mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
scm_i_make_ratio(), so fractions are only read. scm_i_fraction_reduce() modifies a fraction when reading it. A race condition might lead to fractions being corrupted by reading them concurrently. * numbers.h: remove SCM_FRACTION_SET_NUMERATOR, SCM_FRACTION_SET_DENOMINATOR, SCM_FRACTION_REDUCED_BIT, SCM_FRACTION_REDUCED_SET, SCM_FRACTION_REDUCED_CLEAR, SCM_FRACTION_REDUCED.
6176 lines
159 KiB
C
6176 lines
159 KiB
C
/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005, 2006 Free Software Foundation, Inc.
|
||
*
|
||
* Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
|
||
* and Bellcore. See scm_divide.
|
||
*
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
||
*/
|
||
|
||
|
||
/* General assumptions:
|
||
* All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
|
||
* All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
|
||
* If an object satisfies integer?, it's either an inum, a bignum, or a real.
|
||
* If floor (r) == r, r is an int, and mpz_set_d will DTRT.
|
||
* All objects satisfying SCM_FRACTIONP are never an integer.
|
||
*/
|
||
|
||
/* TODO:
|
||
|
||
- see if special casing bignums and reals in integer-exponent when
|
||
possible (to use mpz_pow and mpf_pow_ui) is faster.
|
||
|
||
- look in to better short-circuiting of common cases in
|
||
integer-expt and elsewhere.
|
||
|
||
- see if direct mpz operations can help in ash and elsewhere.
|
||
|
||
*/
|
||
|
||
/* tell glibc (2.3) to give prototype for C99 trunc(), csqrt(), etc */
|
||
#define _GNU_SOURCE
|
||
|
||
#if HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <math.h>
|
||
#include <ctype.h>
|
||
#include <string.h>
|
||
|
||
#if HAVE_COMPLEX_H
|
||
#include <complex.h>
|
||
#endif
|
||
|
||
#include "libguile/_scm.h"
|
||
#include "libguile/feature.h"
|
||
#include "libguile/ports.h"
|
||
#include "libguile/root.h"
|
||
#include "libguile/smob.h"
|
||
#include "libguile/strings.h"
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/numbers.h"
|
||
#include "libguile/deprecation.h"
|
||
|
||
#include "libguile/eq.h"
|
||
|
||
#include "libguile/discouraged.h"
|
||
|
||
/* values per glibc, if not already defined */
|
||
#ifndef M_LOG10E
|
||
#define M_LOG10E 0.43429448190325182765
|
||
#endif
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265358979323846
|
||
#endif
|
||
|
||
|
||
|
||
/*
|
||
Wonder if this might be faster for some of our code? A switch on
|
||
the numtag would jump directly to the right case, and the
|
||
SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
|
||
|
||
#define SCM_I_NUMTAG_NOTNUM 0
|
||
#define SCM_I_NUMTAG_INUM 1
|
||
#define SCM_I_NUMTAG_BIG scm_tc16_big
|
||
#define SCM_I_NUMTAG_REAL scm_tc16_real
|
||
#define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
|
||
#define SCM_I_NUMTAG(x) \
|
||
(SCM_I_INUMP(x) ? SCM_I_NUMTAG_INUM \
|
||
: (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
|
||
: (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_number) ? SCM_TYP16(x) \
|
||
: SCM_I_NUMTAG_NOTNUM)))
|
||
*/
|
||
/* the macro above will not work as is with fractions */
|
||
|
||
|
||
#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
|
||
|
||
/* FLOBUFLEN is the maximum number of characters neccessary for the
|
||
* printed or scm_string representation of an inexact number.
|
||
*/
|
||
#define FLOBUFLEN (40+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
|
||
|
||
#if defined (SCO)
|
||
#if ! defined (HAVE_ISNAN)
|
||
#define HAVE_ISNAN
|
||
static int
|
||
isnan (double x)
|
||
{
|
||
return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
|
||
}
|
||
#endif
|
||
#if ! defined (HAVE_ISINF)
|
||
#define HAVE_ISINF
|
||
static int
|
||
isinf (double x)
|
||
{
|
||
return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
|
||
}
|
||
|
||
#endif
|
||
#endif
|
||
|
||
|
||
/* mpz_cmp_d in gmp 4.1.3 doesn't recognise infinities, so xmpz_cmp_d uses
|
||
an explicit check. In some future gmp (don't know what version number),
|
||
mpz_cmp_d is supposed to do this itself. */
|
||
#if 1
|
||
#define xmpz_cmp_d(z, d) \
|
||
(xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
|
||
#else
|
||
#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
|
||
#endif
|
||
|
||
/* For reference, sparc solaris 7 has infinities (IEEE) but doesn't have
|
||
isinf. It does have finite and isnan though, hence the use of those.
|
||
fpclass would be a possibility on that system too. */
|
||
static int
|
||
xisinf (double x)
|
||
{
|
||
#if defined (HAVE_ISINF)
|
||
return isinf (x);
|
||
#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
|
||
return (! (finite (x) || isnan (x)));
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
static int
|
||
xisnan (double x)
|
||
{
|
||
#if defined (HAVE_ISNAN)
|
||
return isnan (x);
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
|
||
/* For an SCM object Z which is a complex number (ie. satisfies
|
||
SCM_COMPLEXP), return its value as a C level "complex double". */
|
||
#define SCM_COMPLEX_VALUE(z) \
|
||
(SCM_COMPLEX_REAL (z) + _Complex_I * SCM_COMPLEX_IMAG (z))
|
||
|
||
/* Convert a C "complex double" to an SCM value. */
|
||
#if HAVE_COMPLEX_DOUBLE
|
||
static SCM
|
||
scm_from_complex_double (complex double z)
|
||
{
|
||
return scm_c_make_rectangular (creal (z), cimag (z));
|
||
}
|
||
#endif /* HAVE_COMPLEX_DOUBLE */
|
||
|
||
|
||
|
||
static mpz_t z_negative_one;
|
||
|
||
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_mkbig ()
|
||
{
|
||
/* Return a newly created bignum. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init (SCM_I_BIG_MPZ (z));
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_long2big (long x)
|
||
{
|
||
/* Return a newly created bignum initialized to X. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set_si (SCM_I_BIG_MPZ (z), x);
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_ulong2big (unsigned long x)
|
||
{
|
||
/* Return a newly created bignum initialized to X. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set_ui (SCM_I_BIG_MPZ (z), x);
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_clonebig (SCM src_big, int same_sign_p)
|
||
{
|
||
/* Copy src_big's value, negate it if same_sign_p is false, and return. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
|
||
if (!same_sign_p)
|
||
mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD int
|
||
scm_i_bigcmp (SCM x, SCM y)
|
||
{
|
||
/* Return neg if x < y, pos if x > y, and 0 if x == y */
|
||
/* presume we already know x and y are bignums */
|
||
int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return result;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_dbl2big (double d)
|
||
{
|
||
/* results are only defined if d is an integer */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
|
||
return z;
|
||
}
|
||
|
||
/* Convert a integer in double representation to a SCM number. */
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_dbl2num (double u)
|
||
{
|
||
/* SCM_MOST_POSITIVE_FIXNUM+1 and SCM_MOST_NEGATIVE_FIXNUM are both
|
||
powers of 2, so there's no rounding when making "double" values
|
||
from them. If plain SCM_MOST_POSITIVE_FIXNUM was used it could
|
||
get rounded on a 64-bit machine, hence the "+1".
|
||
|
||
The use of floor() to force to an integer value ensures we get a
|
||
"numerically closest" value without depending on how a
|
||
double->long cast or how mpz_set_d will round. For reference,
|
||
double->long probably follows the hardware rounding mode,
|
||
mpz_set_d truncates towards zero. */
|
||
|
||
/* XXX - what happens when SCM_MOST_POSITIVE_FIXNUM etc is not
|
||
representable as a double? */
|
||
|
||
if (u < (double) (SCM_MOST_POSITIVE_FIXNUM+1)
|
||
&& u >= (double) SCM_MOST_NEGATIVE_FIXNUM)
|
||
return SCM_I_MAKINUM ((long) u);
|
||
else
|
||
return scm_i_dbl2big (u);
|
||
}
|
||
|
||
/* scm_i_big2dbl() rounds to the closest representable double, in accordance
|
||
with R5RS exact->inexact.
|
||
|
||
The approach is to use mpz_get_d to pick out the high DBL_MANT_DIG bits
|
||
(ie. truncate towards zero), then adjust to get the closest double by
|
||
examining the next lower bit and adding 1 (to the absolute value) if
|
||
necessary.
|
||
|
||
Bignums exactly half way between representable doubles are rounded to the
|
||
next higher absolute value (ie. away from zero). This seems like an
|
||
adequate interpretation of R5RS "numerically closest", and it's easier
|
||
and faster than a full "nearest-even" style.
|
||
|
||
The bit test must be done on the absolute value of the mpz_t, which means
|
||
we need to use mpz_getlimbn. mpz_tstbit is not right, it treats
|
||
negatives as twos complement.
|
||
|
||
In current gmp 4.1.3, mpz_get_d rounding is unspecified. It ends up
|
||
following the hardware rounding mode, but applied to the absolute value
|
||
of the mpz_t operand. This is not what we want so we put the high
|
||
DBL_MANT_DIG bits into a temporary. In some future gmp, don't know when,
|
||
mpz_get_d is supposed to always truncate towards zero.
|
||
|
||
ENHANCE-ME: The temporary init+clear to force the rounding in gmp 4.1.3
|
||
is a slowdown. It'd be faster to pick out the relevant high bits with
|
||
mpz_getlimbn if we could be bothered coding that, and if the new
|
||
truncating gmp doesn't come out. */
|
||
|
||
double
|
||
scm_i_big2dbl (SCM b)
|
||
{
|
||
double result;
|
||
size_t bits;
|
||
|
||
bits = mpz_sizeinbase (SCM_I_BIG_MPZ (b), 2);
|
||
|
||
#if 1
|
||
{
|
||
/* Current GMP, eg. 4.1.3, force truncation towards zero */
|
||
mpz_t tmp;
|
||
if (bits > DBL_MANT_DIG)
|
||
{
|
||
size_t shift = bits - DBL_MANT_DIG;
|
||
mpz_init2 (tmp, DBL_MANT_DIG);
|
||
mpz_tdiv_q_2exp (tmp, SCM_I_BIG_MPZ (b), shift);
|
||
result = ldexp (mpz_get_d (tmp), shift);
|
||
mpz_clear (tmp);
|
||
}
|
||
else
|
||
{
|
||
result = mpz_get_d (SCM_I_BIG_MPZ (b));
|
||
}
|
||
}
|
||
#else
|
||
/* Future GMP */
|
||
result = mpz_get_d (SCM_I_BIG_MPZ (b));
|
||
#endif
|
||
|
||
if (bits > DBL_MANT_DIG)
|
||
{
|
||
unsigned long pos = bits - DBL_MANT_DIG - 1;
|
||
/* test bit number "pos" in absolute value */
|
||
if (mpz_getlimbn (SCM_I_BIG_MPZ (b), pos / GMP_NUMB_BITS)
|
||
& ((mp_limb_t) 1 << (pos % GMP_NUMB_BITS)))
|
||
{
|
||
result += ldexp ((double) mpz_sgn (SCM_I_BIG_MPZ (b)), pos + 1);
|
||
}
|
||
}
|
||
|
||
scm_remember_upto_here_1 (b);
|
||
return result;
|
||
}
|
||
|
||
SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_normbig (SCM b)
|
||
{
|
||
/* convert a big back to a fixnum if it'll fit */
|
||
/* presume b is a bignum */
|
||
if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
|
||
{
|
||
long val = mpz_get_si (SCM_I_BIG_MPZ (b));
|
||
if (SCM_FIXABLE (val))
|
||
b = SCM_I_MAKINUM (val);
|
||
}
|
||
return b;
|
||
}
|
||
|
||
static SCM_C_INLINE_KEYWORD SCM
|
||
scm_i_mpz2num (mpz_t b)
|
||
{
|
||
/* convert a mpz number to a SCM number. */
|
||
if (mpz_fits_slong_p (b))
|
||
{
|
||
long val = mpz_get_si (b);
|
||
if (SCM_FIXABLE (val))
|
||
return SCM_I_MAKINUM (val);
|
||
}
|
||
|
||
{
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set (SCM_I_BIG_MPZ (z), b);
|
||
return z;
|
||
}
|
||
}
|
||
|
||
/* this is needed when we want scm_divide to make a float, not a ratio, even if passed two ints */
|
||
static SCM scm_divide2real (SCM x, SCM y);
|
||
|
||
static SCM
|
||
scm_i_make_ratio (SCM numerator, SCM denominator)
|
||
#define FUNC_NAME "make-ratio"
|
||
{
|
||
/* First make sure the arguments are proper.
|
||
*/
|
||
if (SCM_I_INUMP (denominator))
|
||
{
|
||
if (scm_is_eq (denominator, SCM_INUM0))
|
||
scm_num_overflow ("make-ratio");
|
||
if (scm_is_eq (denominator, SCM_I_MAKINUM(1)))
|
||
return numerator;
|
||
}
|
||
else
|
||
{
|
||
if (!(SCM_BIGP(denominator)))
|
||
SCM_WRONG_TYPE_ARG (2, denominator);
|
||
}
|
||
if (!SCM_I_INUMP (numerator) && !SCM_BIGP (numerator))
|
||
SCM_WRONG_TYPE_ARG (1, numerator);
|
||
|
||
/* Then flip signs so that the denominator is positive.
|
||
*/
|
||
if (scm_is_true (scm_negative_p (denominator)))
|
||
{
|
||
numerator = scm_difference (numerator, SCM_UNDEFINED);
|
||
denominator = scm_difference (denominator, SCM_UNDEFINED);
|
||
}
|
||
|
||
/* Now consider for each of the four fixnum/bignum combinations
|
||
whether the rational number is really an integer.
|
||
*/
|
||
if (SCM_I_INUMP (numerator))
|
||
{
|
||
long x = SCM_I_INUM (numerator);
|
||
if (scm_is_eq (numerator, SCM_INUM0))
|
||
return SCM_INUM0;
|
||
if (SCM_I_INUMP (denominator))
|
||
{
|
||
long y;
|
||
y = SCM_I_INUM (denominator);
|
||
if (x == y)
|
||
return SCM_I_MAKINUM(1);
|
||
if ((x % y) == 0)
|
||
return SCM_I_MAKINUM (x / y);
|
||
}
|
||
else
|
||
{
|
||
/* When x == SCM_MOST_NEGATIVE_FIXNUM we could have the negative
|
||
of that value for the denominator, as a bignum. Apart from
|
||
that case, abs(bignum) > abs(inum) so inum/bignum is not an
|
||
integer. */
|
||
if (x == SCM_MOST_NEGATIVE_FIXNUM
|
||
&& mpz_cmp_ui (SCM_I_BIG_MPZ (denominator),
|
||
- SCM_MOST_NEGATIVE_FIXNUM) == 0)
|
||
return SCM_I_MAKINUM(-1);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (numerator))
|
||
{
|
||
if (SCM_I_INUMP (denominator))
|
||
{
|
||
long yy = SCM_I_INUM (denominator);
|
||
if (mpz_divisible_ui_p (SCM_I_BIG_MPZ (numerator), yy))
|
||
return scm_divide (numerator, denominator);
|
||
}
|
||
else
|
||
{
|
||
if (scm_is_eq (numerator, denominator))
|
||
return SCM_I_MAKINUM(1);
|
||
if (mpz_divisible_p (SCM_I_BIG_MPZ (numerator),
|
||
SCM_I_BIG_MPZ (denominator)))
|
||
return scm_divide(numerator, denominator);
|
||
}
|
||
}
|
||
|
||
/* No, it's a proper fraction.
|
||
*/
|
||
{
|
||
SCM divisor = scm_gcd (numerator, denominator);
|
||
if (!(scm_is_eq (divisor, SCM_I_MAKINUM(1))))
|
||
{
|
||
numerator = scm_divide (numerator, divisor);
|
||
denominator = scm_divide (denominator, divisor);
|
||
}
|
||
|
||
return scm_double_cell (scm_tc16_fraction,
|
||
SCM_UNPACK (numerator),
|
||
SCM_UNPACK (denominator), 0);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
double
|
||
scm_i_fraction2double (SCM z)
|
||
{
|
||
return scm_to_double (scm_divide2real (SCM_FRACTION_NUMERATOR (z),
|
||
SCM_FRACTION_DENOMINATOR (z)));
|
||
}
|
||
|
||
SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_exact_p
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_BIGP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_FRACTIONP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_NUMBERP (x))
|
||
return SCM_BOOL_F;
|
||
SCM_WRONG_TYPE_ARG (1, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_odd_p
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
long val = SCM_I_INUM (n);
|
||
return scm_from_bool ((val & 1L) != 0);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_from_bool (odd_p);
|
||
}
|
||
else if (scm_is_true (scm_inf_p (n)))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_REALP (n))
|
||
{
|
||
double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
|
||
if (rem == 1.0)
|
||
return SCM_BOOL_T;
|
||
else if (rem == 0.0)
|
||
return SCM_BOOL_F;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an even number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_even_p
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
long val = SCM_I_INUM (n);
|
||
return scm_from_bool ((val & 1L) == 0);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_from_bool (even_p);
|
||
}
|
||
else if (scm_is_true (scm_inf_p (n)))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_REALP (n))
|
||
{
|
||
double rem = fabs (fmod (SCM_REAL_VALUE(n), 2.0));
|
||
if (rem == 1.0)
|
||
return SCM_BOOL_F;
|
||
else if (rem == 0.0)
|
||
return SCM_BOOL_T;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is either @samp{+inf.0}\n"
|
||
"or @samp{-inf.0}, @code{#f} otherwise.")
