_UINTPTR_T <= 8
|
||
return scm_from_uint64 (scm_c_random64 (SCM_RSTATE (state),
|
||
(uint64_t) m));
|
||
#else
|
||
#error "Cannot deal with this platform's scm_t_bits size"
|
||
#endif
|
||
}
|
||
if (SCM_REALP (n))
|
||
return scm_from_double (SCM_REAL_VALUE (n)
|
||
* scm_c_uniform01 (SCM_RSTATE (state)));
|
||
|
||
if (!SCM_BIGP (n))
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
return scm_c_random_bignum (SCM_RSTATE (state), n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a copy of the random state @var{state}.")
|
||
#define FUNC_NAME s_scm_copy_random_state
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return make_rstate (SCM_RSTATE (state)->rng->copy_rstate (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
|
||
(SCM seed),
|
||
"Return a new random state using @var{seed}.")
|
||
#define FUNC_NAME s_scm_seed_to_random_state
|
||
{
|
||
SCM res;
|
||
char *c_str;
|
||
size_t len;
|
||
|
||
if (SCM_NUMBERP (seed))
|
||
seed = scm_number_to_string (seed, SCM_UNDEFINED);
|
||
SCM_VALIDATE_STRING (1, seed);
|
||
|
||
if (scm_i_is_narrow_string (seed))
|
||
/* This special case of a narrow string, where latin1 is used, is
|
||
for backward compatibility during the 2.2 stable series. In
|
||
future major releases, we should use UTF-8 uniformly. */
|
||
c_str = scm_to_latin1_stringn (seed, &len);
|
||
else
|
||
c_str = scm_to_utf8_stringn (seed, &len);
|
||
|
||
/* 'scm_to_*_stringn' returns a 'size_t' for the length in bytes, but
|
||
'scm_c_make_rstate' accepts an 'int'. Make sure the length fits in
|
||
an 'int'. */
|
||
if (len > INT_MAX)
|
||
{
|
||
free (c_str);
|
||
SCM_OUT_OF_RANGE (1, seed);
|
||
}
|
||
|
||
res = make_rstate (scm_c_make_rstate (c_str, len));
|
||
free (c_str);
|
||
|
||
scm_remember_upto_here_1 (seed);
|
||
return res;
|
||
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_datum_to_random_state, "datum->random-state", 1, 0, 0,
|
||
(SCM datum),
|
||
"Return a new random state using @var{datum}, which should have\n"
|
||
"been obtained from @code{random-state->datum}.")
|
||
#define FUNC_NAME s_scm_datum_to_random_state
|
||
{
|
||
return make_rstate (scm_c_rstate_from_datum (datum));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_state_to_datum, "random-state->datum", 1, 0, 0,
|
||
(SCM state),
|
||
"Return a datum representation of @var{state} that may be\n"
|
||
"written out and read back with the Scheme reader.")
|
||
#define FUNC_NAME s_scm_random_state_to_datum
|
||
{
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return SCM_RSTATE (state)->rng->to_datum (SCM_RSTATE (state));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a uniformly distributed inexact real random number in\n"
|
||
"[0,1).")
|
||
#define FUNC_NAME s_scm_random_uniform
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in a normal distribution. The\n"
|
||
"distribution used has mean 0 and standard deviation 1. For a\n"
|
||
"normal distribution with mean m and standard deviation d use\n"
|
||
"@code{(+ m (* d (random:normal)))}.")
