1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-11 00:00:49 +02:00
guile/module/slib/cring.scm
2001-04-14 11:24:45 +00:00

470 lines
16 KiB
Scheme

;;;"cring.scm" Extend Scheme numerics to any commutative ring.
;Copyright (C) 1997, 1998 Aubrey Jaffer
;
;Permission to copy this software, to redistribute it, and to use it
;for any purpose is granted, subject to the following restrictions and
;understandings.
;
;1. Any copy made of this software must include this copyright notice
;in full.
;
;2. I have made no warrantee or representation that the operation of
;this software will be error-free, and I am under no obligation to
;provide any services, by way of maintenance, update, or otherwise.
;
;3. In conjunction with products arising from the use of this
;material, there shall be no use of my name in any advertising,
;promotional, or sales literature without prior written consent in
;each case.
(require 'common-list-functions)
(require 'relational-database)
(require 'database-utilities)
(require 'sort)
(define cring:db (create-database #f 'alist-table))
(define (make-ruleset . rules)
(define name #f)
(cond ((and (not (null? rules)) (symbol? (car rules)))
(set! name (car rules))
(set! rules (cdr rules)))
(else (set! name (gentemp))))
(define-tables cring:db
(list name
'((op symbol)
(sub-op1 symbol)
(sub-op2 symbol))
'((reduction expression))
rules))
(let ((table ((cring:db 'open-table) name #t)))
(and table
(list (table 'get 'reduction)
(table 'row:update)
table))))
(define *ruleset* (make-ruleset 'default))
(define (cring:define-rule . args)
(if *ruleset*
((cadr *ruleset*) args)
(slib:warn "No ruleset in *ruleset*")))
(define (combined-rulesets . rulesets)
(define name #f)
(cond ((symbol? (car rulesets))
(set! name (car rulesets))
(set! rulesets (cdr rulesets)))
(else (set! name (gentemp))))
(apply make-ruleset name
(apply append
(map (lambda (ruleset) (((caddr ruleset) 'row:retrieve*)))
rulesets))))
;;; Distribute * over + (and -)
(define distribute*
(make-ruleset
'distribute*
`(* + identity
,(lambda (exp1 exp2)
;;(print 'distributing '* '+ exp1 exp2 '==>)
(apply + (map (lambda (trm) (* trm exp2)) (cdr exp1)))))
`(* - identity
,(lambda (exp1 exp2)
;;(print 'distributing '* '- exp1 exp2 '==>)
(apply - (map (lambda (trm) (* trm exp2)) (cdr exp1)))))))
;;; Distribute / over + (and -)
(define distribute/
(make-ruleset
'distribute/
`(/ + identity
,(lambda (exp1 exp2)
;;(print 'distributing '/ '+ exp1 exp2 '==>)
(apply + (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))
`(/ - identity
,(lambda (exp1 exp2)
;;(print 'distributing '/ '- exp1 exp2 '==>)
(apply - (map (lambda (trm) (/ trm exp2)) (cdr exp1)))))))
(define (symbol-alpha? sym)
(char-alphabetic? (string-ref (symbol->string sym) 0)))
(define (expression-< x y)
(cond ((and (number? x) (number? y)) (> x y)) ;want negatives last
((number? x) #t)
((number? y) #f)
((and (symbol? x) (symbol? y))
(cond ((eqv? (symbol-alpha? x) (symbol-alpha? y))
(string<? (symbol->string x) (symbol->string y)))
(else (symbol-alpha? x))))
((symbol? x) #t)
((symbol? y) #f)
((null? x) #t)
((null? y) #f)
((expression-< (car x) (car y)) #t)
((expression-< (car y) (car x)) #f)
(else (expression-< (cdr x) (cdr y)))))
(define (expression-sort seq) (sort! seq expression-<))
(define number* *)
(define number+ +)
(define number- -)
(define number/ /)
(define number^ integer-expt)
(define is-term-op? (lambda (term op) (and (pair? term) (eq? op (car term)))))
;;(define (sign x) (if (positive? x) 1 (if (negative? x) -1 0)))
(define number0? zero?)
(define (zero? x) (and (number? x) (number0? x)))
;; To convert to CR internal form, NUMBER-op all the `numbers' in the
;; argument list and remove them from the argument list. Collect the
;; remaining arguments into equivalence classes, keeping track of the
;; number of arguments in each class. The returned list is thus:
;; (<numeric> (<expression1> . <exp1>) ...)