|
||
#define FUNC_NAME s_scm_inf_p
|
||
{
|
||
if (SCM_REALP (x))
|
||
return scm_from_bool (xisinf (SCM_REAL_VALUE (x)));
|
||
else if (SCM_COMPLEXP (x))
|
||
return scm_from_bool (xisinf (SCM_COMPLEX_REAL (x))
|
||
|| xisinf (SCM_COMPLEX_IMAG (x)));
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_nan_p
|
||
{
|
||
if (SCM_REALP (n))
|
||
return scm_from_bool (xisnan (SCM_REAL_VALUE (n)));
|
||
else if (SCM_COMPLEXP (n))
|
||
return scm_from_bool (xisnan (SCM_COMPLEX_REAL (n))
|
||
|| xisnan (SCM_COMPLEX_IMAG (n)));
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Guile's idea of infinity. */
|
||
static double guile_Inf;
|
||
|
||
/* Guile's idea of not a number. */
|
||
static double guile_NaN;
|
||
|
||
static void
|
||
guile_ieee_init (void)
|
||
{
|
||
#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
|
||
|
||
/* Some version of gcc on some old version of Linux used to crash when
|
||
trying to make Inf and NaN. */
|
||
|
||
#ifdef INFINITY
|
||
/* C99 INFINITY, when available.
|
||
FIXME: The standard allows for INFINITY to be something that overflows
|
||
at compile time. We ought to have a configure test to check for that
|
||
before trying to use it. (But in practice we believe this is not a
|
||
problem on any system guile is likely to target.) */
|
||
guile_Inf = INFINITY;
|
||
#elif HAVE_DINFINITY
|
||
/* OSF */
|
||
extern unsigned int DINFINITY[2];
|
||
guile_Inf = (*((double *) (DINFINITY)));
|
||
#else
|
||
double tmp = 1e+10;
|
||
guile_Inf = tmp;
|
||
for (;;)
|
||
{
|
||
guile_Inf *= 1e+10;
|
||
if (guile_Inf == tmp)
|
||
break;
|
||
tmp = guile_Inf;
|
||
}
|
||
#endif
|
||
|
||
#endif
|
||
|
||
#if defined (HAVE_ISNAN)
|
||
|
||
#ifdef NAN
|
||
/* C99 NAN, when available */
|
||
guile_NaN = NAN;
|
||
#elif HAVE_DQNAN
|
||
{
|
||
/* OSF */
|
||
extern unsigned int DQNAN[2];
|
||
guile_NaN = (*((double *)(DQNAN)));
|
||
}
|
||
#else
|
||
guile_NaN = guile_Inf / guile_Inf;
|
||
#endif
|
||
|
||
#endif
|
||
}
|
||
|
||
SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
|
||
(void),
|
||
"Return Inf.")
|
||
#define FUNC_NAME s_scm_inf
|
||
{
|
||
static int initialized = 0;
|
||
if (! initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_from_double (guile_Inf);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
|
||
(void),
|
||
"Return NaN.")
|
||
#define FUNC_NAME s_scm_nan
|
||
{
|
||
static int initialized = 0;
|
||
if (!initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_from_double (guile_NaN);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
|
||
(SCM x),
|
||
"Return the absolute value of @var{x}.")
|
||
#define FUNC_NAME
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
if (xx >= 0)
|
||
return x;
|
||
else if (SCM_POSFIXABLE (-xx))
|
||
return SCM_I_MAKINUM (-xx);
|
||
else
|
||
return scm_i_long2big (-xx);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
if (sgn < 0)
|
||
return scm_i_clonebig (x, 0);
|
||
else
|
||
return x;
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
/* note that if x is a NaN then xx<0 is false so we return x unchanged */
|
||
double xx = SCM_REAL_VALUE (x);
|
||
if (xx < 0.0)
|
||
return scm_from_double (-xx);
|
||
else
|
||
return x;
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (x))))
|
||
return x;
|
||
return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
|
||
/* "Return the quotient of the numbers @var{x} and @var{y}."
|
||
*/
|
||
SCM
|
||
scm_quotient (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_quotient);
|
||
else
|
||
{
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z))
|
||
return SCM_I_MAKINUM (z);
|
||
else
|
||
return scm_i_long2big (z);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
|
||
&& (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
|
||
- SCM_MOST_NEGATIVE_FIXNUM) == 0))
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_I_MAKINUM (0);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_quotient);
|
||
else if (yy == 1)
|
||
return x;
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
if (yy < 0)
|
||
{
|
||
mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
- yy);
|
||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
}
|
||
else
|
||
mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_tdiv_q (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
|
||
}
|
||
|
||
SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
|
||
/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
|
||
* "@lisp\n"
|
||
* "(remainder 13 4) @result{} 1\n"
|
||
* "(remainder -13 4) @result{} -1\n"
|
||
* "@end lisp"
|
||
*/
|
||
SCM
|
||
scm_remainder (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_remainder);
|
||
else
|
||
{
|
||
long z = SCM_I_INUM (x) % yy;
|
||
return SCM_I_MAKINUM (z);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
if ((SCM_I_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
|
||
&& (mpz_cmp_ui (SCM_I_BIG_MPZ (y),
|
||
- SCM_MOST_NEGATIVE_FIXNUM) == 0))
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_I_MAKINUM (0);
|
||
}
|
||
else
|
||
return x;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_remainder);
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
if (yy < 0)
|
||
yy = - yy;
|
||
mpz_tdiv_r_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_tdiv_r (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
|
||
/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
|
||
* "@lisp\n"
|
||
* "(modulo 13 4) @result{} 1\n"
|
||
* "(modulo -13 4) @result{} 3\n"
|
||
* "@end lisp"
|
||
*/
|
||
SCM
|
||
scm_modulo (SCM x, SCM y)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_modulo);
|
||
else
|
||
{
|
||
/* C99 specifies that "%" is the remainder corresponding to a
|
||
quotient rounded towards zero, and that's also traditional
|
||
for machine division, so z here should be well defined. */
|
||
long z = xx % yy;
|
||
long result;
|
||
|
||
if (yy < 0)
|
||
{
|
||
if (z > 0)
|
||
result = z + yy;
|
||
else
|
||
result = z;
|
||
}
|
||
else
|
||
{
|
||
if (z < 0)
|
||
result = z + yy;
|
||
else
|
||
result = z;
|
||
}
|
||
return SCM_I_MAKINUM (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
{
|
||
mpz_t z_x;
|
||
SCM result;
|
||
|
||
if (sgn_y < 0)
|
||
{
|
||
SCM pos_y = scm_i_clonebig (y, 0);
|
||
/* do this after the last scm_op */
|
||
mpz_init_set_si (z_x, xx);
|
||
result = pos_y; /* re-use this bignum */
|
||
mpz_mod (SCM_I_BIG_MPZ (result),
|
||
z_x,
|
||
SCM_I_BIG_MPZ (pos_y));
|
||
scm_remember_upto_here_1 (pos_y);
|
||
}
|
||
else
|
||
{
|
||
result = scm_i_mkbig ();
|
||
/* do this after the last scm_op */
|
||
mpz_init_set_si (z_x, xx);
|
||
mpz_mod (SCM_I_BIG_MPZ (result),
|
||
z_x,
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
}
|
||
|
||
if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
|
||
mpz_add (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (y),
|
||
SCM_I_BIG_MPZ (result));
|
||
scm_remember_upto_here_1 (y);
|
||
/* and do this before the next one */
|
||
mpz_clear (z_x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
scm_num_overflow (s_modulo);
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mod_ui (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
(yy < 0) ? - yy : yy);
|
||
scm_remember_upto_here_1 (x);
|
||
if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (result),
|
||
- yy);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
|
||
mpz_mod (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (pos_y));
|
||
|
||
scm_remember_upto_here_1 (x);
|
||
if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0))
|
||
mpz_add (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (y),
|
||
SCM_I_BIG_MPZ (result));
|
||
scm_remember_upto_here_2 (y, pos_y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
|
||
}
|
||
|
||
SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
|
||
/* "Return the greatest common divisor of all arguments.\n"
|
||
* "If called without arguments, 0 is returned."
|
||
*/
|
||
SCM
|
||
scm_gcd (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
return SCM_UNBNDP (x) ? SCM_INUM0 : x;
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
long yy = SCM_I_INUM (y);
|
||
long u = xx < 0 ? -xx : xx;
|
||
long v = yy < 0 ? -yy : yy;
|
||
long result;
|
||
if (xx == 0)
|
||
result = v;
|
||
else if (yy == 0)
|
||
result = u;
|
||
else
|
||
{
|
||
long k = 1;
|
||
long t;
|
||
/* Determine a common factor 2^k */
|
||
while (!(1 & (u | v)))
|
||
{
|
||
k <<= 1;
|
||
u >>= 1;
|
||
v >>= 1;
|
||
}
|
||
/* Now, any factor 2^n can be eliminated */
|
||
if (u & 1)
|
||
t = -v;
|
||
else
|
||
{
|
||
t = u;
|
||
b3:
|
||
t = SCM_SRS (t, 1);
|
||
}
|
||
if (!(1 & t))
|
||
goto b3;
|
||
if (t > 0)
|
||
u = t;
|
||
else
|
||
v = -t;
|
||
t = u - v;
|
||
if (t != 0)
|
||
goto b3;
|
||
result = u * k;
|
||
}
|
||
return (SCM_POSFIXABLE (result)
|
||
? SCM_I_MAKINUM (result)
|
||
: scm_i_long2big (result));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto big_inum;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
unsigned long result;
|
||
long yy;
|
||
big_inum:
|
||
yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
return scm_abs (x);
|
||
if (yy < 0)
|
||
yy = -yy;
|
||
result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return (SCM_POSFIXABLE (result)
|
||
? SCM_I_MAKINUM (result)
|
||
: scm_from_ulong (result));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_gcd (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
|
||
}
|
||
|
||
SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
|
||
/* "Return the least common multiple of the arguments.\n"
|
||
* "If called without arguments, 1 is returned."
|
||
*/
|
||
SCM
|
||
scm_lcm (SCM n1, SCM n2)
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_I_MAKINUM (1L);
|
||
n2 = SCM_I_MAKINUM (1L);
|
||
}
|
||
|
||
SCM_GASSERT2 (SCM_I_INUMP (n1) || SCM_BIGP (n1),
|
||
g_lcm, n1, n2, SCM_ARG1, s_lcm);
|
||
SCM_GASSERT2 (SCM_I_INUMP (n2) || SCM_BIGP (n2),
|
||
g_lcm, n1, n2, SCM_ARGn, s_lcm);
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
SCM d = scm_gcd (n1, n2);
|
||
if (scm_is_eq (d, SCM_INUM0))
|
||
return d;
|
||
else
|
||
return scm_abs (scm_product (n1, scm_quotient (n2, d)));
|
||
}
|
||
else
|
||
{
|
||
/* inum n1, big n2 */
|
||
inumbig:
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
long nn1 = SCM_I_INUM (n1);
|
||
if (nn1 == 0) return SCM_INUM0;
|
||
if (nn1 < 0) nn1 = - nn1;
|
||
mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
|
||
scm_remember_upto_here_1 (n2);
|
||
return result;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* big n1 */
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
SCM_SWAP (n1, n2);
|
||
goto inumbig;
|
||
}
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_lcm(SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2(n1, n2);
|
||
/* shouldn't need to normalize b/c lcm of 2 bigs should be big */
|
||
return result;
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise AND of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logand) @result{} -1\n"
|
||
"(logand 7) @result{} 7\n"
|
||
"(logand #b111 #b011 #b001) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logand
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_I_MAKINUM (-1);
|
||
else if (!SCM_NUMBERP (n1))
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
nn1 = SCM_I_INUM (n1);
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
long nn2 = SCM_I_INUM (n2);
|
||
return SCM_I_MAKINUM (nn1 & nn2);
|
||
}
|
||
else if SCM_BIGP (n2)
|
||
{
|
||
intbig:
|
||
if (n1 == 0)
|
||
return SCM_INUM0;
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_I_INUM (n1);
|
||
goto intbig;
|
||
}
|
||
else if (SCM_BIGP (n2))
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_and (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise OR of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logior) @result{} 0\n"
|
||
"(logior 7) @result{} 7\n"
|
||
"(logior #b000 #b001 #b011) @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logior
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_INUM0;
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
nn1 = SCM_I_INUM (n1);
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
long nn2 = SCM_I_INUM (n2);
|
||
return SCM_I_MAKINUM (nn1 | nn2);
|
||
}
|
||
else if (SCM_BIGP (n2))
|
||
{
|
||
intbig:
|
||
if (nn1 == 0)
|
||
return n2;
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_I_INUM (n1);
|
||
goto intbig;
|
||
}
|
||
else if (SCM_BIGP (n2))
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_ior (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise XOR of the integer arguments. A bit is\n"
|
||
"set in the result if it is set in an odd number of arguments.\n"
|
||
"@lisp\n"
|
||
"(logxor) @result{} 0\n"
|
||
"(logxor 7) @result{} 7\n"
|
||
"(logxor #b000 #b001 #b011) @result{} 2\n"
|
||
"(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logxor
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_INUM0;
|
||
else if (SCM_NUMBERP (n1))
|
||
return n1;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
|
||
if (SCM_I_INUMP (n1))
|
||
{
|
||
nn1 = SCM_I_INUM (n1);
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
long nn2 = SCM_I_INUM (n2);
|
||
return SCM_I_MAKINUM (nn1 ^ nn2);
|
||
}
|
||
else if (SCM_BIGP (n2))
|
||
{
|
||
intbig:
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else if (SCM_BIGP (n1))
|
||
{
|
||
if (SCM_I_INUMP (n2))
|
||
{
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_I_INUM (n1);
|
||
goto intbig;
|
||
}
|
||
else if (SCM_BIGP (n2))
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_xor (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
|
||
(SCM j, SCM k),
|
||
"Test whether @var{j} and @var{k} have any 1 bits in common.\n"
|
||
"This is equivalent to @code{(not (zero? (logand j k)))}, but\n"
|
||
"without actually calculating the @code{logand}, just testing\n"
|
||
"for non-zero.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logtest #b0100 #b1011) @result{} #f\n"
|
||
"(logtest #b0100 #b0111) @result{} #t\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logtest
|
||
{
|
||
long int nj;
|
||
|
||
if (SCM_I_INUMP (j))
|
||
{
|
||
nj = SCM_I_INUM (j);
|
||
if (SCM_I_INUMP (k))
|
||
{
|
||
long nk = SCM_I_INUM (k);
|
||
return scm_from_bool (nj & nk);
|
||
}
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
intbig:
|
||
if (nj == 0)
|
||
return SCM_BOOL_F;
|
||
{
|
||
SCM result;
|
||
mpz_t nj_z;
|
||
mpz_init_set_si (nj_z, nj);
|
||
mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
|
||
scm_remember_upto_here_1 (k);
|
||
result = scm_from_bool (mpz_sgn (nj_z) != 0);
|
||
mpz_clear (nj_z);
|
||
return result;
|
||
}
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
else if (SCM_BIGP (j))
|
||
{
|
||
if (SCM_I_INUMP (k))
|
||
{
|
||
SCM_SWAP (j, k);
|
||
nj = SCM_I_INUM (j);
|
||
goto intbig;
|
||
}
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
SCM result;
|
||
mpz_t result_z;
|
||
mpz_init (result_z);
|
||
mpz_and (result_z,
|
||
SCM_I_BIG_MPZ (j),
|
||
SCM_I_BIG_MPZ (k));
|
||
scm_remember_upto_here_2 (j, k);
|
||
result = scm_from_bool (mpz_sgn (result_z) != 0);
|
||
mpz_clear (result_z);
|
||
return result;
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
|
||
(SCM index, SCM j),
|
||
"Test whether bit number @var{index} in @var{j} is set.\n"
|
||
"@var{index} starts from 0 for the least significant bit.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logbit? 0 #b1101) @result{} #t\n"
|
||
"(logbit? 1 #b1101) @result{} #f\n"
|
||
"(logbit? 2 #b1101) @result{} #t\n"
|
||
"(logbit? 3 #b1101) @result{} #t\n"
|
||
"(logbit? 4 #b1101) @result{} #f\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logbit_p
|
||
{
|
||
unsigned long int iindex;
|
||
iindex = scm_to_ulong (index);
|
||
|
||
if (SCM_I_INUMP (j))
|
||
{
|
||
/* bits above what's in an inum follow the sign bit */
|
||
iindex = min (iindex, SCM_LONG_BIT - 1);
|
||
return scm_from_bool ((1L << iindex) & SCM_I_INUM (j));
|
||
}
|
||
else if (SCM_BIGP (j))
|
||
{
|
||
int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
|
||
scm_remember_upto_here_1 (j);
|
||
return scm_from_bool (val);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the integer which is the ones-complement of the integer\n"
|
||
"argument.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (lognot #b10000000) 2)\n"
|
||
" @result{} \"-10000001\"\n"
|
||
"(number->string (lognot #b0) 2)\n"
|
||
" @result{} \"-1\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_lognot
|
||
{
|
||
if (SCM_I_INUMP (n)) {
|
||
/* No overflow here, just need to toggle all the bits making up the inum.