|
||
#define FUNC_NAME s_scm_random_normal
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static void
|
||
vector_scale_x (SCM v, double c)
|
||
{
|
||
scm_t_array_handle handle;
|
||
scm_t_array_dim const * dims;
|
||
ssize_t i, inc, ubnd;
|
||
|
||
scm_array_get_handle (v, &handle);
|
||
dims = scm_array_handle_dims (&handle);
|
||
if (1 == scm_array_handle_rank (&handle))
|
||
{
|
||
ubnd = dims[0].ubnd;
|
||
inc = dims[0].inc;
|
||
|
||
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64)
|
||
{
|
||
double *elts = (double *)(handle.writable_elements) + handle.base;
|
||
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
|
||
*elts *= c;
|
||
return;
|
||
}
|
||
else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
|
||
{
|
||
SCM *elts = (SCM *)(handle.writable_elements) + handle.base;
|
||
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
|
||
SCM_REAL_VALUE (*elts) *= c;
|
||
return;
|
||
}
|
||
}
|
||
scm_array_handle_release (&handle);
|
||
scm_misc_error (NULL, "must be a rank-1 array of type #t or 'f64", scm_list_1 (v));
|
||
}
|
||
|
||
static double
|
||
vector_sum_squares (SCM v)
|
||
{
|
||
double x, sum = 0.0;
|
||
scm_t_array_handle handle;
|
||
scm_t_array_dim const * dims;
|
||
ssize_t i, inc, ubnd;
|
||
|
||
scm_array_get_handle (v, &handle);
|
||
dims = scm_array_handle_dims (&handle);
|
||
if (1 == scm_array_handle_rank (&handle))
|
||
{
|
||
ubnd = dims[0].ubnd;
|
||
inc = dims[0].inc;
|
||
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_F64)
|
||
{
|
||
const double *elts = (const double *)(handle.elements) + handle.base;
|
||
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
|
||
{
|
||
x = *elts;
|
||
sum += x * x;
|
||
}
|
||
return sum;
|
||
}
|
||
else if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
|
||
{
|
||
const SCM *elts = (const SCM *)(handle.elements) + handle.base;
|
||
for (i = dims[0].lbnd; i <= ubnd; ++i, elts += inc)
|
||
{
|
||
x = SCM_REAL_VALUE (*elts);
|
||
sum += x * x;
|
||
}
|
||
return sum;
|
||
}
|
||
}
|
||
scm_array_handle_release (&handle);
|
||
scm_misc_error (NULL, "must be an array of type #t or 'f64", scm_list_1 (v));
|
||
}
|
||
|
||
/* For the uniform distribution on the solid sphere, note that in
|
||
* this distribution the length r of the vector has cumulative
|
||
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
|
||
* generated as r=u^(1/n).
|
||
*/
|
||
SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills @var{vect} with inexact real random numbers the sum of\n"
|
||
"whose squares is less than 1.0. Thinking of @var{vect} as\n"
|
||
"coordinates in space of dimension @var{n} @math{=}\n"
|
||
"@code{(vector-length @var{vect})}, the coordinates are\n"
|
||
"uniformly distributed within the unit @var{n}-sphere.")
|
||
#define FUNC_NAME s_scm_random_solid_sphere_x
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale_x (v,
|
||
pow (scm_c_uniform01 (SCM_RSTATE (state)),
|
||
1.0 / scm_c_array_length (v))
|
||
/ sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers\n"
|
||
"the sum of whose squares is equal to 1.0.\n"
|
||
"Thinking of vect as coordinates in space of\n"
|
||
"dimension n = (vector-length vect), the coordinates\n"
|
||
"are uniformly distributed over the surface of the\n"
|
||
"unit n-sphere.")
|
||
#define FUNC_NAME s_scm_random_hollow_sphere_x
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers that are\n"
|
||
"independent and standard normally distributed\n"
|
||
"(i.e., with mean 0 and variance 1).")
|
||
#define FUNC_NAME s_scm_random_normal_vector_x
|
||
{
|
||
scm_t_array_handle handle;
|
||
scm_t_array_dim const * dims;
|
||
ssize_t i;
|
||
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2, state);
|
||
|
||
scm_array_get_handle (v, &handle);
|
||
if (1 != scm_array_handle_rank (&handle))
|
||
{
|
||
scm_array_handle_release (&handle);
|
||
scm_wrong_type_arg_msg (NULL, 0, v, "rank 1 array");
|
||
}
|
||
|
||
dims = scm_array_handle_dims (&handle);
|
||
|
||
if (handle.element_type == SCM_ARRAY_ELEMENT_TYPE_SCM)
|
||
{
|
||
SCM *elts = scm_array_handle_writable_elements (&handle);
|
||
for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc)
|
||
*elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
|
||
}
|
||
else
|
||
{
|
||
/* must be a f64vector. */
|
||
double *elts = scm_array_handle_f64_writable_elements (&handle);
|
||
for (i = dims->lbnd; i <= dims->ubnd; i++, elts += dims->inc)
|
||
*elts = scm_c_normal01 (SCM_RSTATE (state));
|
||
}
|
||
|
||
scm_array_handle_release (&handle);
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in an exponential distribution with mean\n"
|
||
"1. For an exponential distribution with mean u use (* u\n"
|
||
"(random:exp)).")
