1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00
guile/libguile/scmsigs.c
Morgan Smith c7d170c5d1
Fix typos throughout codebase.
* NEWS:
* README:
* doc/r5rs/r5rs.texi:
* doc/ref/api-data.texi:
* doc/ref/api-debug.texi:
* doc/ref/api-evaluation.texi:
* doc/ref/api-io.texi:
* doc/ref/api-macros.texi:
* doc/ref/api-procedures.texi:
* doc/ref/api-scheduling.texi:
* doc/ref/api-undocumented.texi:
* doc/ref/libguile-concepts.texi:
* doc/ref/posix.texi:
* doc/ref/srfi-modules.texi:
* doc/ref/vm.texi:
* doc/ref/web.texi:
* examples/box-dynamic-module/box.c:
* examples/box-dynamic/box.c:
* examples/box-module/box.c:
* examples/box/box.c:
* examples/safe/safe:
* examples/scripts/README:
* examples/scripts/hello:
* gc-benchmarks/larceny/twobit-input-long.sch:
* gc-benchmarks/larceny/twobit-smaller.sch:
* gc-benchmarks/larceny/twobit.sch:
* libguile/expand.c:
* libguile/load.c:
* libguile/net_db.c:
* libguile/scmsigs.c:
* libguile/srfi-14.c:
* libguile/threads.c:
* meta/guile.m4:
* module/ice-9/match.upstream.scm:
* module/ice-9/ports.scm:
* module/language/cps/graphs.scm:
* module/scripts/doc-snarf.scm:
* module/srfi/srfi-19.scm:
* module/system/repl/command.scm:
* test-suite/tests/srfi-18.test:
Fix typos.

Signed-off-by: Ludovic Courtès <ludo@gnu.org>
2023-07-16 22:09:01 +02:00

758 lines
22 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright 1995-2002,2004,2006-2009,2011,2013-2014,2017-2018,2023
Free Software Foundation, Inc.
This file is part of Guile.
Guile is free software: you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Guile is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public
License along with Guile. If not, see
<https://www.gnu.org/licenses/>. */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include <fcntl.h> /* for mingw */
#include <signal.h>
#include <stdio.h>
#include <errno.h>
#ifdef HAVE_PROCESS_H
#include <process.h> /* for mingw */
#endif
#include <unistd.h>
#ifdef HAVE_SYS_TIME_H
#include <sys/time.h>
#endif
#include <full-write.h>
#include "async.h"
#include "boolean.h"
#include "dynwind.h"
#include "eval.h"
#include "feature.h"
#include "gsubr.h"
#include "list.h"
#include "modules.h"
#include "numbers.h"
#include "pairs.h"
#include "procs.h"
#include "syscalls.h"
#include "threads.h"
#include "variable.h"
#include "vectors.h"
#include "scmsigs.h"
/* take_signal is installed as the C signal handler whenever a Scheme
handler is set. When a signal arrives, take_signal will write a
byte into the 'signal pipe'. The 'signal delivery thread' will
read this pipe and queue the appropriate asyncs.
When Guile is built without threads, the signal handler will
install the async directly.
*/
/* Scheme vectors with information about a signal. signal_handlers
contains the handler procedure or #f, signal_handler_asyncs
contains the thunk to be marked as an async when the signal arrives
(or the cell with the thunk in a singlethreaded Guile), and
signal_handler_threads points to the thread that a signal should be
delivered to.
*/
static scm_i_pthread_mutex_t signal_handler_lock =
SCM_I_PTHREAD_MUTEX_INITIALIZER;
static SCM *signal_handlers;
static SCM signal_handler_asyncs;
static SCM signal_handler_threads;
/* The signal delivery thread. */
scm_thread *scm_i_signal_delivery_thread = NULL;
/* The mutex held when launching the signal delivery thread. */
static scm_i_pthread_mutex_t signal_delivery_thread_mutex =
SCM_I_PTHREAD_MUTEX_INITIALIZER;
/* saves the original C handlers, when a new handler is installed.