|
||
Enhancement: No need to strip the tag and add it back, could just xor
|
||
a block of 1 bits, if that worked with the various debug versions of
|
||
the SCM typedef. */
|
||
return SCM_I_MAKINUM (~ SCM_I_INUM (n));
|
||
|
||
} else if (SCM_BIGP (n)) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_com (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return result;
|
||
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* returns 0 if IN is not an integer. OUT must already be
|
||
initialized. */
|
||
static int
|
||
coerce_to_big (SCM in, mpz_t out)
|
||
{
|
||
if (SCM_BIGP (in))
|
||
mpz_set (out, SCM_I_BIG_MPZ (in));
|
||
else if (SCM_I_INUMP (in))
|
||
mpz_set_si (out, SCM_I_INUM (in));
|
||
else
|
||
return 0;
|
||
|
||
return 1;
|
||
}
|
||
|
||
SCM_DEFINE (scm_modulo_expt, "modulo-expt", 3, 0, 0,
|
||
(SCM n, SCM k, SCM m),
|
||
"Return @var{n} raised to the integer exponent\n"
|
||
"@var{k}, modulo @var{m}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(modulo-expt 2 3 5)\n"
|
||
" @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_modulo_expt
|
||
{
|
||
mpz_t n_tmp;
|
||
mpz_t k_tmp;
|
||
mpz_t m_tmp;
|
||
|
||
/* There are two classes of error we might encounter --
|
||
1) Math errors, which we'll report by calling scm_num_overflow,
|
||
and
|
||
2) wrong-type errors, which of course we'll report by calling
|
||
SCM_WRONG_TYPE_ARG.
|
||
We don't report those errors immediately, however; instead we do
|
||
some cleanup first. These variables tell us which error (if
|
||
any) we should report after cleaning up.
|
||
*/
|
||
int report_overflow = 0;
|
||
|
||
int position_of_wrong_type = 0;
|
||
SCM value_of_wrong_type = SCM_INUM0;
|
||
|
||
SCM result = SCM_UNDEFINED;
|
||
|
||
mpz_init (n_tmp);
|
||
mpz_init (k_tmp);
|
||
mpz_init (m_tmp);
|
||
|
||
if (scm_is_eq (m, SCM_INUM0))
|
||
{
|
||
report_overflow = 1;
|
||
goto cleanup;
|
||
}
|
||
|
||
if (!coerce_to_big (n, n_tmp))
|
||
{
|
||
value_of_wrong_type = n;
|
||
position_of_wrong_type = 1;
|
||
goto cleanup;
|
||
}
|
||
|
||
if (!coerce_to_big (k, k_tmp))
|
||
{
|
||
value_of_wrong_type = k;
|
||
position_of_wrong_type = 2;
|
||
goto cleanup;
|
||
}
|
||
|
||
if (!coerce_to_big (m, m_tmp))
|
||
{
|
||
value_of_wrong_type = m;
|
||
position_of_wrong_type = 3;
|
||
goto cleanup;
|
||
}
|
||
|
||
/* if the exponent K is negative, and we simply call mpz_powm, we
|
||
will get a divide-by-zero exception when an inverse 1/n mod m
|
||
doesn't exist (or is not unique). Since exceptions are hard to
|
||
handle, we'll attempt the inversion "by hand" -- that way, we get
|
||
a simple failure code, which is easy to handle. */
|
||
|
||
if (-1 == mpz_sgn (k_tmp))
|
||
{
|
||
if (!mpz_invert (n_tmp, n_tmp, m_tmp))
|
||
{
|
||
report_overflow = 1;
|
||
goto cleanup;
|
||
}
|
||
mpz_neg (k_tmp, k_tmp);
|
||
}
|
||
|
||
result = scm_i_mkbig ();
|
||
mpz_powm (SCM_I_BIG_MPZ (result),
|
||
n_tmp,
|
||
k_tmp,
|
||
m_tmp);
|
||
|
||
if (mpz_sgn (m_tmp) < 0 && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)
|
||
mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), m_tmp);
|
||
|
||
cleanup:
|
||
mpz_clear (m_tmp);
|
||
mpz_clear (k_tmp);
|
||
mpz_clear (n_tmp);
|
||
|
||
if (report_overflow)
|
||
scm_num_overflow (FUNC_NAME);
|
||
|
||
if (position_of_wrong_type)
|
||
SCM_WRONG_TYPE_ARG (position_of_wrong_type,
|
||
value_of_wrong_type);
|
||
|
||
return scm_i_normbig (result);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
|
||
(SCM n, SCM k),
|
||
"Return @var{n} raised to the power @var{k}. @var{k} must be an\n"
|
||
"exact integer, @var{n} can be any number.\n"
|
||
"\n"
|
||
"Negative @var{k} is supported, and results in @math{1/n^abs(k)}\n"
|
||
"in the usual way. @math{@var{n}^0} is 1, as usual, and that\n"
|
||
"includes @math{0^0} is 1.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-expt 2 5) @result{} 32\n"
|
||
"(integer-expt -3 3) @result{} -27\n"
|
||
"(integer-expt 5 -3) @result{} 1/125\n"
|
||
"(integer-expt 0 0) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_expt
|
||
{
|
||
long i2 = 0;
|
||
SCM z_i2 = SCM_BOOL_F;
|
||
int i2_is_big = 0;
|
||
SCM acc = SCM_I_MAKINUM (1L);
|
||
|
||
/* 0^0 == 1 according to R5RS */
|
||
if (scm_is_eq (n, SCM_INUM0) || scm_is_eq (n, acc))
|
||
return scm_is_false (scm_zero_p(k)) ? n : acc;
|
||
else if (scm_is_eq (n, SCM_I_MAKINUM (-1L)))
|
||
return scm_is_false (scm_even_p (k)) ? n : acc;
|
||
|
||
if (SCM_I_INUMP (k))
|
||
i2 = SCM_I_INUM (k);
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
z_i2 = scm_i_clonebig (k, 1);
|
||
scm_remember_upto_here_1 (k);
|
||
i2_is_big = 1;
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (2, k);
|
||
|
||
if (i2_is_big)
|
||
{
|
||
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
|
||
{
|
||
mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
while (1)
|
||
{
|
||
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
|
||
{
|
||
return acc;
|
||
}
|
||
if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
|
||
{
|
||
return scm_product (acc, n);
|
||
}
|
||
if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (i2 < 0)
|
||
{
|
||
i2 = -i2;
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
while (1)
|
||
{
|
||
if (0 == i2)
|
||
return acc;
|
||
if (1 == i2)
|
||
return scm_product (acc, n);
|
||
if (i2 & 1)
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
i2 >>= 1;
|
||
}
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
|
||
(SCM n, SCM cnt),
|
||
"Return @var{n} shifted left by @var{cnt} bits, or shifted right\n"
|
||
"if @var{cnt} is negative. This is an ``arithmetic'' shift.\n"
|
||
"\n"
|
||
"This is effectively a multiplication by 2^@var{cnt}, and when\n"
|
||
"@var{cnt} is negative it's a division, rounded towards negative\n"
|
||
"infinity. (Note that this is not the same rounding as\n"
|
||
"@code{quotient} does.)\n"
|
||
"\n"
|
||
"With @var{n} viewed as an infinite precision twos complement,\n"
|
||
"@code{ash} means a left shift introducing zero bits, or a right\n"
|
||
"shift dropping bits.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
|
||
"(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
|
||
"\n"
|
||
";; -23 is bits ...11101001, -6 is bits ...111010\n"
|
||
"(ash -23 -2) @result{} -6\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ash
|
||
{
|
||
long bits_to_shift;
|
||
bits_to_shift = scm_to_long (cnt);
|
||
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
long nn = SCM_I_INUM (n);
|
||
|
||
if (bits_to_shift > 0)
|
||
{
|
||
/* Left shift of bits_to_shift >= SCM_I_FIXNUM_BIT-1 will always
|
||
overflow a non-zero fixnum. For smaller shifts we check the
|
||
bits going into positions above SCM_I_FIXNUM_BIT-1. If they're
|
||
all 0s for nn>=0, or all 1s for nn<0 then there's no overflow.
|
||
Those bits are "nn >> (SCM_I_FIXNUM_BIT-1 -
|
||
bits_to_shift)". */
|
||
|
||
if (nn == 0)
|
||
return n;
|
||
|
||
if (bits_to_shift < SCM_I_FIXNUM_BIT-1
|
||
&& ((unsigned long)
|
||
(SCM_SRS (nn, (SCM_I_FIXNUM_BIT-1 - bits_to_shift)) + 1)
|
||
<= 1))
|
||
{
|
||
return SCM_I_MAKINUM (nn << bits_to_shift);
|
||
}
|
||
else
|
||
{
|
||
SCM result = scm_i_long2big (nn);
|
||
mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
|
||
bits_to_shift);
|
||
return result;
|
||
}
|
||
}
|
||
else
|
||
{
|
||
bits_to_shift = -bits_to_shift;
|
||
if (bits_to_shift >= SCM_LONG_BIT)
|
||
return (nn >= 0 ? SCM_I_MAKINUM (0) : SCM_I_MAKINUM(-1));
|
||
else
|
||
return SCM_I_MAKINUM (SCM_SRS (nn, bits_to_shift));
|
||
}
|
||
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
SCM result;
|
||
|
||
if (bits_to_shift == 0)
|
||
return n;
|
||
|
||
result = scm_i_mkbig ();
|
||
if (bits_to_shift >= 0)
|
||
{
|
||
mpz_mul_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
|
||
bits_to_shift);
|
||
return result;
|
||
}
|
||
else
|
||
{
|
||
/* GMP doesn't have an fdiv_q_2exp variant returning just a long, so
|
||
we have to allocate a bignum even if the result is going to be a
|
||
fixnum. */
|
||
mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n),
|
||
-bits_to_shift);
|
||
return scm_i_normbig (result);
|
||
}
|
||
|
||
}
|
||
else
|
||
{
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
|
||
(SCM n, SCM start, SCM end),
|
||
"Return the integer composed of the @var{start} (inclusive)\n"
|
||
"through @var{end} (exclusive) bits of @var{n}. The\n"
|
||
"@var{start}th bit becomes the 0-th bit in the result.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (bit-extract #b1101101010 0 4) 2)\n"
|
||
" @result{} \"1010\"\n"
|
||
"(number->string (bit-extract #b1101101010 4 9) 2)\n"
|
||
" @result{} \"10110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_bit_extract
|
||
{
|
||
unsigned long int istart, iend, bits;
|
||
istart = scm_to_ulong (start);
|
||
iend = scm_to_ulong (end);
|
||
SCM_ASSERT_RANGE (3, end, (iend >= istart));
|
||
|
||
/* how many bits to keep */
|
||
bits = iend - istart;
|
||
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
long int in = SCM_I_INUM (n);
|
||
|
||
/* When istart>=SCM_I_FIXNUM_BIT we can just limit the shift to
|
||
SCM_I_FIXNUM_BIT-1 to get either 0 or -1 per the sign of "in". */
|
||
in = SCM_SRS (in, min (istart, SCM_I_FIXNUM_BIT-1));
|
||
|
||
if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
|
||
{
|
||
/* Since we emulate two's complement encoded numbers, this
|
||
* special case requires us to produce a result that has
|
||
* more bits than can be stored in a fixnum.
|
||
*/
|
||
SCM result = scm_i_long2big (in);
|
||
mpz_fdiv_r_2exp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result),
|
||
bits);
|
||
return result;
|
||
}
|
||
|
||
/* mask down to requisite bits */
|
||
bits = min (bits, SCM_I_FIXNUM_BIT);
|
||
return SCM_I_MAKINUM (in & ((1L << bits) - 1));
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
SCM result;
|
||
if (bits == 1)
|
||
{
|
||
result = SCM_I_MAKINUM (mpz_tstbit (SCM_I_BIG_MPZ (n), istart));
|
||
}
|
||
else
|
||
{
|
||
/* ENHANCE-ME: It'd be nice not to allocate a new bignum when
|
||
bits<SCM_I_FIXNUM_BIT. Would want some help from GMP to get
|
||
such bits into a ulong. */
|
||
result = scm_i_mkbig ();
|
||
mpz_fdiv_q_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(n), istart);
|
||
mpz_fdiv_r_2exp (SCM_I_BIG_MPZ(result), SCM_I_BIG_MPZ(result), bits);
|
||
result = scm_i_normbig (result);
|
||
}
|
||
scm_remember_upto_here_1 (n);
|
||
return result;
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static const char scm_logtab[] = {
|
||
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
|
||
};
|
||
|
||
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits in integer @var{n}. If integer is\n"
|
||
"positive, the 1-bits in its binary representation are counted.\n"
|
||
"If negative, the 0-bits in its two's-complement binary\n"
|
||
"representation are counted. If 0, 0 is returned.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logcount #b10101010)\n"
|
||
" @result{} 4\n"
|
||
"(logcount 0)\n"
|
||
" @result{} 0\n"
|
||
"(logcount -2)\n"
|
||
" @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logcount
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
unsigned long int c = 0;
|
||
long int nn = SCM_I_INUM (n);
|
||
if (nn < 0)
|
||
nn = -1 - nn;
|
||
while (nn)
|
||
{
|
||
c += scm_logtab[15 & nn];
|
||
nn >>= 4;
|
||
}
|
||
return SCM_I_MAKINUM (c);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
unsigned long count;
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
|
||
count = mpz_popcount (SCM_I_BIG_MPZ (n));
|
||
else
|
||
count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_I_MAKINUM (count);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static const char scm_ilentab[] = {
|
||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
|
||
};
|
||
|
||
|
||
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits necessary to represent @var{n}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-length #b10101010)\n"
|
||
" @result{} 8\n"
|
||
"(integer-length 0)\n"
|
||
" @result{} 0\n"
|
||
"(integer-length #b1111)\n"
|
||
" @result{} 4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_length
|
||
{
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
unsigned long int c = 0;
|
||
unsigned int l = 4;
|
||
long int nn = SCM_I_INUM (n);
|
||
if (nn < 0)
|
||
nn = -1 - nn;
|
||
while (nn)
|
||
{
|
||
c += 4;
|
||
l = scm_ilentab [15 & nn];
|
||
nn >>= 4;
|
||
}
|
||
return SCM_I_MAKINUM (c - 4 + l);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
/* mpz_sizeinbase looks at the absolute value of negatives, whereas we
|
||
want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
|
||
1 too big, so check for that and adjust. */
|
||
size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
|
||
&& mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
|
||
mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
|
||
size--;
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_I_MAKINUM (size);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/*** NUMBERS -> STRINGS ***/
|
||
#define SCM_MAX_DBL_PREC 60
|
||
#define SCM_MAX_DBL_RADIX 36
|
||
|
||
/* this is an array starting with radix 2, and ending with radix SCM_MAX_DBL_RADIX */
|
||
static int scm_dblprec[SCM_MAX_DBL_RADIX - 1];
|
||
static double fx_per_radix[SCM_MAX_DBL_RADIX - 1][SCM_MAX_DBL_PREC];
|
||
|
||
static
|
||
void init_dblprec(int *prec, int radix) {
|
||
/* determine floating point precision by adding successively
|
||
smaller increments to 1.0 until it is considered == 1.0 */
|
||
double f = ((double)1.0)/radix;
|
||
double fsum = 1.0 + f;
|
||
|
||
*prec = 0;
|
||
while (fsum != 1.0)
|
||
{
|
||
if (++(*prec) > SCM_MAX_DBL_PREC)
|
||
fsum = 1.0;
|
||
else
|
||
{
|
||
f /= radix;
|
||
fsum = f + 1.0;
|
||
}
|
||
}
|
||
(*prec) -= 1;
|
||
}
|
||
|
||
static
|
||
void init_fx_radix(double *fx_list, int radix)
|
||
{
|
||
/* initialize a per-radix list of tolerances. When added
|
||
to a number < 1.0, we can determine if we should raund
|
||
up and quit converting a number to a string. */
|
||
int i;
|
||
fx_list[0] = 0.0;
|
||
fx_list[1] = 0.5;
|
||
for( i = 2 ; i < SCM_MAX_DBL_PREC; ++i )
|
||
fx_list[i] = (fx_list[i-1] / radix);
|
||
}
|
||
|
||
/* use this array as a way to generate a single digit */
|
||
static const char*number_chars="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
||
|
||
static size_t
|
||
idbl2str (double f, char *a, int radix)
|
||
{
|
||
int efmt, dpt, d, i, wp;
|
||
double *fx;
|
||
#ifdef DBL_MIN_10_EXP
|
||
double f_cpy;
|
||
int exp_cpy;
|
||
#endif /* DBL_MIN_10_EXP */
|
||
size_t ch = 0;
|
||
int exp = 0;
|
||
|
||
if(radix < 2 ||
|
||
radix > SCM_MAX_DBL_RADIX)
|
||
{
|
||
/* revert to existing behavior */
|
||
radix = 10;
|
||
}
|
||
|
||
wp = scm_dblprec[radix-2];
|
||
fx = fx_per_radix[radix-2];
|
||
|
||
if (f == 0.0)
|
||
{
|
||
#ifdef HAVE_COPYSIGN
|
||
double sgn = copysign (1.0, f);
|
||
|
||
if (sgn < 0.0)
|
||
a[ch++] = '-';
|
||
#endif
|
||
goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
|
||
}
|
||
|
||
if (xisinf (f))
|
||
{
|
||
if (f < 0)
|
||
strcpy (a, "-inf.0");
|
||
else
|
||
strcpy (a, "+inf.0");
|
||
return ch+6;
|
||
}
|
||
else if (xisnan (f))
|
||
{
|
||
strcpy (a, "+nan.0");
|
||
return ch+6;
|
||
}
|
||
|
||
if (f < 0.0)
|
||
{
|
||
f = -f;
|
||
a[ch++] = '-';
|
||
}
|
||
|
||
#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
|
||
make-uniform-vector, from causing infinite loops. */
|
||
/* just do the checking...if it passes, we do the conversion for our
|
||
radix again below */
|
||
f_cpy = f;
|
||
exp_cpy = exp;
|
||
|
||
while (f_cpy < 1.0)
|
||
{
|
||
f_cpy *= 10.0;
|
||
if (exp_cpy-- < DBL_MIN_10_EXP)
|
||
{
|
||
a[ch++] = '#';
|
||
a[ch++] = '.';
|
||
a[ch++] = '#';
|
||
return ch;
|
||
}
|
||
}
|
||
while (f_cpy > 10.0)
|
||
{
|
||
f_cpy *= 0.10;
|
||
if (exp_cpy++ > DBL_MAX_10_EXP)
|
||
{
|
||
a[ch++] = '#';
|
||
a[ch++] = '.';
|
||
a[ch++] = '#';
|
||
return ch;
|
||
}
|
||
}
|
||
#endif
|
||
|
||
while (f < 1.0)
|
||
{
|
||
f *= radix;
|
||
exp--;
|
||
}
|
||
while (f > radix)
|
||
{
|
||
f /= radix;
|
||
exp++;
|
||
}
|
||
|
||
if (f + fx[wp] >= radix)
|
||
{
|
||
f = 1.0;
|
||
exp++;
|
||
}
|
||
zero:
|
||
#ifdef ENGNOT
|
||
/* adding 9999 makes this equivalent to abs(x) % 3 */
|
||
dpt = (exp + 9999) % 3;
|
||
exp -= dpt++;
|
||
efmt = 1;
|
||
#else
|
||
efmt = (exp < -3) || (exp > wp + 2);
|
||
if (!efmt)
|
||
{
|
||
if (exp < 0)
|
||
{
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
dpt = exp;
|
||
while (++dpt)
|
||
a[ch++] = '0';
|
||
}
|
||
else
|
||
dpt = exp + 1;
|
||
}
|
||
else
|
||
dpt = 1;
|
||
#endif
|
||
|
||
do
|
||
{
|
||
d = f;
|
||
f -= d;
|
||
a[ch++] = number_chars[d];
|
||
if (f < fx[wp])
|
||
break;
|
||
if (f + fx[wp] >= 1.0)
|
||
{
|
||
a[ch - 1] = number_chars[d+1];
|
||
break;
|
||
}
|
||
f *= radix;
|
||
if (!(--dpt))
|
||
a[ch++] = '.';
|
||
}
|
||
while (wp--);
|
||
|
||
if (dpt > 0)
|
||
{
|
||
#ifndef ENGNOT
|
||
if ((dpt > 4) && (exp > 6))
|
||
{
|
||
d = (a[0] == '-' ? 2 : 1);
|
||
for (i = ch++; i > d; i--)
|
||
a[i] = a[i - 1];
|
||
a[d] = '.';
|
||
efmt = 1;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
while (--dpt)
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
}
|
||
}
|
||
if (a[ch - 1] == '.')