|
||
#define FUNC_NAME s_scm_random_exp
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1, state);
|
||
return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Return a new random-state seeded from the time, date, process ID, an
|
||
address from a freshly allocated heap cell, an address from the local
|
||
stack frame, and a high-resolution timer if available. This is only
|
||
to be used as a last resort, when no better source of entropy is
|
||
available. */
|
||
static SCM
|
||
random_state_of_last_resort (void)
|
||
{
|
||
SCM state;
|
||
SCM time_of_day = scm_gettimeofday ();
|
||
SCM sources = scm_list_n
|
||
(scm_from_unsigned_integer (SCM_UNPACK (time_of_day)), /* heap addr */
|
||
/* Avoid scm_getpid, since it depends on HAVE_POSIX. */
|
||
scm_from_unsigned_integer (getpid ()), /* process ID */
|
||
scm_get_internal_real_time (), /* high-resolution process timer */
|
||
scm_from_unsigned_integer ((scm_t_bits) &time_of_day), /* stack addr */
|
||
scm_car (time_of_day), /* seconds since midnight 1970-01-01 UTC */
|
||
scm_cdr (time_of_day), /* microsecond component of the above clock */
|
||
SCM_UNDEFINED);
|
||
|
||
/* Concatenate the sources bitwise to form the seed */
|
||
SCM seed = SCM_INUM0;
|
||
while (scm_is_pair (sources))
|
||
{
|
||
seed = scm_logxor (seed, scm_ash (scm_car (sources),
|
||
scm_integer_length (seed)));
|
||
sources = scm_cdr (sources);
|
||
}
|
||
|
||
/* FIXME The following code belongs in `scm_seed_to_random_state',
|
||
and here we should simply do:
|
||
|
||
return scm_seed_to_random_state (seed);
|
||
|
||
Unfortunately, `scm_seed_to_random_state' only preserves around 32
|
||
bits of entropy from the provided seed. I don't know if it's okay
|
||
to fix that in 2.0, so for now we have this workaround. */
|
||
{
|
||
int i, len;
|
||
unsigned char *buf;
|
||
len = scm_to_int (scm_ceiling_quotient (scm_integer_length (seed),
|
||
SCM_I_MAKINUM (8)));
|
||
buf = (unsigned char *) malloc (len);
|
||
for (i = len-1; i >= 0; --i)
|
||
{
|
||
buf[i] = scm_to_int (scm_logand (seed, SCM_I_MAKINUM (255)));
|
||
seed = scm_ash (seed, SCM_I_MAKINUM (-8));
|
||
}
|
||
state = make_rstate (scm_c_make_rstate ((char *) buf, len));
|
||
free (buf);
|
||
}
|
||
return state;
|
||
}
|
||
|
||
/* Attempt to fill buffer with random bytes from /dev/urandom.
|
||
Return 1 if successful, else return 0. */
|
||
static int
|
||
read_dev_urandom (unsigned char *buf, size_t len)
|
||
{
|
||
size_t res = 0;
|
||
FILE *f = fopen ("/dev/urandom", "r");
|
||
if (f)
|
||
{
|
||
res = fread(buf, 1, len, f);
|
||
fclose (f);
|
||
}
|
||
return (res == len);
|
||
}
|
||
|
||
/* Fill a buffer with random bytes seeded from a platform-specific
|
||
source of entropy. /dev/urandom is used if available. Note that
|
||
this function provides no guarantees about the amount of entropy
|
||
present in the returned bytes. */
|
||
void
|
||
scm_i_random_bytes_from_platform (unsigned char *buf, size_t len)
|
||
{
|
||
if (read_dev_urandom (buf, len))
|
||
return;
|
||
else /* FIXME: support other platform sources */
|
||
{
|
||
/* When all else fails, use this (rather weak) fallback */
|
||
SCM random_state = random_state_of_last_resort ();
|
||
int i;
|
||
for (i = len-1; i >= 0; --i)
|
||
buf[i] = scm_to_int (scm_random (SCM_I_MAKINUM (256), random_state));
|
||
}
|
||
}
|
||
|
||
SCM_DEFINE (scm_random_state_from_platform, "random-state-from-platform", 0, 0, 0,
|
||
(void),
|
||
"Construct a new random state seeded from a platform-specific\n\
|
||
source of entropy, appropriate for use in non-security-critical applications.")
|
||
#define FUNC_NAME s_scm_random_state_from_platform
|
||
{
|
||
unsigned char buf[32];
|
||
if (read_dev_urandom (buf, sizeof(buf)))
|
||
return make_rstate (scm_c_make_rstate ((char *) buf, sizeof(buf)));
|
||
else
|
||
return random_state_of_last_resort ();
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_init_random ()
|
||
{
|
||
int i, m;
|
||
/* plug in default RNG */
|
||
scm_t_rng rng =
|
||
{
|
||
sizeof (scm_t_i_rstate),
|
||
scm_i_uniform32,
|
||
scm_i_init_rstate,
|
||
scm_i_copy_rstate,
|
||
scm_i_rstate_from_datum,
|
||
scm_i_rstate_to_datum
|
||
};
|
||
scm_the_rng = rng;
|
||
|
||
scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
|
||
|
||
for (m = 1; m <= 0x100; m <<= 1)
|
||
for (i = m >> 1; i < m; ++i)
|
||
scm_masktab[i] = m - 1;
|
||
|
||
#include "random.x"
|
||
|
||
scm_add_feature ("random");
|
||
}
|