set to SIG_ERR if the original handler is installed. */
#ifdef HAVE_SIGACTION
static struct sigaction orig_handlers[NSIG];
#else
static void (*orig_handlers[NSIG])(int);
#endif
static SCM
close_1 (SCM proc, SCM arg)
{
/* Eval in the root module so that `lambda' has its usual meaning. */
return scm_eval (scm_list_3 (scm_sym_lambda, SCM_EOL,
scm_list_2 (proc, arg)),
scm_the_root_module ());
}
#if SCM_USE_PTHREAD_THREADS
/* On mingw there's no notion of inter-process signals, only a raise()
within the process itself which apparently invokes the registered handler
immediately. Not sure how well the following code will cope in this
case. It builds but it may not offer quite the same scheme-level
semantics as on a proper system. If you're relying on much in the way of
signal handling on mingw you probably lose anyway. */
static int signal_pipe[2];
static void
take_signal (int signum)
{
int old_errno = errno;
char sigbyte = signum;
full_write (signal_pipe[1], &sigbyte, 1);
#ifndef HAVE_SIGACTION
signal (signum, take_signal);
#endif
errno = old_errno;
}
struct signal_pipe_data
{
char sigbyte;
ssize_t n;
int err;
};
static void*
read_signal_pipe_data (void * data)
{
struct signal_pipe_data *sdata = data;
sdata->n = read (signal_pipe[0], &sdata->sigbyte, 1);
sdata->err = errno;
return NULL;
}
static SCM
signal_delivery_thread (void *data)
{
int sig;
#if HAVE_PTHREAD_SIGMASK /* not on mingw, see notes above */
sigset_t all_sigs;
sigfillset (&all_sigs);
/* On libgc 7.1 and earlier, GC_do_blocking doesn't actually do
anything. So in that case, libgc will want to suspend the signal
delivery thread, so we need to allow it to do so by unmasking the
suspend signal. */
sigdelset (&all_sigs, GC_get_suspend_signal ());
scm_i_pthread_sigmask (SIG_SETMASK, &all_sigs, NULL);
#endif
while (1)
{
struct signal_pipe_data sigdata;
/* This tick gives any pending asyncs a chance to run before we
block indefinitely waiting for a signal to arrive. For example
it can happen that the garbage collector is triggered while
marking the signal handler for future execution. Due to the
way the after-gc-hook is designed, without a call to
scm_async_tick, the after-gc-hook will not be triggered. */
scm_async_tick ();
scm_without_guile (read_signal_pipe_data, &sigdata);
sig = sigdata.sigbyte;
if (sigdata.n == 1 && sig >= 0 && sig < NSIG)
{
SCM h, t;
h = SCM_SIMPLE_VECTOR_REF (signal_handler_asyncs, sig);
t = SCM_SIMPLE_VECTOR_REF (signal_handler_threads, sig);
if (scm_is_true (h))
scm_system_async_mark_for_thread (h, t);
}
else if (sigdata.n == 0)
break; /* the signal pipe was closed. */
else if (sigdata.n < 0 && sigdata.err != EINTR)
perror ("error in signal delivery thread");
}
return SCM_UNSPECIFIED; /* not reached unless all other threads exited */
}
static void
start_signal_delivery_thread (void)
{
SCM signal_thread;
scm_i_pthread_mutex_lock (&signal_delivery_thread_mutex);
if (pipe2 (signal_pipe, O_CLOEXEC) != 0)
scm_syserror (NULL);
signal_thread = scm_spawn_thread (signal_delivery_thread, NULL,
scm_handle_by_message,
"signal delivery thread");
scm_i_signal_delivery_thread = SCM_I_THREAD_DATA (signal_thread);
scm_i_pthread_mutex_unlock (&signal_delivery_thread_mutex);
}
void
scm_i_ensure_signal_delivery_thread ()
{
static scm_i_pthread_once_t once = SCM_I_PTHREAD_ONCE_INIT;
scm_i_pthread_once (&once, start_signal_delivery_thread);
}
#else /* !SCM_USE_PTHREAD_THREADS */