|
||
a[ch++] = '0'; /* trailing zero */
|
||
if (efmt && exp)
|
||
{
|
||
a[ch++] = 'e';
|
||
if (exp < 0)
|
||
{
|
||
exp = -exp;
|
||
a[ch++] = '-';
|
||
}
|
||
for (i = radix; i <= exp; i *= radix);
|
||
for (i /= radix; i; i /= radix)
|
||
{
|
||
a[ch++] = number_chars[exp / i];
|
||
exp %= i;
|
||
}
|
||
}
|
||
return ch;
|
||
}
|
||
|
||
|
||
static size_t
|
||
icmplx2str (double real, double imag, char *str, int radix)
|
||
{
|
||
size_t i;
|
||
|
||
i = idbl2str (real, str, radix);
|
||
if (imag != 0.0)
|
||
{
|
||
/* Don't output a '+' for negative numbers or for Inf and
|
||
NaN. They will provide their own sign. */
|
||
if (0 <= imag && !xisinf (imag) && !xisnan (imag))
|
||
str[i++] = '+';
|
||
i += idbl2str (imag, &str[i], radix);
|
||
str[i++] = 'i';
|
||
}
|
||
return i;
|
||
}
|
||
|
||
static size_t
|
||
iflo2str (SCM flt, char *str, int radix)
|
||
{
|
||
size_t i;
|
||
if (SCM_REALP (flt))
|
||
i = idbl2str (SCM_REAL_VALUE (flt), str, radix);
|
||
else
|
||
i = icmplx2str (SCM_COMPLEX_REAL (flt), SCM_COMPLEX_IMAG (flt),
|
||
str, radix);
|
||
return i;
|
||
}
|
||
|
||
/* convert a scm_t_intmax to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
size_t
|
||
scm_iint2str (scm_t_intmax num, int rad, char *p)
|
||
{
|
||
if (num < 0)
|
||
{
|
||
*p++ = '-';
|
||
return scm_iuint2str (-num, rad, p) + 1;
|
||
}
|
||
else
|
||
return scm_iuint2str (num, rad, p);
|
||
}
|
||
|
||
/* convert a scm_t_intmax to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
size_t
|
||
scm_iuint2str (scm_t_uintmax num, int rad, char *p)
|
||
{
|
||
size_t j = 1;
|
||
size_t i;
|
||
scm_t_uintmax n = num;
|
||
|
||
for (n /= rad; n > 0; n /= rad)
|
||
j++;
|
||
|
||
i = j;
|
||
n = num;
|
||
while (i--)
|
||
{
|
||
int d = n % rad;
|
||
|
||
n /= rad;
|
||
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
|
||
}
|
||
return j;
|
||
}
|
||
|
||
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
|
||
(SCM n, SCM radix),
|
||
"Return a string holding the external representation of the\n"
|
||
"number @var{n} in the given @var{radix}. If @var{n} is\n"
|
||
"inexact, a radix of 10 will be used.")
|
||
#define FUNC_NAME s_scm_number_to_string
|
||
{
|
||
int base;
|
||
|
||
if (SCM_UNBNDP (radix))
|
||
base = 10;
|
||
else
|
||
base = scm_to_signed_integer (radix, 2, 36);
|
||
|
||
if (SCM_I_INUMP (n))
|
||
{
|
||
char num_buf [SCM_INTBUFLEN];
|
||
size_t length = scm_iint2str (SCM_I_INUM (n), base, num_buf);
|
||
return scm_from_locale_stringn (num_buf, length);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_take_locale_string (str);
|
||
}
|
||
else if (SCM_FRACTIONP (n))
|
||
{
|
||
return scm_string_append (scm_list_3 (scm_number_to_string (SCM_FRACTION_NUMERATOR (n), radix),
|
||
scm_from_locale_string ("/"),
|
||
scm_number_to_string (SCM_FRACTION_DENOMINATOR (n), radix)));
|
||
}
|
||
else if (SCM_INEXACTP (n))
|
||
{
|
||
char num_buf [FLOBUFLEN];
|
||
return scm_from_locale_stringn (num_buf, iflo2str (n, num_buf, base));
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* These print routines used to be stubbed here so that scm_repl.c
|
||
wouldn't need SCM_BIGDIG conditionals (pre GMP) */
|
||
|
||
int
|
||
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
|
||
return !0;
|
||
}
|
||
|
||
void
|
||
scm_i_print_double (double val, SCM port)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, idbl2str (val, num_buf, 10), port);
|
||
}
|
||
|
||
int
|
||
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf, 10), port);
|
||
return !0;
|
||
}
|
||
|
||
void
|
||
scm_i_print_complex (double real, double imag, SCM port)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, icmplx2str (real, imag, num_buf, 10), port);
|
||
}
|
||
|
||
int
|
||
scm_i_print_fraction (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
SCM str;
|
||
str = scm_number_to_string (sexp, SCM_UNDEFINED);
|
||
scm_lfwrite (scm_i_string_chars (str), scm_i_string_length (str), port);
|
||
scm_remember_upto_here_1 (str);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
|
||
scm_remember_upto_here_1 (exp);
|
||
scm_lfwrite (str, (size_t) strlen (str), port);
|
||
free (str);
|
||
return !0;
|
||
}
|
||
/*** END nums->strs ***/
|
||
|
||
|
||
/*** STRINGS -> NUMBERS ***/
|
||
|
||
/* The following functions implement the conversion from strings to numbers.
|
||
* The implementation somehow follows the grammar for numbers as it is given
|
||
* in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
|
||
* <uinteger R>, ...) that are used to build up numbers in the grammar. Some
|
||
* points should be noted about the implementation:
|
||
* * Each function keeps a local index variable 'idx' that points at the
|
||
* current position within the parsed string. The global index is only
|
||
* updated if the function could parse the corresponding syntactic unit
|
||
* successfully.
|
||
* * Similarly, the functions keep track of indicators of inexactness ('#',
|
||
* '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
|
||
* global exactness information is only updated after each part has been
|
||
* successfully parsed.
|
||
* * Sequences of digits are parsed into temporary variables holding fixnums.
|
||
* Only if these fixnums would overflow, the result variables are updated
|
||
* using the standard functions scm_add, scm_product, scm_divide etc. Then,
|
||
* the temporary variables holding the fixnums are cleared, and the process
|
||
* starts over again. If for example fixnums were able to store five decimal
|
||
* digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
|
||
* and the result was computed as 12345 * 100000 + 67890. In other words,
|
||
* only every five digits two bignum operations were performed.
|
||
*/
|
||
|
||
enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
|
||
|
||
/* In non ASCII-style encodings the following macro might not work. */
|
||
#define XDIGIT2UINT(d) \
|
||
(isdigit ((int) (unsigned char) d) \
|
||
? (d) - '0' \
|
||
: tolower ((int) (unsigned char) d) - 'a' + 10)
|
||
|
||
static SCM
|
||
mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
unsigned int hash_seen = 0;
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM result;
|
||
char c;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = mem[idx];
|
||
if (!isxdigit ((int) (unsigned char) c))
|
||
return SCM_BOOL_F;
|
||
digit_value = XDIGIT2UINT (c);
|
||
if (digit_value >= radix)
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
result = SCM_I_MAKINUM (digit_value);
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isxdigit ((int) (unsigned char) c))
|
||
{
|
||
if (hash_seen)
|
||
break;
|
||
digit_value = XDIGIT2UINT (c);
|
||
if (digit_value >= radix)
|
||
break;
|
||
}
|
||
else if (c == '#')
|
||
{
|
||
hash_seen = 1;
|
||
digit_value = 0;
|
||
}
|
||
else
|
||
break;
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
|
||
{
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
shift = radix;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * radix;
|
||
add = add * radix + digit_value;
|
||
}
|
||
};
|
||
|
||
if (shift > 1)
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
*p_idx = idx;
|
||
if (hash_seen)
|
||
*p_exactness = INEXACT;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
|
||
* covers the parts of the rules that start at a potential point. The value
|
||
* of the digits up to the point have been parsed by the caller and are given
|
||
* in variable result. The content of *p_exactness indicates, whether a hash
|
||
* has already been seen in the digits before the point.
|
||
*/
|
||
|
||
/* In non ASCII-style encodings the following macro might not work. */
|
||
#define DIGIT2UINT(d) ((d) - '0')
|
||
|
||
static SCM
|
||
mem2decimal_from_point (SCM result, const char* mem, size_t len,
|
||
unsigned int *p_idx, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
enum t_exactness x = *p_exactness;
|
||
|
||
if (idx == len)
|
||
return result;
|
||
|
||
if (mem[idx] == '.')
|
||
{
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM big_shift = SCM_I_MAKINUM (1);
|
||
|
||
idx++;
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isdigit ((int) (unsigned char) c))
|
||
{
|
||
if (x == INEXACT)
|
||
return SCM_BOOL_F;
|
||
else
|
||
digit_value = DIGIT2UINT (c);
|
||
}
|
||
else if (c == '#')
|
||
{
|
||
x = INEXACT;
|
||
digit_value = 0;
|
||
}
|
||
else
|
||
break;
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
|
||
shift = 10;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * 10;
|
||
add = add * 10 + digit_value;
|
||
}
|
||
};
|
||
|
||
if (add > 0)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_I_MAKINUM (shift));
|
||
result = scm_product (result, SCM_I_MAKINUM (shift));
|
||
result = scm_sum (result, SCM_I_MAKINUM (add));
|
||
}
|
||
|
||
result = scm_divide (result, big_shift);
|
||
|
||
/* We've seen a decimal point, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
}
|
||
|
||
if (idx != len)
|
||
{
|
||
int sign = 1;
|
||
unsigned int start;
|
||
char c;
|
||
int exponent;
|
||
SCM e;
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
|
||
|
||
switch (mem[idx])
|
||
{
|
||
case 'd': case 'D':
|
||
case 'e': case 'E':
|
||
case 'f': case 'F':
|
||
case 'l': case 'L':
|
||
case 's': case 'S':
|
||
idx++;
|
||
start = idx;
|
||
c = mem[idx];
|
||
if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
c = mem[idx];
|
||
}
|
||
else if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
c = mem[idx];
|
||
}
|
||
else
|
||
sign = 1;
|
||
|
||
if (!isdigit ((int) (unsigned char) c))
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
exponent = DIGIT2UINT (c);
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isdigit ((int) (unsigned char) c))
|
||
{
|
||
idx++;
|
||
if (exponent <= SCM_MAXEXP)
|
||
exponent = exponent * 10 + DIGIT2UINT (c);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (exponent > SCM_MAXEXP)
|
||
{
|
||
size_t exp_len = idx - start;
|
||
SCM exp_string = scm_from_locale_stringn (&mem[start], exp_len);
|
||
SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
|
||
scm_out_of_range ("string->number", exp_num);
|
||
}
|
||
|
||
e = scm_integer_expt (SCM_I_MAKINUM (10), SCM_I_MAKINUM (exponent));
|
||
if (sign == 1)
|
||
result = scm_product (result, e);
|
||
else
|
||
result = scm_divide2real (result, e);
|
||
|
||
/* We've seen an exponent, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
*p_idx = idx;
|
||
if (x == INEXACT)
|
||
*p_exactness = x;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
|
||
|
||
static SCM
|
||
mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
SCM result;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
|
||
{
|
||
*p_idx = idx+5;
|
||
return scm_inf ();
|
||
}
|
||
|
||
if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
|
||
{
|
||
enum t_exactness x = EXACT;
|
||
|
||
/* Cobble up the fractional part. We might want to set the
|
||
NaN's mantissa from it. */
|
||
idx += 4;
|
||
mem2uinteger (mem, len, &idx, 10, &x);
|
||
*p_idx = idx;
|
||
return scm_nan ();
|
||
}
|
||
|
||
if (mem[idx] == '.')
|
||
{
|
||
if (radix != 10)
|
||
return SCM_BOOL_F;
|
||
else if (idx + 1 == len)
|
||
return SCM_BOOL_F;
|
||
else if (!isdigit ((int) (unsigned char) mem[idx + 1]))
|
||
return SCM_BOOL_F;
|
||
else
|
||
result = mem2decimal_from_point (SCM_I_MAKINUM (0), mem, len,
|
||
p_idx, p_exactness);
|
||
}
|
||
else
|
||
{
|
||
enum t_exactness x = EXACT;
|
||
SCM uinteger;
|
||
|
||
uinteger = mem2uinteger (mem, len, &idx, radix, &x);
|
||
if (scm_is_false (uinteger))
|
||
return SCM_BOOL_F;
|
||
|
||
if (idx == len)
|
||
result = uinteger;
|
||
else if (mem[idx] == '/')
|
||
{
|
||
SCM divisor;
|
||
|
||
idx++;
|
||
|
||
divisor = mem2uinteger (mem, len, &idx, radix, &x);
|
||
if (scm_is_false (divisor))
|
||
return SCM_BOOL_F;
|
||
|
||
/* both are int/big here, I assume */
|
||
result = scm_i_make_ratio (uinteger, divisor);
|
||
}
|
||
else if (radix == 10)
|
||
{
|
||
result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
|
||
if (scm_is_false (result))
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
result = uinteger;
|
||
|
||
*p_idx = idx;
|
||
if (x == INEXACT)
|
||
*p_exactness = x;
|
||
}
|
||
|
||
/* When returning an inexact zero, make sure it is represented as a
|
||
floating point value so that we can change its sign.