;;; Converts * argument list to CR internal form
(define (cr*-args->fcts args)
;;(print (cons 'cr*-args->fcts args) '==>)
(let loop ((args args) (pow 1) (nums 1) (arg.exps '()))
;;(print (list 'loop args pow nums denoms arg.exps) '==>)
(cond ((null? args) (cons nums arg.exps))
((number? (car args))
(let ((num^pow (number^ (car args) (abs pow))))
(if (negative? pow)
(loop (cdr args) pow (number/ (number* num^pow nums))
arg.exps)
(loop (cdr args) pow (number* num^pow nums) arg.exps))))
;; Associative Rule
((is-term-op? (car args) '*) (loop (append (cdar args) (cdr args))
pow nums arg.exps))
;; Do singlet -
((and (is-term-op? (car args) '-) (= 2 (length (car args))))
;;(print 'got-here (car args))
(set! arg.exps (loop (cdar args) pow (number- nums) arg.exps))
(loop (cdr args) pow
(car arg.exps)
(cdr arg.exps)))
((and (is-term-op? (car args) '/) (= 2 (length (car args))))
;; Do singlet /
;;(print 'got-here=cr+ (car args))
(set! arg.exps (loop (cdar args) (number- pow) nums arg.exps))
(loop (cdr args) pow
(car arg.exps)
(cdr arg.exps)))
((is-term-op? (car args) '/)
;; Do multi-arg /
;;(print 'doing '/ (cddar args) (number- pow))
(set! arg.exps
(loop (cddar args) (number- pow) nums arg.exps))
;;(print 'finishing '/ (cons (cadar args) (cdr args)) pow)
(loop (cons (cadar args) (cdr args))
pow
(car arg.exps)
(cdr arg.exps)))
;; Pull out numeric exponents as powers
((and (is-term-op? (car args) '^)
(= 3 (length (car args)))
(number? (caddar args)))
(set! arg.exps (loop (list (cadar args))
(number* pow (caddar args))
nums
arg.exps))
(loop (cdr args) pow (car arg.exps) (cdr arg.exps)))
;; combine with same terms
((assoc (car args) arg.exps)
=> (lambda (pair) (set-cdr! pair (number+ pow (cdr pair)))
(loop (cdr args) pow nums arg.exps)))
;; Add new term to arg.exps
(else (loop (cdr args) pow nums
(cons (cons (car args) pow) arg.exps))))))
;;; Converts + argument list to CR internal form
(define (cr+-args->trms args)
(let loop ((args args) (cof 1) (numbers 0) (arg.exps '()))
(cond ((null? args) (cons numbers arg.exps))
((number? (car args))
(loop (cdr args)
cof
(number+ (number* (car args) cof) numbers)
arg.exps))
;; Associative Rule
((is-term-op? (car args) '+) (loop (append (cdar args) (cdr args))
cof
numbers
arg.exps))
;; Idempotent singlet *
((and (is-term-op? (car args) '*) (= 2 (length (car args))))
(loop (cons (cadar args) (cdr args))
cof
numbers
arg.exps))
((and (is-term-op? (car args) '-) (= 2 (length (car args))))
;; Do singlet -
(set! arg.exps (loop (cdar args) (number- cof) numbers arg.exps))
(loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
;; Pull out numeric factors as coefficients
((and (is-term-op? (car args) '*) (some number? (cdar args)))
;;(print 'got-here (car args) '=> (cons '* (remove-if number? (cdar args))))
(set! arg.exps
(loop (list (cons '* (remove-if number? (cdar args))))
(apply number* cof (remove-if-not number? (cdar args)))
numbers
arg.exps))
(loop (cdr args) cof (car arg.exps) (cdr arg.exps)))
((is-term-op? (car args) '-)
;; Do multi-arg -
(set! arg.exps (loop (cddar args) (number- cof) numbers arg.exps))
(loop (cons (cadar args) (cdr args))
cof
(car arg.exps)
(cdr arg.exps)))
;; combine with same terms
((assoc (car args) arg.exps)
=> (lambda (pair) (set-cdr! pair (number+ cof (cdr pair)))
(loop (cdr args) cof numbers arg.exps)))
;; Add new term to arg.exps
(else (loop (cdr args) cof numbers
(cons (cons (car args) cof) arg.exps))))))
;;; Converts + or * internal form to Scheme expression
(define (cr-terms->form op ident inv-op higher-op res.cofs)
(define (negative-cof? fct.cof)
(negative? (cdr fct.cof)))
(define (finish exprs)
(if (null? exprs) ident
(if (null? (cdr exprs))
(car exprs)
(cons op exprs))))
(define (do-terms sign fct.cofs)
(expression-sort
(map (lambda (fct.cof)
(define cof (number* sign (cdr fct.cof)))
(cond ((eqv? 1 cof) (car fct.cof))
((number? (car fct.cof)) (number* cof (car fct.cof)))
((is-term-op? (car fct.cof) higher-op)
(if (eq? higher-op '^)
(list '^ (cadar fct.cof) (* cof (caddar fct.cof)))
(cons higher-op (cons cof (cdar fct.cof)))))
((eqv? -1 cof) (list inv-op (car fct.cof)))
(else (list higher-op (car fct.cof) cof))))
fct.cofs)))
(let* ((all.cofs (remove-if (lambda (fct.cof)
(or (zero? (cdr fct.cof))
(eqv? ident (car fct.cof))))
res.cofs))
(cofs (map cdr all.cofs))
(some-positive? (some positive? cofs)))
;;(print op 'positive? some-positive? 'negative? (some negative? cofs) all.cofs)
(cond ((and some-positive? (some negative? cofs))
(append (list inv-op
(finish (do-terms
1 (remove-if negative-cof? all.cofs))))
(do-terms -1 (remove-if-not negative-cof? all.cofs))))
(some-positive? (finish (do-terms 1 all.cofs)))
((not (some negative? cofs)) ident)
(else (list inv-op (finish (do-terms -1 all.cofs)))))))
(define (* . args)
(cond
((null? args) 1)
;;This next line is commented out so ^ will collapse numerical expressions.