static void
take_signal (int signum)
{
SCM cell = SCM_SIMPLE_VECTOR_REF (signal_handler_asyncs, signum);
scm_thread *t = SCM_I_CURRENT_THREAD;
if (scm_is_false (SCM_CDR (cell)))
{
SCM_SETCDR (cell, t->pending_asyncs);
t->pending_asyncs = cell;
}
#ifndef HAVE_SIGACTION
signal (signum, take_signal);
#endif
}
void
scm_i_ensure_signal_delivery_thread ()
{
return;
}
#endif /* !SCM_USE_PTHREAD_THREADS */
static void
install_handler (int signum, SCM thread, SCM handler)
{
if (scm_is_false (handler))
{
SCM_SIMPLE_VECTOR_SET (*signal_handlers, signum, SCM_BOOL_F);
SCM_SIMPLE_VECTOR_SET (signal_handler_asyncs, signum, SCM_BOOL_F);
}
else
{
SCM async = close_1 (handler, scm_from_int (signum));
#if !SCM_USE_PTHREAD_THREADS
async = scm_cons (async, SCM_BOOL_F);
#endif
SCM_SIMPLE_VECTOR_SET (*signal_handlers, signum, handler);
SCM_SIMPLE_VECTOR_SET (signal_handler_asyncs, signum, async);
}
SCM_SIMPLE_VECTOR_SET (signal_handler_threads, signum, thread);
}
SCM
scm_sigaction (SCM signum, SCM handler, SCM flags)
{
return scm_sigaction_for_thread (signum, handler, flags, SCM_UNDEFINED);
}
/* user interface for installation of signal handlers. */
SCM_DEFINE (scm_sigaction_for_thread, "sigaction", 1, 3, 0,
(SCM signum, SCM handler, SCM flags, SCM thread),
"Install or report the signal handler for a specified signal.\n\n"
"@var{signum} is the signal number, which can be specified using the value\n"
"of variables such as @code{SIGINT}.\n\n"
"If @var{handler} is omitted, @code{sigaction} returns a pair: the\n"
"CAR is the current\n"
"signal handler, which will be either an integer with the value @code{SIG_DFL}\n"
"(default action) or @code{SIG_IGN} (ignore), or the Scheme procedure which\n"
"handles the signal, or @code{#f} if a non-Scheme procedure handles the\n"
"signal. The CDR contains the current @code{sigaction} flags for the handler.\n\n"
"If @var{handler} is provided, it is installed as the new handler for\n"
"@var{signum}. @var{handler} can be a Scheme procedure taking one\n"
"argument, or the value of @code{SIG_DFL} (default action) or\n"
"@code{SIG_IGN} (ignore), or @code{#f} to restore whatever signal handler\n"
"was installed before @code{sigaction} was first used. When\n"
"a scheme procedure has been specified, that procedure will run\n"
"in the given @var{thread}. When no thread has been given, the\n"
"thread that made this call to @code{sigaction} is used.\n"
"Flags can optionally be specified for the new handler.\n"
"The return value is a pair with information about the\n"
"old handler as described above.\n\n"
"This interface does not provide access to the \"signal blocking\"\n"
"facility. Maybe this is not needed, since the thread support may\n"
"provide solutions to the problem of consistent access to data\n"
"structures.")
#define FUNC_NAME s_scm_sigaction_for_thread
{
int csig;
#ifdef HAVE_SIGACTION
struct sigaction action;
struct sigaction old_action;
#else
void (* chandler) (int) = SIG_DFL;
void (* old_chandler) (int);
#endif
int query_only = 0;
int save_handler = 0;
SCM old_handler;
csig = scm_to_signed_integer (signum, 0, NSIG-1);
#if defined(HAVE_SIGACTION)
action.sa_flags = 0;
if (!SCM_UNBNDP (flags))
action.sa_flags |= scm_to_int (flags);
sigemptyset (&action.sa_mask);
#endif
if (SCM_UNBNDP (thread))
thread = scm_current_thread ();
else
SCM_VALIDATE_THREAD (4, thread);
scm_i_ensure_signal_delivery_thread ();