|
||
*/
|
||
if (scm_is_eq (result, SCM_I_MAKINUM(0)) && *p_exactness == INEXACT)
|
||
result = scm_from_double (0.0);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
|
||
static SCM
|
||
mem2complex (const char* mem, size_t len, unsigned int idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
char c;
|
||
int sign = 0;
|
||
SCM ureal;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = mem[idx];
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
}
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
if (scm_is_false (ureal))
|
||
{
|
||
/* input must be either +i or -i */
|
||
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
|
||
if (mem[idx] == 'i' || mem[idx] == 'I')
|
||
{
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (SCM_I_MAKINUM (0), SCM_I_MAKINUM (sign));
|
||
}
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
{
|
||
if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
|
||
ureal = scm_difference (ureal, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return ureal;
|
||
|
||
c = mem[idx];
|
||
switch (c)
|
||
{
|
||
case 'i': case 'I':
|
||
/* either +<ureal>i or -<ureal>i */
|
||
|
||
idx++;
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
return scm_make_rectangular (SCM_I_MAKINUM (0), ureal);
|
||
|
||
case '@':
|
||
/* polar input: <real>@<real>. */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign;
|
||
SCM angle;
|
||
SCM result;
|
||
|
||
c = mem[idx];
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
}
|
||
else
|
||
sign = 1;
|
||
|
||
angle = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
if (scm_is_false (angle))
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
|
||
angle = scm_difference (angle, SCM_UNDEFINED);
|
||
|
||
result = scm_make_polar (ureal, angle);
|
||
return result;
|
||
}
|
||
case '+':
|
||
case '-':
|
||
/* expecting input matching <real>[+-]<ureal>?i */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign = (c == '+') ? 1 : -1;
|
||
SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
|
||
if (scm_is_false (imag))
|
||
imag = SCM_I_MAKINUM (sign);
|
||
else if (sign == -1 && scm_is_false (scm_nan_p (ureal)))
|
||
imag = scm_difference (imag, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
if (mem[idx] != 'i' && mem[idx] != 'I')
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (ureal, imag);
|
||
}
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
|
||
|
||
enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
|
||
|
||
SCM
|
||
scm_c_locale_stringn_to_number (const char* mem, size_t len,
|
||
unsigned int default_radix)
|
||
{
|
||
unsigned int idx = 0;
|
||
unsigned int radix = NO_RADIX;
|
||
enum t_exactness forced_x = NO_EXACTNESS;
|
||
enum t_exactness implicit_x = EXACT;
|
||
SCM result;
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
|
||
while (idx + 2 < len && mem[idx] == '#')
|
||
{
|
||
switch (mem[idx + 1])
|
||
{
|
||
case 'b': case 'B':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DUAL;
|
||
break;
|
||
case 'd': case 'D':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DEC;
|
||
break;
|
||
case 'i': case 'I':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = INEXACT;
|
||
break;
|
||
case 'e': case 'E':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = EXACT;
|
||
break;
|
||
case 'o': case 'O':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = OCT;
|
||
break;
|
||
case 'x': case 'X':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = HEX;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
idx += 2;
|
||
}
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
if (radix == NO_RADIX)
|
||
result = mem2complex (mem, len, idx, default_radix, &implicit_x);
|
||
else
|
||
result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
|
||
|
||
if (scm_is_false (result))
|
||
return SCM_BOOL_F;
|
||
|
||
switch (forced_x)
|
||
{
|
||
case EXACT:
|
||
if (SCM_INEXACTP (result))
|
||
return scm_inexact_to_exact (result);
|
||
else
|
||
return result;
|
||
case INEXACT:
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
case NO_EXACTNESS:
|
||
default:
|
||
if (implicit_x == INEXACT)
|
||
{
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
}
|
||
else
|
||
return result;
|
||
}
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
|
||
(SCM string, SCM radix),
|
||
"Return a number of the maximally precise representation\n"
|
||
"expressed by the given @var{string}. @var{radix} must be an\n"
|
||
"exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
|
||
"is a default radix that may be overridden by an explicit radix\n"
|
||
"prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
|
||
"supplied, then the default radix is 10. If string is not a\n"
|
||
"syntactically valid notation for a number, then\n"
|
||
"@code{string->number} returns @code{#f}.")
|
||
#define FUNC_NAME s_scm_string_to_number
|
||
{
|
||
SCM answer;
|
||
unsigned int base;
|
||
SCM_VALIDATE_STRING (1, string);
|
||
|
||
if (SCM_UNBNDP (radix))
|
||
base = 10;
|
||
else
|
||
base = scm_to_unsigned_integer (radix, 2, INT_MAX);
|
||
|
||
answer = scm_c_locale_stringn_to_number (scm_i_string_chars (string),
|
||
scm_i_string_length (string),
|
||
base);
|
||
scm_remember_upto_here_1 (string);
|
||
return answer;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/*** END strs->nums ***/
|
||
|
||
|
||
SCM
|
||
scm_bigequal (SCM x, SCM y)
|
||
{
|
||
int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_from_bool (0 == result);
|
||
}
|
||
|
||
SCM
|
||
scm_real_equalp (SCM x, SCM y)
|
||
{
|
||
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
}
|
||
|
||
SCM
|
||
scm_complex_equalp (SCM x, SCM y)
|
||
{
|
||
return scm_from_bool (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
|
||
&& SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
|
||
}
|
||
|
||
SCM
|
||
scm_i_fraction_equalp (SCM x, SCM y)
|
||
{
|
||
if (scm_is_false (scm_equal_p (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_NUMERATOR (y)))
|
||
|| scm_is_false (scm_equal_p (SCM_FRACTION_DENOMINATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (y))))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return SCM_BOOL_T;
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_number_p, "number?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_number_p
|
||
{
|
||
return scm_from_bool (SCM_NUMBERP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_complex_p, "complex?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
|
||
"otherwise. Note that the sets of real, rational and integer\n"
|
||
"values form subsets of the set of complex numbers, i. e. the\n"
|
||
"predicate will also be fulfilled if @var{x} is a real,\n"
|
||
"rational or integer number.")
|
||
#define FUNC_NAME s_scm_complex_p
|
||
{
|
||
/* all numbers are complex. */
|
||
return scm_number_p (x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_real_p, "real?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a real number, @code{#f}\n"
|
||
"otherwise. Note that the set of integer values forms a subset of\n"
|
||
"the set of real numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if @var{x} is an integer number.")
|
||
#define FUNC_NAME s_scm_real_p
|
||
{
|
||
/* we can't represent irrational numbers. */
|
||
return scm_rational_p (x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_rational_p, "rational?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
|
||
"otherwise. Note that the set of integer values forms a subset of\n"
|
||
"the set of rational numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if @var{x} is an integer number.")
|
||
#define FUNC_NAME s_scm_rational_p
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_IMP (x))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_BIGP (x))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_FRACTIONP (x))
|
||
return SCM_BOOL_T;
|
||
else if (SCM_REALP (x))
|
||
/* due to their limited precision, all floating point numbers are
|
||
rational as well. */
|
||
return SCM_BOOL_T;
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
|
||
"else.")
|
||
#define FUNC_NAME s_scm_integer_p
|
||
{
|
||
double r;
|
||
if (SCM_I_INUMP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_IMP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_BIGP (x))
|
||
return SCM_BOOL_T;
|
||
if (!SCM_INEXACTP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_COMPLEXP (x))
|
||
return SCM_BOOL_F;
|
||
r = SCM_REAL_VALUE (x);
|
||
/* +/-inf passes r==floor(r), making those #t */
|
||
if (r == floor (r))
|
||
return SCM_BOOL_T;
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
|
||
"else.")
|
||
#define FUNC_NAME s_scm_inexact_p
|
||
{
|
||
if (SCM_INEXACTP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_NUMBERP (x))
|
||
return SCM_BOOL_F;
|
||
SCM_WRONG_TYPE_ARG (1, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
|
||
/* "Return @code{#t} if all parameters are numerically equal." */
|
||
SCM
|
||
scm_num_eq_p (SCM x, SCM y)
|
||
{
|
||
again:
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
return scm_from_bool (xx == yy);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_REALP (y))
|
||
{
|
||
/* On a 32-bit system an inum fits a double, we can cast the inum
|
||
to a double and compare.
|
||
|
||
But on a 64-bit system an inum is bigger than a double and
|
||
casting it to a double (call that dxx) will round. dxx is at
|
||
worst 1 bigger or smaller than xx, so if dxx==yy we know yy is
|
||
an integer and fits a long. So we cast yy to a long and
|
||
compare with plain xx.
|
||
|
||
An alternative (for any size system actually) would be to check
|
||
yy is an integer (with floor) and is in range of an inum
|
||
(compare against appropriate powers of 2) then test
|
||
xx==(long)yy. It's just a matter of which casts/comparisons
|
||
might be fastest or easiest for the cpu. */
|
||
|
||
double yy = SCM_REAL_VALUE (y);
|
||
return scm_from_bool ((double) xx == yy
|
||
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|
||
|| xx == (long) yy));
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool (((double) xx == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
return SCM_BOOL_F;
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_from_bool (0 == cmp);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (y)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (0 == cmp);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
int cmp;
|
||
if (0.0 != SCM_COMPLEX_IMAG (y))
|
||
return SCM_BOOL_F;
|
||
if (xisnan (SCM_COMPLEX_REAL (y)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (0 == cmp);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return SCM_BOOL_F;
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
double xx = SCM_REAL_VALUE (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
/* see comments with inum/real above */
|
||
long yy = SCM_I_INUM (y);
|
||
return scm_from_bool (xx == (double) yy
|
||
&& (DBL_MANT_DIG >= SCM_I_FIXNUM_BIT-1
|
||
|| (long) xx == yy));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (x)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_bool (0 == cmp);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double xx = SCM_REAL_VALUE (x);
|
||
if (xisnan (xx))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (xx))
|
||
return scm_from_bool (xx < 0.0);
|
||
x = scm_inexact_to_exact (x); /* with x as frac or int */
|
||
goto again;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == (double) SCM_I_INUM (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp;
|
||
if (0.0 != SCM_COMPLEX_IMAG (x))
|
||
return SCM_BOOL_F;
|
||
if (xisnan (SCM_COMPLEX_REAL (x)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_bool (0 == cmp);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_from_bool ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double xx;
|
||
if (SCM_COMPLEX_IMAG (x) != 0.0)
|
||
return SCM_BOOL_F;
|
||
xx = SCM_COMPLEX_REAL (x);
|
||
if (xisnan (xx))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (xx))
|
||
return scm_from_bool (xx < 0.0);
|
||
x = scm_inexact_to_exact (x); /* with x as frac or int */
|
||
goto again;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_BIGP (y))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
if (xisnan (yy))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (yy))
|
||
return scm_from_bool (0.0 < yy);
|
||
y = scm_inexact_to_exact (y); /* with y as frac or int */
|
||
goto again;
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double yy;
|
||
if (SCM_COMPLEX_IMAG (y) != 0.0)
|
||
return SCM_BOOL_F;
|
||
yy = SCM_COMPLEX_REAL (y);
|
||
if (xisnan (yy))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (yy))
|
||
return scm_from_bool (0.0 < yy);
|
||
y = scm_inexact_to_exact (y); /* with y as frac or int */
|
||
goto again;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_fraction_equalp (x, y);
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
|
||
}
|
||
|
||
|
||
/* OPTIMIZE-ME: For int/frac and frac/frac compares, the multiplications
|
||
done are good for inums, but for bignums an answer can almost always be
|
||
had by just examining a few high bits of the operands, as done by GMP in
|
||
mpq_cmp. flonum/frac compares likewise, but with the slight complication
|
||
of the float exponent to take into account. */
|
||
|
||
SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "increasing."
|
||
*/
|
||
SCM
|
||
scm_less_p (SCM x, SCM y)
|
||
{
|
||
again:
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
return scm_from_bool (xx < yy);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_bool (sgn > 0);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool ((double) xx < SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
/* "x < a/b" becomes "x*b < a" */
|
||
int_frac:
|
||
x = scm_product (x, SCM_FRACTION_DENOMINATOR (y));
|
||
y = SCM_FRACTION_NUMERATOR (y);
|
||
goto again;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (sgn < 0);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_from_bool (cmp < 0);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (y)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (cmp < 0);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
goto int_frac;
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_from_bool (SCM_REAL_VALUE (x) < (double) SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (x)))
|
||
return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_bool (cmp > 0);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_bool (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double xx = SCM_REAL_VALUE (x);
|
||
if (xisnan (xx))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (xx))
|
||
return scm_from_bool (xx < 0.0);
|
||
x = scm_inexact_to_exact (x); /* with x as frac or int */
|
||
goto again;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y) || SCM_BIGP (y))
|
||
{
|
||
/* "a/b < y" becomes "a < y*b" */
|
||
y = scm_product (y, SCM_FRACTION_DENOMINATOR (x));
|
||
x = SCM_FRACTION_NUMERATOR (x);
|
||
goto again;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
if (xisnan (yy))
|
||
return SCM_BOOL_F;
|
||
if (xisinf (yy))
|
||
return scm_from_bool (0.0 < yy);
|
||
y = scm_inexact_to_exact (y); /* with y as frac or int */
|
||
goto again;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
/* "a/b < c/d" becomes "a*d < c*b" */
|
||
SCM new_x = scm_product (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
SCM new_y = scm_product (SCM_FRACTION_NUMERATOR (y),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
x = new_x;
|
||
y = new_y;
|
||
goto again;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "decreasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_gr_p
|
||
SCM
|
||
scm_gr_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else
|
||
return scm_less_p (y, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "non-decreasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_leq_p
|
||
SCM
|
||
scm_leq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_not (scm_less_p (y, x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "non-increasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_geq_p
|
||
SCM
|
||
scm_geq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else if (scm_is_true (scm_nan_p (x)) || scm_is_true (scm_nan_p (y)))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return scm_not (scm_less_p (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
|
||
/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_zero_p (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return scm_from_bool (scm_is_eq (z, SCM_INUM0));
|
||
else if (SCM_BIGP (z))
|
||
return SCM_BOOL_F;
|
||
else if (SCM_REALP (z))
|
||
return scm_from_bool (SCM_REAL_VALUE (z) == 0.0);
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_bool (SCM_COMPLEX_REAL (z) == 0.0
|
||
&& SCM_COMPLEX_IMAG (z) == 0.0);
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_BOOL_F;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
|
||
/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_positive_p (SCM x)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_from_bool (SCM_I_INUM (x) > 0);
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (sgn > 0);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
return scm_from_bool(SCM_REAL_VALUE (x) > 0.0);
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_positive_p (SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
|
||
/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_negative_p (SCM x)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return scm_from_bool (SCM_I_INUM (x) < 0);
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_bool (sgn < 0);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
return scm_from_bool(SCM_REAL_VALUE (x) < 0.0);
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_negative_p (SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
|
||
}
|
||
|
||
|
||
/* scm_min and scm_max return an inexact when either argument is inexact, as
|
||
required by r5rs. On that basis, for exact/inexact combinations the
|
||
exact is converted to inexact to compare and possibly return. This is
|
||
unlike scm_less_p above which takes some trouble to preserve all bits in
|
||
its test, such trouble is not required for min and max. */
|
||
|
||
SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
|
||
/* "Return the maximum of all parameter values."
|
||
*/
|
||
SCM
|
||
scm_max (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
SCM_WTA_DISPATCH_0 (g_max, s_max);
|
||
else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
|
||
return x;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
return (xx < yy) ? y : x;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return (sgn < 0) ? x : y;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double z = xx;
|
||
/* if y==NaN then ">" is false and we return NaN */
|
||
return (z > SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
use_less:
|
||
return (scm_is_false (scm_less_p (x, y)) ? x : y);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn < 0) ? y : x;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return (cmp > 0) ? x : y;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
/* if y==NaN then xx>yy is false, so we return the NaN y */
|
||
double xx, yy;
|
||
big_real:
|
||
xx = scm_i_big2dbl (x);
|
||
yy = SCM_REAL_VALUE (y);
|
||
return (xx > yy ? scm_from_double (xx) : y);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
double z = SCM_I_INUM (y);
|
||
/* if x==NaN then "<" is false and we return NaN */
|
||
return (SCM_REAL_VALUE (x) < z) ? scm_from_double (z) : x;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto big_real;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
/* if x==NaN then our explicit check means we return NaN
|
||
if y==NaN then ">" is false and we return NaN
|
||
calling isnan is unavoidable, since it's the only way to know
|
||
which of x or y causes any compares to be false */
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double yy = scm_i_fraction2double (y);
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (xx < yy) ? scm_from_double (yy) : x;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double xx = scm_i_fraction2double (x);
|
||
return (xx < SCM_REAL_VALUE (y)) ? y : scm_from_double (xx);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
|
||
/* "Return the minium of all parameter values."
|
||
*/
|
||
SCM
|
||
scm_min (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
SCM_WTA_DISPATCH_0 (g_min, s_min);
|
||
else if (SCM_I_INUMP(x) || SCM_BIGP(x) || SCM_REALP(x) || SCM_FRACTIONP(x))
|
||
return x;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
return (xx < yy) ? x : y;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return (sgn < 0) ? y : x;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double z = xx;
|
||
/* if y==NaN then "<" is false and we return NaN */
|
||
return (z < SCM_REAL_VALUE (y)) ? scm_from_double (z) : y;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
use_less:
|
||
return (scm_is_false (scm_less_p (x, y)) ? y : x);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn < 0) ? x : y;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return (cmp > 0) ? y : x;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
/* if y==NaN then xx<yy is false, so we return the NaN y */
|
||
double xx, yy;
|
||
big_real:
|
||
xx = scm_i_big2dbl (x);
|
||
yy = SCM_REAL_VALUE (y);
|
||
return (xx < yy ? scm_from_double (xx) : y);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
double z = SCM_I_INUM (y);
|
||
/* if x==NaN then "<" is false and we return NaN */
|
||
return (z < SCM_REAL_VALUE (x)) ? scm_from_double (z) : x;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto big_real;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
/* if x==NaN then our explicit check means we return NaN
|
||
if y==NaN then "<" is false and we return NaN
|
||
calling isnan is unavoidable, since it's the only way to know
|
||
which of x or y causes any compares to be false */
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double yy = scm_i_fraction2double (y);
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (yy < xx) ? scm_from_double (yy) : x;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double xx = scm_i_fraction2double (x);
|
||
return (SCM_REAL_VALUE (y) < xx) ? y : scm_from_double (xx);
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
goto use_less;
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
|
||
/* "Return the sum of all parameter values. Return 0 if called without\n"
|
||
* "any parameters."