;;((null? (cdr args)) (car args))
(else
(let ((in (cr*-args->fcts args)))
(cond
((zero? (car in)) 0)
(else
(if (null? (cdr in))
(set-cdr! in (list (cons 1 1))))
(let* ((num #f)
(ans (cr-terms->form
'* 1 '/ '^
(apply
(lambda (numeric red.cofs res.cofs)
(set! num numeric)
(append
;;(list (cons (abs numeric) 1))
red.cofs
res.cofs))
(cr1 '* number* '^ '/ (car in) (cdr in))))))
(cond ((number0? (+ -1 num)) ans)
((number? ans) (number* num ans))
((number0? (+ 1 num))
(if (and (list? ans) (= 2 (length ans)) (eq? '- (car ans)))
(cadr ans)
(list '- ans)))
((not (pair? ans)) (list '* num ans))
(else
(case (car ans)
((*) (append (list '* num) (cdr ans)))
((+) (apply + (map (lambda (mon) (* num mon)) (cdr ans))))
((-) (apply - (map (lambda (mon) (* num mon)) (cdr ans))))
(else (list '* num ans))))))))))))
(define (+ . args)
(cond ((null? args) 0)
;;((null? (cdr args)) (car args))
(else
(let ((in (cr+-args->trms args)))
(if (null? (cdr in))
(car in)
(cr-terms->form
'+ 0 '- '*
(apply (lambda (numeric red.cofs res.cofs)
(append
(list (if (and (number? numeric)
(negative? numeric))
(cons (abs numeric) -1)
(cons numeric 1)))
red.cofs
res.cofs))
(cr1 '+ number+ '* '- (car in) (cdr in)))))))))
(define (- arg1 . args)
(if (null? args)
(if (number? arg1) (number- arg1)
(* -1 arg1) ;(list '- arg1)
)
(+ arg1 (* -1 (apply + args)))))
;;(print `(/ ,arg1 ,@args) '=> )
(define (/ arg1 . args)
(if (null? args)
(^ arg1 -1)
(* arg1 (^ (apply * args) -1))))
(define (^ arg1 arg2)
(cond ((and (number? arg2) (integer? arg2))
(* (list '^ arg1 arg2)))
(else (list '^ arg1 arg2))))
;; TRY-EACH-PAIR-ONCE algorithm. I think this does the minimum
;; number of rule lookups given no information about how to sort
;; terms.
;; Pick equivalence classes one at a time and move them into the
;; result set of equivalence classes by searching for rules to
;; multiply an element of the chosen class by itself (if multiple) and
;; the element of each class already in the result group. Each
;; (multiplicative) term resulting from rule application would be put
;; in the result class, if that class exists; or put in an argument
;; class if not.
(define (cr1 op number-op hop inv-op numeric in)
(define red.pows '())
(define res.pows '())
(define (cring:apply-rule->terms exp1 exp2) ;(display op)
(let ((ans (cring:apply-rule op exp1 exp2)))
(cond ((not ans) #f)
((number? ans) (list ans))
(else (list (cons ans 1))))))
(define (cring:apply-inv-rule->terms exp1 exp2) ;(display inv-op)
(let ((ans (cring:apply-rule inv-op exp1 exp2)))
(cond ((not ans) #f)
((number? ans) (list ans))
(else (list (cons ans 1))))))
(let loop.arg.pow.s ((arg (caar in)) (pow (cdar in)) (arg.pows (cdr in)))
(define (arg-loop arg.pows)
(cond ((not (null? arg.pows))
(loop.arg.pow.s (caar arg.pows) (cdar arg.pows) (cdr arg.pows)))
(else (list numeric red.pows res.pows)))) ; Actually return!