|
||
*/
|
||
SCM
|
||
scm_sum (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_NUMBERP (x)) return x;
|
||
if (SCM_UNBNDP (x)) return SCM_INUM0;
|
||
SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
long yy = SCM_I_INUM (y);
|
||
long int z = xx + yy;
|
||
return SCM_FIXABLE (z) ? SCM_I_MAKINUM (z) : scm_i_long2big (z);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto add_big_inum;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
return scm_from_double (xx + SCM_REAL_VALUE (y));
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
return scm_c_make_rectangular (xx + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
|
||
scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
} else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int inum;
|
||
int bigsgn;
|
||
add_big_inum:
|
||
inum = SCM_I_INUM (y);
|
||
if (inum == 0)
|
||
return x;
|
||
bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
if (inum < 0)
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
|
||
scm_remember_upto_here_1 (x);
|
||
/* we know the result will have to be a bignum */
|
||
if (bigsgn == -1)
|
||
return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
|
||
scm_remember_upto_here_1 (x);
|
||
/* we know the result will have to be a bignum */
|
||
if (bigsgn == 1)
|
||
return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
mpz_add (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* we know the result will have to be a bignum */
|
||
if (sgn_x == sgn_y)
|
||
return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
|
||
+ SCM_COMPLEX_REAL (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (y),
|
||
scm_product (x, SCM_FRACTION_DENOMINATOR (y))),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) + SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) + scm_i_fraction2double (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_I_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double real_part = (mpz_get_d (SCM_I_BIG_MPZ (y))
|
||
+ SCM_COMPLEX_REAL (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (x));
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) + scm_i_fraction2double (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_BIGP (y))
|
||
return scm_i_make_ratio (scm_sum (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (y, SCM_FRACTION_DENOMINATOR (x))),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (y) + scm_i_fraction2double (x));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (y) + scm_i_fraction2double (x),
|
||
SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a/b + c/d = (ad + bc) / bd */
|
||
return scm_i_make_ratio (scm_sum (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
|
||
scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_oneplus, "1+", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @math{@var{x}+1}.")
|
||
#define FUNC_NAME s_scm_oneplus
|
||
{
|
||
return scm_sum (x, SCM_I_MAKINUM (1));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
|
||
/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
|
||
* the sum of all but the first argument are subtracted from the first
|
||
* argument. */
|
||
#define FUNC_NAME s_difference
|
||
SCM
|
||
scm_difference (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
SCM_WTA_DISPATCH_0 (g_difference, s_difference);
|
||
else
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = -SCM_I_INUM (x);
|
||
if (SCM_FIXABLE (xx))
|
||
return SCM_I_MAKINUM (xx);
|
||
else
|
||
return scm_i_long2big (xx);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
/* Must scm_i_normbig here because -SCM_MOST_NEGATIVE_FIXNUM is a
|
||
bignum, but negating that gives a fixnum. */
|
||
return scm_i_normbig (scm_i_clonebig (x, 0));
|
||
else if (SCM_REALP (x))
|
||
return scm_from_double (-SCM_REAL_VALUE (x));
|
||
else if (SCM_COMPLEXP (x))
|
||
return scm_c_make_rectangular (-SCM_COMPLEX_REAL (x),
|
||
-SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x), SCM_UNDEFINED),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
long int yy = SCM_I_INUM (y);
|
||
long int z = xx - yy;
|
||
if (SCM_FIXABLE (z))
|
||
return SCM_I_MAKINUM (z);
|
||
else
|
||
return scm_i_long2big (z);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
/* inum-x - big-y */
|
||
long xx = SCM_I_INUM (x);
|
||
|
||
if (xx == 0)
|
||
return scm_i_clonebig (y, 0);
|
||
else
|
||
{
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM result = scm_i_mkbig ();
|
||
|
||
if (xx >= 0)
|
||
mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
|
||
else
|
||
{
|
||
/* x - y == -(y + -x) */
|
||
mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
|
||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
}
|
||
scm_remember_upto_here_1 (y);
|
||
|
||
if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
|
||
/* we know the result will have to be a bignum */
|
||
return result;
|
||
else
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
return scm_from_double (xx - SCM_REAL_VALUE (y));
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
long int xx = SCM_I_INUM (x);
|
||
return scm_c_make_rectangular (xx - SCM_COMPLEX_REAL (y),
|
||
- SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a - b/c = (ac - b) / c */
|
||
return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
/* big-x - inum-y */
|
||
long yy = SCM_I_INUM (y);
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
|
||
scm_remember_upto_here_1 (x);
|
||
if (sgn_x == 0)
|
||
return (SCM_FIXABLE (-yy) ?
|
||
SCM_I_MAKINUM (-yy) : scm_from_long (-yy));
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
|
||
if (yy >= 0)
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
|
||
else
|
||
mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), -yy);
|
||
scm_remember_upto_here_1 (x);
|
||
|
||
if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
|
||
/* we know the result will have to be a bignum */
|
||
return result;
|
||
else
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_sub (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* we know the result will have to be a bignum */
|
||
if ((sgn_x == 1) && (sgn_y == -1))
|
||
return result;
|
||
if ((sgn_x == -1) && (sgn_y == 1))
|
||
return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double real_part = (mpz_get_d (SCM_I_BIG_MPZ (x))
|
||
- SCM_COMPLEX_REAL (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_c_make_rectangular (real_part, - SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_difference (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) - SCM_I_INUM (y));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) - scm_i_fraction2double (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_I_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double real_part = (SCM_COMPLEX_REAL (x)
|
||
- mpz_get_d (SCM_I_BIG_MPZ (y)));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_c_make_rectangular (real_part, SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) - scm_i_fraction2double (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
/* a/b - c = (a - cb) / b */
|
||
return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_BIGP (y))
|
||
return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product(y, SCM_FRACTION_DENOMINATOR (x))),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (scm_i_fraction2double (x) - SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (scm_i_fraction2double (x) - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a/b - c/d = (ad - bc) / bd */
|
||
return scm_i_make_ratio (scm_difference (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
|
||
scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x))),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x), SCM_FRACTION_DENOMINATOR (y)));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_oneminus, "1-", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @math{@var{x}-1}.")
|
||
#define FUNC_NAME s_scm_oneminus
|
||
{
|
||
return scm_difference (x, SCM_I_MAKINUM (1));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
|
||
/* "Return the product of all arguments. If called without arguments,\n"
|
||
* "1 is returned."
|
||
*/
|
||
SCM
|
||
scm_product (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
return SCM_I_MAKINUM (1L);
|
||
else if (SCM_NUMBERP (x))
|
||
return x;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx;
|
||
|
||
intbig:
|
||
xx = SCM_I_INUM (x);
|
||
|
||
switch (xx)
|
||
{
|
||
case 0: return x; break;
|
||
case 1: return y; break;
|
||
}
|
||
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
long kk = xx * yy;
|
||
SCM k = SCM_I_MAKINUM (kk);
|
||
if ((kk == SCM_I_INUM (k)) && (kk / xx == yy))
|
||
return k;
|
||
else
|
||
{
|
||
SCM result = scm_i_long2big (xx);
|
||
mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
|
||
scm_remember_upto_here_1 (y);
|
||
return result;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (xx * SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
|
||
xx * SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto intbig;
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mul (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return result;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double z = mpz_get_d (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (y),
|
||
z * SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_NUMERATOR (y)),
|
||
SCM_FRACTION_DENOMINATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
/* inexact*exact0 => exact 0, per R5RS "Exactness" section */
|
||
if (scm_is_eq (y, SCM_INUM0))
|
||
return y;
|
||
return scm_from_double (SCM_I_INUM (y) * SCM_REAL_VALUE (x));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_double (result);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
return scm_c_make_rectangular (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
|
||
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_from_double (SCM_REAL_VALUE (x) * scm_i_fraction2double (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
/* inexact*exact0 => exact 0, per R5RS "Exactness" section */
|
||
if (scm_is_eq (y, SCM_INUM0))
|
||
return y;
|
||
return scm_c_make_rectangular (SCM_I_INUM (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_I_INUM (y) * SCM_COMPLEX_IMAG (x));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double z = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_c_make_rectangular (z * SCM_COMPLEX_REAL (x),
|
||
z * SCM_COMPLEX_IMAG (x));
|
||
}
|
||
else if (SCM_REALP (y))
|
||
return scm_c_make_rectangular (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
return scm_c_make_rectangular (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
|
||
- SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
|
||
SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
|
||
+ SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double yy = scm_i_fraction2double (y);
|
||
return scm_c_make_rectangular (yy * SCM_COMPLEX_REAL (x),
|
||
yy * SCM_COMPLEX_IMAG (x));
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_BIGP (y))
|
||
return scm_i_make_ratio (scm_product (y, SCM_FRACTION_NUMERATOR (x)),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
else if (SCM_REALP (y))
|
||
return scm_from_double (scm_i_fraction2double (x) * SCM_REAL_VALUE (y));
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double xx = scm_i_fraction2double (x);
|
||
return scm_c_make_rectangular (xx * SCM_COMPLEX_REAL (y),
|
||
xx * SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a/b * c/d = ac / bd */
|
||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_NUMERATOR (y)),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (y)));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
|
||
}
|
||
|
||
#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
|
||
|| (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
|
||
#define ALLOW_DIVIDE_BY_ZERO
|
||
/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
|
||
#endif
|
||
|
||
/* The code below for complex division is adapted from the GNU
|
||
libstdc++, which adapted it from f2c's libF77, and is subject to
|
||
this copyright: */
|
||
|
||
/****************************************************************
|
||
Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
|
||
|
||
Permission to use, copy, modify, and distribute this software
|
||
and its documentation for any purpose and without fee is hereby
|
||
granted, provided that the above copyright notice appear in all
|
||
copies and that both that the copyright notice and this
|
||
permission notice and warranty disclaimer appear in supporting
|
||
documentation, and that the names of AT&T Bell Laboratories or
|
||
Bellcore or any of their entities not be used in advertising or
|
||
publicity pertaining to distribution of the software without
|
||
specific, written prior permission.
|
||
|
||
AT&T and Bellcore disclaim all warranties with regard to this
|
||
software, including all implied warranties of merchantability
|
||
and fitness. In no event shall AT&T or Bellcore be liable for
|
||
any special, indirect or consequential damages or any damages
|
||
whatsoever resulting from loss of use, data or profits, whether
|
||
in an action of contract, negligence or other tortious action,
|
||
arising out of or in connection with the use or performance of
|
||
this software.
|
||
****************************************************************/
|
||
|
||
SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
|
||
/* Divide the first argument by the product of the remaining
|
||
arguments. If called with one argument @var{z1}, 1/@var{z1} is
|
||
returned. */
|
||
#define FUNC_NAME s_divide
|
||
static SCM
|
||
scm_i_divide (SCM x, SCM y, int inexact)
|
||
{
|
||
double a;
|
||
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
SCM_WTA_DISPATCH_0 (g_divide, s_divide);
|
||
else if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (xx == 1 || xx == -1)
|
||
return x;
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
else if (xx == 0)
|
||
scm_num_overflow (s_divide);
|
||
#endif
|
||
else
|
||
{
|
||
if (inexact)
|
||
return scm_from_double (1.0 / (double) xx);
|
||
else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (inexact)
|
||
return scm_from_double (1.0 / scm_i_big2dbl (x));
|
||
else return scm_i_make_ratio (SCM_I_MAKINUM(1), x);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
double xx = SCM_REAL_VALUE (x);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (xx == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double (1.0 / xx);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
double r = SCM_COMPLEX_REAL (x);
|
||
double i = SCM_COMPLEX_IMAG (x);
|
||
if (fabs(r) <= fabs(i))
|
||
{
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_c_make_rectangular (t / d, -1.0 / d);
|
||
}
|
||
else
|
||
{
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_c_make_rectangular (1.0 / d, -t / d);
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
return scm_i_make_ratio (SCM_FRACTION_DENOMINATOR (x),
|
||
SCM_FRACTION_NUMERATOR (x));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
|
||
}
|
||
|
||
if (SCM_I_INUMP (x))
|
||
{
|
||
long xx = SCM_I_INUM (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
{
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
return scm_from_double ((double) xx / (double) yy);
|
||
#endif
|
||
}
|
||
else if (xx % yy != 0)
|
||
{
|
||
if (inexact)
|
||
return scm_from_double ((double) xx / (double) yy);
|
||
else return scm_i_make_ratio (x, y);
|
||
}
|
||
else
|
||
{
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z))
|
||
return SCM_I_MAKINUM (z);
|
||
else
|
||
return scm_i_long2big (z);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
if (inexact)
|
||
return scm_from_double ((double) xx / scm_i_big2dbl (y));
|
||
else return scm_i_make_ratio (x, y);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double ((double) xx / yy);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
a = xx;
|
||
complex_div: /* y _must_ be a complex number */
|
||
{
|
||
double r = SCM_COMPLEX_REAL (y);
|
||
double i = SCM_COMPLEX_IMAG (y);
|
||
if (fabs(r) <= fabs(i))
|
||
{
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((a * t) / d, -a / d);
|
||
}
|
||
else
|
||
{
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_c_make_rectangular (a / d, -(a * t) / d);
|
||
}
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
/* a / b/c = ac / b */
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int yy = SCM_I_INUM (y);
|
||
if (yy == 0)
|
||
{
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn == 0) ? scm_nan () : scm_inf ();
|
||
#endif
|
||
}
|
||
else if (yy == 1)
|
||
return x;
|
||
else
|
||
{
|
||
/* FIXME: HMM, what are the relative performance issues here?
|
||
We need to test. Is it faster on average to test
|
||
divisible_p, then perform whichever operation, or is it
|
||
faster to perform the integer div opportunistically and
|
||
switch to real if there's a remainder? For now we take the
|
||
middle ground: test, then if divisible, use the faster div
|
||
func. */
|
||
|
||
long abs_yy = yy < 0 ? -yy : yy;
|
||
int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
|
||
|
||
if (divisible_p)
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
|
||
scm_remember_upto_here_1 (x);
|
||
if (yy < 0)
|
||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
{
|
||
if (inexact)
|
||
return scm_from_double (scm_i_big2dbl (x) / (double) yy);
|
||
else return scm_i_make_ratio (x, y);
|
||
}
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
|
||
if (y_is_zero)
|
||
{
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn == 0) ? scm_nan () : scm_inf ();
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* big_x / big_y */
|
||
if (inexact)
|
||
{
|
||
/* It's easily possible for the ratio x/y to fit a double
|
||
but one or both x and y be too big to fit a double,
|
||
hence the use of mpq_get_d rather than converting and
|
||
dividing. */
|
||
mpq_t q;
|
||
*mpq_numref(q) = *SCM_I_BIG_MPZ (x);
|
||
*mpq_denref(q) = *SCM_I_BIG_MPZ (y);
|
||
return scm_from_double (mpq_get_d (q));
|
||
}
|
||
else
|
||
{
|
||
int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
if (divisible_p)
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_divexact (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
return scm_i_make_ratio (x, y);
|
||
}
|
||
}
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double (scm_i_big2dbl (x) / yy);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
a = scm_i_big2dbl (x);
|
||
goto complex_div;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (x, SCM_FRACTION_DENOMINATOR (y)),
|
||
SCM_FRACTION_NUMERATOR (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
else if (SCM_REALP (x))
|
||
{
|
||
double rx = SCM_REAL_VALUE (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int yy = SCM_I_INUM (y);
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
if (yy == 0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double (rx / (double) yy);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_from_double (rx / dby);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double (rx / yy);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
a = rx;
|
||
goto complex_div;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_from_double (rx / scm_i_fraction2double (y));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
else if (SCM_COMPLEXP (x))
|
||
{
|
||
double rx = SCM_COMPLEX_REAL (x);
|
||
double ix = SCM_COMPLEX_IMAG (x);
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int yy = SCM_I_INUM (y);
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
if (yy == 0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
{
|
||
double d = yy;
|
||
return scm_c_make_rectangular (rx / d, ix / d);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_c_make_rectangular (rx / dby, ix / dby);
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_c_make_rectangular (rx / yy, ix / yy);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
double ry = SCM_COMPLEX_REAL (y);
|
||
double iy = SCM_COMPLEX_IMAG (y);
|
||
if (fabs(ry) <= fabs(iy))
|
||
{
|
||
double t = ry / iy;
|
||
double d = iy * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((rx * t + ix) / d, (ix * t - rx) / d);
|
||
}
|
||
else
|
||
{
|
||
double t = iy / ry;
|
||
double d = ry * (1.0 + t * t);
|
||
return scm_c_make_rectangular ((rx + ix * t) / d, (ix - rx * t) / d);
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
{
|
||
double yy = scm_i_fraction2double (y);
|
||
return scm_c_make_rectangular (rx / yy, ix / yy);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
if (SCM_I_INUMP (y))
|
||
{
|
||
long int yy = SCM_I_INUM (y);
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
if (yy == 0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
return scm_i_make_ratio (SCM_FRACTION_NUMERATOR (x),
|
||
scm_product (SCM_FRACTION_DENOMINATOR (x), y));
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_from_double (scm_i_fraction2double (x) / yy);
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
a = scm_i_fraction2double (x);
|
||
goto complex_div;
|
||
}
|
||
else if (SCM_FRACTIONP (y))
|
||
return scm_i_make_ratio (scm_product (SCM_FRACTION_NUMERATOR (x), SCM_FRACTION_DENOMINATOR (y)),
|
||
scm_product (SCM_FRACTION_NUMERATOR (y), SCM_FRACTION_DENOMINATOR (x)));
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
|
||
}
|
||
|
||
SCM
|
||
scm_divide (SCM x, SCM y)
|
||
{
|
||
return scm_i_divide (x, y, 0);
|
||
}
|
||
|
||
static SCM scm_divide2real (SCM x, SCM y)
|
||
{
|
||
return scm_i_divide (x, y, 1);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
double
|
||
scm_asinh (double x)
|
||
{
|
||
#if HAVE_ASINH
|
||
return asinh (x);
|
||
#else
|
||
#define asinh scm_asinh
|
||
return log (x + sqrt (x * x + 1));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
|
||
/* "Return the inverse hyperbolic sine of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_acosh (double x)
|
||
{
|
||
#if HAVE_ACOSH
|
||
return acosh (x);
|
||
#else
|
||
#define acosh scm_acosh
|
||
return log (x + sqrt (x * x - 1));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
|
||
/* "Return the inverse hyperbolic cosine of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_atanh (double x)
|
||
{
|
||
#if HAVE_ATANH
|
||
return atanh (x);
|
||
#else
|
||
#define atanh scm_atanh
|
||
return 0.5 * log ((1 + x) / (1 - x));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
|
||
/* "Return the inverse hyperbolic tangent of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_c_truncate (double x)
|
||
{
|
||
#if HAVE_TRUNC
|
||
return trunc (x);
|
||
#else
|
||
if (x < 0.0)
|
||
return -floor (-x);
|
||
return floor (x);
|
||
#endif
|
||
}
|
||
|
||
/* scm_c_round is done using floor(x+0.5) to round to nearest and with
|
||
half-way case (ie. when x is an integer plus 0.5) going upwards.
|
||
Then half-way cases are identified and adjusted down if the
|
||
round-upwards didn't give the desired even integer.
|
||
|
||
"plus_half == result" identifies a half-way case. If plus_half, which is
|
||
x + 0.5, is an integer then x must be an integer plus 0.5.
|
||
|
||
An odd "result" value is identified with result/2 != floor(result/2).
|
||
This is done with plus_half, since that value is ready for use sooner in
|
||
a pipelined cpu, and we're already requiring plus_half == result.
|
||
|
||
Note however that we need to be careful when x is big and already an
|
||
integer. In that case "x+0.5" may round to an adjacent integer, causing
|
||
us to return such a value, incorrectly. For instance if the hardware is
|
||
in the usual default nearest-even rounding, then for x = 0x1FFFFFFFFFFFFF
|
||
(ie. 53 one bits) we will have x+0.5 = 0x20000000000000 and that value
|
||
returned. Or if the hardware is in round-upwards mode, then other bigger
|
||
values like say x == 2^128 will see x+0.5 rounding up to the next higher
|
||
representable value, 2^128+2^76 (or whatever), again incorrect.
|
||
|
||
These bad roundings of x+0.5 are avoided by testing at the start whether
|
||
x is already an integer. If it is then clearly that's the desired result
|
||
already. And if it's not then the exponent must be small enough to allow
|
||
an 0.5 to be represented, and hence added without a bad rounding. */
|
||
|
||
double
|
||
scm_c_round (double x)
|
||
{
|
||
double plus_half, result;
|
||
|
||
if (x == floor (x))
|
||
return x;
|
||
|
||
plus_half = x + 0.5;
|
||
result = floor (plus_half);
|
||
/* Adjust so that the rounding is towards even. */
|
||
return ((plus_half == result && plus_half / 2 != floor (plus_half / 2))
|
||
? result - 1
|
||
: result);
|
||
}
|
||
|
||
SCM_DEFINE (scm_truncate_number, "truncate", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards zero.")
|
||
#define FUNC_NAME s_scm_truncate_number
|
||
{
|
||
if (scm_is_false (scm_negative_p (x)))
|
||
return scm_floor (x);
|
||
else
|
||
return scm_ceiling (x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static SCM exactly_one_half;
|
||
|
||
SCM_DEFINE (scm_round_number, "round", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards the nearest integer. "
|
||
"When it is exactly halfway between two integers, "
|
||
"round towards the even one.")
|
||
#define FUNC_NAME s_scm_round_number
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_from_double (scm_c_round (SCM_REAL_VALUE (x)));
|
||
else
|
||
{
|
||
/* OPTIMIZE-ME: Fraction case could be done more efficiently by a
|
||
single quotient+remainder division then examining to see which way
|
||
the rounding should go. */
|
||
SCM plus_half = scm_sum (x, exactly_one_half);
|
||
SCM result = scm_floor (plus_half);
|
||
/* Adjust so that the rounding is towards even. */
|
||
if (scm_is_true (scm_num_eq_p (plus_half, result))
|
||
&& scm_is_true (scm_odd_p (result)))
|
||
return scm_difference (result, SCM_I_MAKINUM (1));
|
||
else
|
||
return result;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_floor, "floor", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards minus infinity.")
|
||
#define FUNC_NAME s_scm_floor
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_from_double (floor (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
if (scm_is_false (scm_negative_p (x)))
|
||
{
|
||
/* For positive x, rounding towards zero is correct. */
|
||
return q;
|
||
}
|
||
else
|
||
{
|
||
/* For negative x, we need to return q-1 unless x is an
|
||
integer. But fractions are never integer, per our
|
||
assumptions. */
|
||
return scm_difference (q, SCM_I_MAKINUM (1));
|
||
}
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_scm_floor, x, 1, s_scm_floor);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_ceiling, "ceiling", 1, 0, 0,
|
||
(SCM x),
|
||
"Round the number @var{x} towards infinity.")
|
||
#define FUNC_NAME s_scm_ceiling
|
||
{
|
||
if (SCM_I_INUMP (x) || SCM_BIGP (x))
|
||
return x;
|
||
else if (SCM_REALP (x))
|
||
return scm_from_double (ceil (SCM_REAL_VALUE (x)));
|
||
else if (SCM_FRACTIONP (x))
|
||
{
|
||
SCM q = scm_quotient (SCM_FRACTION_NUMERATOR (x),
|
||
SCM_FRACTION_DENOMINATOR (x));
|
||
if (scm_is_false (scm_positive_p (x)))
|
||
{
|
||
/* For negative x, rounding towards zero is correct. */
|
||
return q;
|
||
}
|
||
else
|
||
{
|
||
/* For positive x, we need to return q+1 unless x is an
|
||
integer. But fractions are never integer, per our
|
||
assumptions. */
|
||
return scm_sum (q, SCM_I_MAKINUM (1));
|
||
}
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_scm_ceiling, x, 1, s_scm_ceiling);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
|
||
/* "Return the square root of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
|
||
/* "Return the absolute value of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
|
||
/* "Return the @var{x}th power of e."
|
||
*/
|
||
SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
|
||
/* "Return the natural logarithm of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
|
||
/* "Return the sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
|
||
/* "Return the cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
|
||
/* "Return the tangent of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
|
||
/* "Return the arc sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
|
||
/* "Return the arc cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
|
||
/* "Return the arc tangent of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
|
||
/* "Return the hyperbolic sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
|
||
/* "Return the hyperbolic cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
|
||
/* "Return the hyperbolic tangent of the real number @var{x}."
|
||
*/
|
||
|
||
struct dpair
|
||
{
|
||
double x, y;
|
||
};
|
||
|
||
static void scm_two_doubles (SCM x,
|
||
SCM y,
|
||
const char *sstring,
|
||
struct dpair * xy);
|
||
|
||
static void
|
||
scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
xy->x = SCM_I_INUM (x);
|
||
else if (SCM_BIGP (x))
|
||
xy->x = scm_i_big2dbl (x);
|
||
else if (SCM_REALP (x))
|
||
xy->x = SCM_REAL_VALUE (x);
|
||
else if (SCM_FRACTIONP (x))
|
||
xy->x = scm_i_fraction2double (x);
|
||
else
|
||
scm_wrong_type_arg (sstring, SCM_ARG1, x);
|
||
|
||
if (SCM_I_INUMP (y))
|
||
xy->y = SCM_I_INUM (y);
|
||
else if (SCM_BIGP (y))
|
||
xy->y = scm_i_big2dbl (y);
|
||
else if (SCM_REALP (y))
|
||
xy->y = SCM_REAL_VALUE (y);
|
||
else if (SCM_FRACTIONP (y))
|
||
xy->y = scm_i_fraction2double (y);
|
||
else
|
||
scm_wrong_type_arg (sstring, SCM_ARG2, y);
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return @var{x} raised to the power of @var{y}. This\n"
|
||
"procedure does not accept complex arguments.")
|
||
#define FUNC_NAME s_scm_sys_expt
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_from_double (pow (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the arc tangent of the two arguments @var{x} and\n"
|
||
"@var{y}. This is similar to calculating the arc tangent of\n"
|
||
"@var{x} / @var{y}, except that the signs of both arguments\n"
|
||
"are used to determine the quadrant of the result. This\n"
|
||
"procedure does not accept complex arguments.")
|
||
#define FUNC_NAME s_scm_sys_atan2
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_from_double (atan2 (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_c_make_rectangular (double re, double im)
|
||
{
|
||
if (im == 0.0)
|
||
return scm_from_double (re);
|
||
else
|
||
{
|
||
SCM z;
|
||
SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (sizeof (scm_t_complex),
|
||
"complex"));
|
||
SCM_COMPLEX_REAL (z) = re;
|
||
SCM_COMPLEX_IMAG (z) = im;
|
||
return z;
|
||
}
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
|
||
(SCM real, SCM imaginary),
|
||
"Return a complex number constructed of the given @var{real} and\n"
|
||
"@var{imaginary} parts.")
|
||
#define FUNC_NAME s_scm_make_rectangular
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
|
||
return scm_c_make_rectangular (xy.x, xy.y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM
|
||
scm_c_make_polar (double mag, double ang)
|
||
{
|
||
double s, c;
|
||
#if HAVE_SINCOS
|
||
sincos (ang, &s, &c);
|
||
#else
|
||
s = sin (ang);
|
||
c = cos (ang);
|
||
#endif
|
||
return scm_c_make_rectangular (mag * c, mag * s);
|
||
}
|
||
|
||
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the complex number @var{x} * e^(i * @var{y}).")
|
||
#define FUNC_NAME s_scm_make_polar
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_c_make_polar (xy.x, xy.y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
|
||
/* "Return the real part of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_real_part (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return z;
|
||
else if (SCM_BIGP (z))
|
||
return z;
|
||
else if (SCM_REALP (z))
|
||
return z;
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_double (SCM_COMPLEX_REAL (z));
|
||
else if (SCM_FRACTIONP (z))
|
||
return z;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
|
||
/* "Return the imaginary part of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_imag_part (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return SCM_INUM0;
|
||
else if (SCM_BIGP (z))
|
||
return SCM_INUM0;
|
||
else if (SCM_REALP (z))
|
||
return scm_flo0;
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_double (SCM_COMPLEX_IMAG (z));
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_INUM0;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
|
||
}
|
||
|
||
SCM_GPROC (s_numerator, "numerator", 1, 0, 0, scm_numerator, g_numerator);
|
||
/* "Return the numerator of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_numerator (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return z;
|
||
else if (SCM_BIGP (z))
|
||
return z;
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_FRACTION_NUMERATOR (z);
|
||
else if (SCM_REALP (z))
|
||
return scm_exact_to_inexact (scm_numerator (scm_inexact_to_exact (z)));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_numerator, z, SCM_ARG1, s_numerator);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_denominator, "denominator", 1, 0, 0, scm_denominator, g_denominator);
|
||
/* "Return the denominator of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_denominator (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return SCM_I_MAKINUM (1);
|
||
else if (SCM_BIGP (z))
|
||
return SCM_I_MAKINUM (1);
|
||
else if (SCM_FRACTIONP (z))
|
||
return SCM_FRACTION_DENOMINATOR (z);
|
||
else if (SCM_REALP (z))
|
||
return scm_exact_to_inexact (scm_denominator (scm_inexact_to_exact (z)));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_denominator, z, SCM_ARG1, s_denominator);
|
||
}
|
||
|
||
SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
|
||
/* "Return the magnitude of the number @var{z}. This is the same as\n"
|
||
* "@code{abs} for real arguments, but also allows complex numbers."
|
||
*/
|
||
SCM
|
||
scm_magnitude (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
{
|
||
long int zz = SCM_I_INUM (z);
|
||
if (zz >= 0)
|
||
return z;
|
||
else if (SCM_POSFIXABLE (-zz))
|
||
return SCM_I_MAKINUM (-zz);
|
||
else
|
||
return scm_i_long2big (-zz);
|
||
}
|
||
else if (SCM_BIGP (z))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
|
||
scm_remember_upto_here_1 (z);
|
||
if (sgn < 0)
|
||
return scm_i_clonebig (z, 0);
|
||
else
|
||
return z;
|
||
}
|
||
else if (SCM_REALP (z))
|
||
return scm_from_double (fabs (SCM_REAL_VALUE (z)));
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_double (hypot (SCM_COMPLEX_REAL (z), SCM_COMPLEX_IMAG (z)));
|
||
else if (SCM_FRACTIONP (z))
|
||
{
|
||
if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
|
||
return z;
|
||
return scm_i_make_ratio (scm_difference (SCM_FRACTION_NUMERATOR (z), SCM_UNDEFINED),
|
||
SCM_FRACTION_DENOMINATOR (z));
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
|
||
/* "Return the angle of the complex number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_angle (SCM z)
|
||
{
|
||
/* atan(0,-1) is pi and it'd be possible to have that as a constant like
|
||
scm_flo0 to save allocating a new flonum with scm_from_double each time.
|
||
But if atan2 follows the floating point rounding mode, then the value
|
||
is not a constant. Maybe it'd be close enough though. */
|
||
if (SCM_I_INUMP (z))
|
||
{
|
||
if (SCM_I_INUM (z) >= 0)
|
||
return scm_flo0;
|
||
else
|
||
return scm_from_double (atan2 (0.0, -1.0));
|
||
}
|
||
else if (SCM_BIGP (z))
|
||
{
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
|
||
scm_remember_upto_here_1 (z);
|
||
if (sgn < 0)
|
||
return scm_from_double (atan2 (0.0, -1.0));
|
||
else
|
||
return scm_flo0;
|
||
}
|
||
else if (SCM_REALP (z))
|
||
{
|
||
if (SCM_REAL_VALUE (z) >= 0)
|
||
return scm_flo0;
|
||
else
|
||
return scm_from_double (atan2 (0.0, -1.0));
|
||
}
|
||
else if (SCM_COMPLEXP (z))
|
||
return scm_from_double (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
|
||
else if (SCM_FRACTIONP (z))
|
||
{
|
||
if (scm_is_false (scm_negative_p (SCM_FRACTION_NUMERATOR (z))))
|
||
return scm_flo0;
|
||
else return scm_from_double (atan2 (0.0, -1.0));
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
|
||
/* Convert the number @var{x} to its inexact representation.\n"
|
||
*/
|
||
SCM
|
||
scm_exact_to_inexact (SCM z)
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return scm_from_double ((double) SCM_I_INUM (z));
|
||
else if (SCM_BIGP (z))
|
||
return scm_from_double (scm_i_big2dbl (z));
|
||
else if (SCM_FRACTIONP (z))
|
||
return scm_from_double (scm_i_fraction2double (z));
|
||
else if (SCM_INEXACTP (z))
|
||
return z;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
|
||
(SCM z),
|
||
"Return an exact number that is numerically closest to @var{z}.")
|
||
#define FUNC_NAME s_scm_inexact_to_exact
|
||
{
|
||
if (SCM_I_INUMP (z))
|
||
return z;
|
||
else if (SCM_BIGP (z))
|
||
return z;
|
||
else if (SCM_REALP (z))
|
||
{
|
||
if (xisinf (SCM_REAL_VALUE (z)) || xisnan (SCM_REAL_VALUE (z)))
|
||
SCM_OUT_OF_RANGE (1, z);
|
||
else
|
||
{
|
||
mpq_t frac;
|
||
SCM q;
|
||
|
||
mpq_init (frac);
|
||
mpq_set_d (frac, SCM_REAL_VALUE (z));
|
||
q = scm_i_make_ratio (scm_i_mpz2num (mpq_numref (frac)),
|
||
scm_i_mpz2num (mpq_denref (frac)));
|
||
|
||
/* When scm_i_make_ratio throws, we leak the memory allocated
|
||
for frac...
|
||
*/
|
||
mpq_clear (frac);
|
||
return q;
|
||
}
|
||
}
|
||
else if (SCM_FRACTIONP (z))
|
||
return z;
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, z);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_rationalize, "rationalize", 2, 0, 0,
|
||
(SCM x, SCM err),
|
||
"Return an exact number that is within @var{err} of @var{x}.")
|
||
#define FUNC_NAME s_scm_rationalize
|
||
{
|
||
if (SCM_I_INUMP (x))
|
||
return x;
|
||
else if (SCM_BIGP (x))
|
||
return x;
|
||
else if ((SCM_REALP (x)) || SCM_FRACTIONP (x))
|
||
{
|
||
/* Use continued fractions to find closest ratio. All
|
||
arithmetic is done with exact numbers.
|
||
*/
|
||
|
||
SCM ex = scm_inexact_to_exact (x);
|
||
SCM int_part = scm_floor (ex);
|
||
SCM tt = SCM_I_MAKINUM (1);
|
||
SCM a1 = SCM_I_MAKINUM (0), a2 = SCM_I_MAKINUM (1), a = SCM_I_MAKINUM (0);
|
||
SCM b1 = SCM_I_MAKINUM (1), b2 = SCM_I_MAKINUM (0), b = SCM_I_MAKINUM (0);
|
||
SCM rx;
|
||
int i = 0;
|
||
|
||
if (scm_is_true (scm_num_eq_p (ex, int_part)))
|
||
return ex;
|
||
|
||
ex = scm_difference (ex, int_part); /* x = x-int_part */
|
||
rx = scm_divide (ex, SCM_UNDEFINED); /* rx = 1/x */
|
||
|
||
/* We stop after a million iterations just to be absolutely sure
|
||
that we don't go into an infinite loop. The process normally
|
||
converges after less than a dozen iterations.