(define (merge-res tmp.pows multiplicity)
(cond ((null? tmp.pows))
((number? (car tmp.pows))
(do ((m (number+ -1 (abs multiplicity)) (number+ -1 m))
(n numeric (number-op n (abs (car tmp.pows)))))
((negative? m) (set! numeric n)))
(merge-res (cdr tmp.pows) multiplicity))
((or (assoc (car tmp.pows) res.pows)
(assoc (car tmp.pows) arg.pows))
=> (lambda (pair)
(set-cdr! pair (number+
pow (number-op multiplicity (cdar tmp.pows))))
(merge-res (cdr tmp.pows) multiplicity)))
((assoc (car tmp.pows) red.pows)
=> (lambda (pair)
(set! arg.pows
(cons (cons (caar tmp.pows)
(number+
(cdr pair)
(number* multiplicity (cdar tmp.pows))))
arg.pows))
(set-cdr! pair 0)
(merge-res (cdr tmp.pows) multiplicity)))
(else (set! arg.pows
(cons (cons (caar tmp.pows)
(number* multiplicity (cdar tmp.pows)))
arg.pows))
(merge-res (cdr tmp.pows) multiplicity))))
(define (try-fct.pow fct.pow)
;;(print 'try-fct.pow fct.pow op 'arg arg 'pow pow)
(cond ((or (zero? (cdr fct.pow)) (number? (car fct.pow))) #f)
((not (and (number? pow) (number? (cdr fct.pow))
(integer? pow) ;(integer? (cdr fct.pow))
))
#f)
;;((zero? pow) (slib:error "Don't try exp-0 terms") #f)
;;((or (number? arg) (number? (car fct.pow)))
;; (slib:error 'found-number arg fct.pow) #f)
((and (positive? pow) (positive? (cdr fct.pow))
(or (cring:apply-rule->terms arg (car fct.pow))
(cring:apply-rule->terms (car fct.pow) arg)))
=> (lambda (terms)
;;(print op op terms)
(let ((multiplicity (min pow (cdr fct.pow))))
(set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
(set! pow (number- pow multiplicity))
(merge-res terms multiplicity))))
((and (negative? pow) (negative? (cdr fct.pow))
(or (cring:apply-rule->terms arg (car fct.pow))
(cring:apply-rule->terms (car fct.pow) arg)))
=> (lambda (terms)
;;(print inv-op inv-op terms)
(let ((multiplicity (max pow (cdr fct.pow))))
(set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
(set! pow (number+ pow multiplicity))
(merge-res terms multiplicity))))
((and (positive? pow) (negative? (cdr fct.pow))
(cring:apply-inv-rule->terms arg (car fct.pow)))
=> (lambda (terms)
;;(print op inv-op terms)
(let ((multiplicity (min pow (number- (cdr fct.pow)))))
(set-cdr! fct.pow (number+ (cdr fct.pow) multiplicity))
(set! pow (number- pow multiplicity))
(merge-res terms multiplicity))))
((and (negative? pow) (positive? (cdr fct.pow))
(cring:apply-inv-rule->terms (car fct.pow) arg))
=> (lambda (terms)
;;(print inv-op op terms)
(let ((multiplicity (max (number- pow) (cdr fct.pow))))
(set-cdr! fct.pow (number- (cdr fct.pow) multiplicity))
(set! pow (number+ pow multiplicity))
(merge-res terms multiplicity))))
(else #f)))
;;(print op numeric 'arg arg 'pow pow 'arg.pows arg.pows 'red.pows red.pows 'res.pows res.pows)
;;(trace arg-loop cring:apply-rule->terms merge-res try-fct.pow) (set! *qp-width* 333)
(cond ((or (zero? pow) (eqv? 1 arg)) ;(number? arg) arg seems to always be 1
(arg-loop arg.pows))
((assoc arg res.pows) => (lambda (pair)
(set-cdr! pair (number+ pow (cdr pair)))
(arg-loop arg.pows)))
((and (> (abs pow) 1) (cring:apply-rule->terms arg arg))
=> (lambda (terms)
(merge-res terms (quotient pow 2))
(if (odd? pow)
(loop.arg.pow.s arg 1 arg.pows)
(arg-loop arg.pows))))
((or (some try-fct.pow res.pows) (some try-fct.pow arg.pows))
(loop.arg.pow.s arg pow arg.pows))
(else (set! res.pows (cons (cons arg pow) res.pows))
(arg-loop arg.pows)))))
(define (cring:try-rule op sop1 sop2 exp1 exp2)
(and *ruleset*
(let ((rule ((car *ruleset*) op sop1 sop2)))
(and rule (rule exp1 exp2)))))
(define (cring:apply-rule op exp1 exp2)
(and (pair? exp1)
(or (and (pair? exp2)
(cring:try-rule op (car exp1) (car exp2) exp1 exp2))
(cring:try-rule op (car exp1) 'identity exp1 exp2))))
;;(begin (trace cr-terms->form) (set! *qp-width* 333))