|
||
*/
|
||
|
||
err = scm_abs (err);
|
||
while (++i < 1000000)
|
||
{
|
||
a = scm_sum (scm_product (a1, tt), a2); /* a = a1*tt + a2 */
|
||
b = scm_sum (scm_product (b1, tt), b2); /* b = b1*tt + b2 */
|
||
if (scm_is_false (scm_zero_p (b)) && /* b != 0 */
|
||
scm_is_false
|
||
(scm_gr_p (scm_abs (scm_difference (ex, scm_divide (a, b))),
|
||
err))) /* abs(x-a/b) <= err */
|
||
{
|
||
SCM res = scm_sum (int_part, scm_divide (a, b));
|
||
if (scm_is_false (scm_exact_p (x))
|
||
|| scm_is_false (scm_exact_p (err)))
|
||
return scm_exact_to_inexact (res);
|
||
else
|
||
return res;
|
||
}
|
||
rx = scm_divide (scm_difference (rx, tt), /* rx = 1/(rx - tt) */
|
||
SCM_UNDEFINED);
|
||
tt = scm_floor (rx); /* tt = floor (rx) */
|
||
a2 = a1;
|
||
b2 = b1;
|
||
a1 = a;
|
||
b1 = b;
|
||
}
|
||
scm_num_overflow (s_scm_rationalize);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (1, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* conversion functions */
|
||
|
||
int
|
||
scm_is_integer (SCM val)
|
||
{
|
||
return scm_is_true (scm_integer_p (val));
|
||
}
|
||
|
||
int
|
||
scm_is_signed_integer (SCM val, scm_t_intmax min, scm_t_intmax max)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
{
|
||
scm_t_signed_bits n = SCM_I_INUM (val);
|
||
return n >= min && n <= max;
|
||
}
|
||
else if (SCM_BIGP (val))
|
||
{
|
||
if (min >= SCM_MOST_NEGATIVE_FIXNUM && max <= SCM_MOST_POSITIVE_FIXNUM)
|
||
return 0;
|
||
else if (min >= LONG_MIN && max <= LONG_MAX)
|
||
{
|
||
if (mpz_fits_slong_p (SCM_I_BIG_MPZ (val)))
|
||
{
|
||
long n = mpz_get_si (SCM_I_BIG_MPZ (val));
|
||
return n >= min && n <= max;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
scm_t_intmax n;
|
||
size_t count;
|
||
|
||
if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
|
||
> CHAR_BIT*sizeof (scm_t_uintmax))
|
||
return 0;
|
||
|
||
mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
|
||
SCM_I_BIG_MPZ (val));
|
||
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (val)) >= 0)
|
||
{
|
||
if (n < 0)
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
n = -n;
|
||
if (n >= 0)
|
||
return 0;
|
||
}
|
||
|
||
return n >= min && n <= max;
|
||
}
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
int
|
||
scm_is_unsigned_integer (SCM val, scm_t_uintmax min, scm_t_uintmax max)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
{
|
||
scm_t_signed_bits n = SCM_I_INUM (val);
|
||
return n >= 0 && ((scm_t_uintmax)n) >= min && ((scm_t_uintmax)n) <= max;
|
||
}
|
||
else if (SCM_BIGP (val))
|
||
{
|
||
if (max <= SCM_MOST_POSITIVE_FIXNUM)
|
||
return 0;
|
||
else if (max <= ULONG_MAX)
|
||
{
|
||
if (mpz_fits_ulong_p (SCM_I_BIG_MPZ (val)))
|
||
{
|
||
unsigned long n = mpz_get_ui (SCM_I_BIG_MPZ (val));
|
||
return n >= min && n <= max;
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
else
|
||
{
|
||
scm_t_uintmax n;
|
||
size_t count;
|
||
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (val)) < 0)
|
||
return 0;
|
||
|
||
if (mpz_sizeinbase (SCM_I_BIG_MPZ (val), 2)
|
||
> CHAR_BIT*sizeof (scm_t_uintmax))
|
||
return 0;
|
||
|
||
mpz_export (&n, &count, 1, sizeof (scm_t_uintmax), 0, 0,
|
||
SCM_I_BIG_MPZ (val));
|
||
|
||
return n >= min && n <= max;
|
||
}
|
||
}
|
||
else
|
||
return 0;
|
||
}
|
||
|
||
static void
|
||
scm_i_range_error (SCM bad_val, SCM min, SCM max)
|
||
{
|
||
scm_error (scm_out_of_range_key,
|
||
NULL,
|
||
"Value out of range ~S to ~S: ~S",
|
||
scm_list_3 (min, max, bad_val),
|
||
scm_list_1 (bad_val));
|
||
}
|
||
|
||
#define TYPE scm_t_intmax
|
||
#define TYPE_MIN min
|
||
#define TYPE_MAX max
|
||
#define SIZEOF_TYPE 0
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_signed_integer (arg, scm_t_intmax min, scm_t_intmax max)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_signed_integer (arg)
|
||
#include "libguile/conv-integer.i.c"
|
||
|
||
#define TYPE scm_t_uintmax
|
||
#define TYPE_MIN min
|
||
#define TYPE_MAX max
|
||
#define SIZEOF_TYPE 0
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_unsigned_integer (arg, scm_t_uintmax min, scm_t_uintmax max)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_unsigned_integer (arg)
|
||
#include "libguile/conv-uinteger.i.c"
|
||
|
||
#define TYPE scm_t_int8
|
||
#define TYPE_MIN SCM_T_INT8_MIN
|
||
#define TYPE_MAX SCM_T_INT8_MAX
|
||
#define SIZEOF_TYPE 1
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_int8 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_int8 (arg)
|
||
#include "libguile/conv-integer.i.c"
|
||
|
||
#define TYPE scm_t_uint8
|
||
#define TYPE_MIN 0
|
||
#define TYPE_MAX SCM_T_UINT8_MAX
|
||
#define SIZEOF_TYPE 1
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_uint8 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint8 (arg)
|
||
#include "libguile/conv-uinteger.i.c"
|
||
|
||
#define TYPE scm_t_int16
|
||
#define TYPE_MIN SCM_T_INT16_MIN
|
||
#define TYPE_MAX SCM_T_INT16_MAX
|
||
#define SIZEOF_TYPE 2
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_int16 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_int16 (arg)
|
||
#include "libguile/conv-integer.i.c"
|
||
|
||
#define TYPE scm_t_uint16
|
||
#define TYPE_MIN 0
|
||
#define TYPE_MAX SCM_T_UINT16_MAX
|
||
#define SIZEOF_TYPE 2
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_uint16 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint16 (arg)
|
||
#include "libguile/conv-uinteger.i.c"
|
||
|
||
#define TYPE scm_t_int32
|
||
#define TYPE_MIN SCM_T_INT32_MIN
|
||
#define TYPE_MAX SCM_T_INT32_MAX
|
||
#define SIZEOF_TYPE 4
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_int32 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_int32 (arg)
|
||
#include "libguile/conv-integer.i.c"
|
||
|
||
#define TYPE scm_t_uint32
|
||
#define TYPE_MIN 0
|
||
#define TYPE_MAX SCM_T_UINT32_MAX
|
||
#define SIZEOF_TYPE 4
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_uint32 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint32 (arg)
|
||
#include "libguile/conv-uinteger.i.c"
|
||
|
||
#if SCM_HAVE_T_INT64
|
||
|
||
#define TYPE scm_t_int64
|
||
#define TYPE_MIN SCM_T_INT64_MIN
|
||
#define TYPE_MAX SCM_T_INT64_MAX
|
||
#define SIZEOF_TYPE 8
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_int64 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_int64 (arg)
|
||
#include "libguile/conv-integer.i.c"
|
||
|
||
#define TYPE scm_t_uint64
|
||
#define TYPE_MIN 0
|
||
#define TYPE_MAX SCM_T_UINT64_MAX
|
||
#define SIZEOF_TYPE 8
|
||
#define SCM_TO_TYPE_PROTO(arg) scm_to_uint64 (arg)
|
||
#define SCM_FROM_TYPE_PROTO(arg) scm_from_uint64 (arg)
|
||
#include "libguile/conv-uinteger.i.c"
|
||
|
||
#endif
|
||
|
||
void
|
||
scm_to_mpz (SCM val, mpz_t rop)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
mpz_set_si (rop, SCM_I_INUM (val));
|
||
else if (SCM_BIGP (val))
|
||
mpz_set (rop, SCM_I_BIG_MPZ (val));
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, val, "exact integer");
|
||
}
|
||
|
||
SCM
|
||
scm_from_mpz (mpz_t val)
|
||
{
|
||
return scm_i_mpz2num (val);
|
||
}
|
||
|
||
int
|
||
scm_is_real (SCM val)
|
||
{
|
||
return scm_is_true (scm_real_p (val));
|
||
}
|
||
|
||
int
|
||
scm_is_rational (SCM val)
|
||
{
|
||
return scm_is_true (scm_rational_p (val));
|
||
}
|
||
|
||
double
|
||
scm_to_double (SCM val)
|
||
{
|
||
if (SCM_I_INUMP (val))
|
||
return SCM_I_INUM (val);
|
||
else if (SCM_BIGP (val))
|
||
return scm_i_big2dbl (val);
|
||
else if (SCM_FRACTIONP (val))
|
||
return scm_i_fraction2double (val);
|
||
else if (SCM_REALP (val))
|
||
return SCM_REAL_VALUE (val);
|
||
else
|
||
scm_wrong_type_arg_msg (NULL, 0, val, "real number");
|
||
}
|
||
|
||
SCM
|
||
scm_from_double (double val)
|
||
{
|
||
SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
|
||
SCM_REAL_VALUE (z) = val;
|
||
return z;
|
||
}
|
||
|
||
#if SCM_ENABLE_DISCOURAGED == 1
|
||
|
||
float
|
||
scm_num2float (SCM num, unsigned long int pos, const char *s_caller)
|
||
{
|
||
if (SCM_BIGP (num))
|
||
{
|
||
float res = mpz_get_d (SCM_I_BIG_MPZ (num));
|
||
if (!xisinf (res))
|
||
return res;
|
||
else
|
||
scm_out_of_range (NULL, num);
|
||
}
|
||
else
|
||
return scm_to_double (num);
|
||
}
|
||
|
||
double
|
||
scm_num2double (SCM num, unsigned long int pos, const char *s_caller)
|
||
{
|
||
if (SCM_BIGP (num))
|
||
{
|
||
double res = mpz_get_d (SCM_I_BIG_MPZ (num));
|
||
if (!xisinf (res))
|
||
return res;
|
||
else
|
||
scm_out_of_range (NULL, num);
|
||
}
|
||
else
|
||
return scm_to_double (num);
|
||
}
|
||
|
||
#endif
|
||
|
||
int
|
||
scm_is_complex (SCM val)
|
||
{
|
||
return scm_is_true (scm_complex_p (val));
|
||
}
|
||
|
||
double
|
||
scm_c_real_part (SCM z)
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return SCM_COMPLEX_REAL (z);
|
||
else
|
||
{
|
||
/* Use the scm_real_part to get proper error checking and
|
||
dispatching.
|
||
*/
|
||
return scm_to_double (scm_real_part (z));
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_imag_part (SCM z)
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
return SCM_COMPLEX_IMAG (z);
|
||
else
|
||
{
|
||
/* Use the scm_imag_part to get proper error checking and
|
||
dispatching. The result will almost always be 0.0, but not
|
||
always.
|
||
*/
|
||
return scm_to_double (scm_imag_part (z));
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_magnitude (SCM z)
|
||
{
|
||
return scm_to_double (scm_magnitude (z));
|
||
}
|
||
|
||
double
|
||
scm_c_angle (SCM z)
|
||
{
|
||
return scm_to_double (scm_angle (z));
|
||
}
|
||
|
||
int
|
||
scm_is_number (SCM z)
|
||
{
|
||
return scm_is_true (scm_number_p (z));
|
||
}
|
||
|
||
|
||
/* In the following functions we dispatch to the real-arg funcs like log()
|
||
when we know the arg is real, instead of just handing everything to
|
||
clog() for instance. This is in case clog() doesn't optimize for a
|
||
real-only case, and because we have to test SCM_COMPLEXP anyway so may as
|
||
well use it to go straight to the applicable C func. */
|
||
|
||
SCM_DEFINE (scm_log, "log", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the natural logarithm of @var{z}.")
|
||
#define FUNC_NAME s_scm_log
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
#if HAVE_COMPLEX_DOUBLE
|
||
return scm_from_complex_double (clog (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (z);
|
||
double im = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (log (hypot (re, im)),
|
||
atan2 (im, re));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* ENHANCE-ME: When z is a bignum the logarithm will fit a double
|
||
although the value itself overflows. */
|
||
double re = scm_to_double (z);
|
||
double l = log (fabs (re));
|
||
if (re >= 0.0)
|
||
return scm_from_double (l);
|
||
else
|
||
return scm_c_make_rectangular (l, M_PI);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_log10, "log10", 1, 0, 0,
|
||
(SCM z),
|
||
"Return the base 10 logarithm of @var{z}.")
|
||
#define FUNC_NAME s_scm_log10
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
/* Mingw has clog() but not clog10(). (Maybe it'd be worth using
|
||
clog() and a multiply by M_LOG10E, rather than the fallback
|
||
log10+hypot+atan2.) */
|
||
#if HAVE_COMPLEX_DOUBLE && HAVE_CLOG10
|
||
return scm_from_complex_double (clog10 (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (z);
|
||
double im = SCM_COMPLEX_IMAG (z);
|
||
return scm_c_make_rectangular (log10 (hypot (re, im)),
|
||
M_LOG10E * atan2 (im, re));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* ENHANCE-ME: When z is a bignum the logarithm will fit a double
|
||
although the value itself overflows. */
|
||
double re = scm_to_double (z);
|
||
double l = log10 (fabs (re));
|
||
if (re >= 0.0)
|
||
return scm_from_double (l);
|
||
else
|
||
return scm_c_make_rectangular (l, M_LOG10E * M_PI);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_exp, "exp", 1, 0, 0,
|
||
(SCM z),
|
||
"Return @math{e} to the power of @var{z}, where @math{e} is the\n"
|
||
"base of natural logarithms (2.71828@dots{}).")
|
||
#define FUNC_NAME s_scm_exp
|
||
{
|
||
if (SCM_COMPLEXP (z))
|
||
{
|
||
#if HAVE_COMPLEX_DOUBLE
|
||
return scm_from_complex_double (cexp (SCM_COMPLEX_VALUE (z)));
|
||
#else
|
||
return scm_c_make_polar (exp (SCM_COMPLEX_REAL (z)),
|
||
SCM_COMPLEX_IMAG (z));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* When z is a negative bignum the conversion to double overflows,
|
||
giving -infinity, but that's ok, the exp is still 0.0. */
|
||
return scm_from_double (exp (scm_to_double (z)));
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_sqrt, "sqrt", 1, 0, 0,
|
||
(SCM x),
|
||
"Return the square root of @var{z}. Of the two possible roots\n"
|
||
"(positive and negative), the one with the a positive real part\n"
|
||
"is returned, or if that's zero then a positive imaginary part.\n"
|
||
"Thus,\n"
|
||
"\n"
|
||
"@example\n"
|
||
"(sqrt 9.0) @result{} 3.0\n"
|
||
"(sqrt -9.0) @result{} 0.0+3.0i\n"
|
||
"(sqrt 1.0+1.0i) @result{} 1.09868411346781+0.455089860562227i\n"
|
||
"(sqrt -1.0-1.0i) @result{} 0.455089860562227-1.09868411346781i\n"
|
||
"@end example")
|
||
#define FUNC_NAME s_scm_sqrt
|
||
{
|
||
if (SCM_COMPLEXP (x))
|
||
{
|
||
#if HAVE_COMPLEX_DOUBLE && HAVE_USABLE_CSQRT
|
||
return scm_from_complex_double (csqrt (SCM_COMPLEX_VALUE (x)));
|
||
#else
|
||
double re = SCM_COMPLEX_REAL (x);
|
||
double im = SCM_COMPLEX_IMAG (x);
|
||
return scm_c_make_polar (sqrt (hypot (re, im)),
|
||
0.5 * atan2 (im, re));
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
double xx = scm_to_double (x);
|
||
if (xx < 0)
|
||
return scm_c_make_rectangular (0.0, sqrt (-xx));
|
||
else
|
||
return scm_from_double (sqrt (xx));
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
void
|
||
scm_init_numbers ()
|
||
{
|
||
int i;
|
||
|
||
mpz_init_set_si (z_negative_one, -1);
|
||
|
||
/* It may be possible to tune the performance of some algorithms by using
|
||
* the following constants to avoid the creation of bignums. Please, before
|
||
* using these values, remember the two rules of program optimization:
|
||
* 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
|
||
scm_c_define ("most-positive-fixnum",
|
||
SCM_I_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
|
||
scm_c_define ("most-negative-fixnum",
|
||
SCM_I_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
|
||
|
||
scm_add_feature ("complex");
|
||
scm_add_feature ("inexact");
|
||
scm_flo0 = scm_from_double (0.0);
|
||
|
||
/* determine floating point precision */
|
||
for (i=2; i <= SCM_MAX_DBL_RADIX; ++i)
|
||
{
|
||
init_dblprec(&scm_dblprec[i-2],i);
|
||
init_fx_radix(fx_per_radix[i-2],i);
|
||
}
|
||
#ifdef DBL_DIG
|
||
/* hard code precision for base 10 if the preprocessor tells us to... */
|
||
scm_dblprec[10-2] = (DBL_DIG > 20) ? 20 : DBL_DIG;
|
||
#endif
|
||
|
||
exactly_one_half = scm_permanent_object (scm_divide (SCM_I_MAKINUM (1),
|
||
SCM_I_MAKINUM (2)));
|
||
#include "libguile/numbers.x"
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|