scm_dynwind_begin (0);
/* Among the pending asyncs, there might be signal handlers that will
call this very function. Thus, to avoid deadlocks, block asyncs
before grabbing SIGNAL_HANDLER_LOCK. */
scm_dynwind_block_asyncs ();
scm_i_dynwind_pthread_mutex_lock (&signal_handler_lock);
old_handler = SCM_SIMPLE_VECTOR_REF (*signal_handlers, csig);
if (SCM_UNBNDP (handler))
query_only = 1;
else if (scm_is_integer (handler))
{
long handler_int = scm_to_long (handler);
if (handler_int == (long) SIG_DFL || handler_int == (long) SIG_IGN)
{
#ifdef HAVE_SIGACTION
action.sa_handler = (void (*) (int)) handler_int;
#else
chandler = (void (*) (int)) handler_int;
#endif
install_handler (csig, SCM_BOOL_F, SCM_BOOL_F);
}
else
{
SCM_OUT_OF_RANGE (2, handler);
}
}
else if (scm_is_false (handler))
{
/* restore the default handler. */
#ifdef HAVE_SIGACTION
if (orig_handlers[csig].sa_handler == SIG_ERR)
query_only = 1;
else
{
action = orig_handlers[csig];
orig_handlers[csig].sa_handler = SIG_ERR;
install_handler (csig, SCM_BOOL_F, SCM_BOOL_F);
}
#else
if (orig_handlers[csig] == SIG_ERR)
query_only = 1;
else
{
chandler = orig_handlers[csig];
orig_handlers[csig] = SIG_ERR;
install_handler (csig, SCM_BOOL_F, SCM_BOOL_F);
}
#endif
}
else
{
SCM_VALIDATE_PROC (2, handler);
#ifdef HAVE_SIGACTION
action.sa_handler = take_signal;
if (orig_handlers[csig].sa_handler == SIG_ERR)
save_handler = 1;
#else
chandler = take_signal;
if (orig_handlers[csig] == SIG_ERR)
save_handler = 1;
#endif
install_handler (csig, thread, handler);
}
/* XXX - Silently ignore setting handlers for `program error signals'
because they can't currently be handled by Scheme code.
*/
switch (csig)
{
/* This list of program error signals is from the GNU Libc
Reference Manual */
case SIGFPE:
case SIGILL:
case SIGSEGV:
#ifdef SIGBUS
case SIGBUS:
#endif
case SIGABRT:
#if defined(SIGIOT) && (SIGIOT != SIGABRT)
case SIGIOT:
#endif
#ifdef SIGTRAP
case SIGTRAP:
#endif
#ifdef SIGEMT
case SIGEMT:
#endif
#ifdef SIGSYS
case SIGSYS:
#endif
query_only = 1;
}
#ifdef HAVE_SIGACTION
if (query_only)
{
if (sigaction (csig, 0, &old_action) == -1)
SCM_SYSERROR;
}
else
{
if (sigaction (csig, &action , &old_action) == -1)
SCM_SYSERROR;
if (save_handler)
orig_handlers[csig] = old_action;
}
if (old_action.sa_handler == SIG_DFL || old_action.sa_handler == SIG_IGN)
old_handler = scm_from_long ((long) old_action.sa_handler);
scm_dynwind_end ();
return scm_cons (old_handler, scm_from_int (old_action.sa_flags));
#else
if (query_only)
{
if ((old_chandler = signal (csig, SIG_IGN)) == SIG_ERR)
SCM_SYSERROR;
if (signal (csig, old_chandler) == SIG_ERR)
SCM_SYSERROR;
}
else
{
if ((old_chandler = signal (csig, chandler)) == SIG_ERR)
SCM_SYSERROR;
if (save_handler)
orig_handlers[csig] = old_chandler;
}
if (old_chandler == SIG_DFL || old_chandler == SIG_IGN)
old_handler = scm_from_long ((long) old_chandler);
scm_dynwind_end ();
return scm_cons (old_handler, scm_from_int (0));
#endif
}
#undef FUNC_NAME
SCM_DEFINE (scm_restore_signals, "restore-signals", 0, 0, 0,
(void),
"Return all signal handlers to the values they had before any call to\n"
"@code{sigaction} was made. The return value is unspecified.")
#define FUNC_NAME s_scm_restore_signals
{
int i;
for (i = 0; i < NSIG; i++)
{
#ifdef HAVE_SIGACTION
if (orig_handlers[i].sa_handler != SIG_ERR)
{
if (sigaction (i, &orig_handlers[i], NULL) == -1)
SCM_SYSERROR;
orig_handlers[i].sa_handler = SIG_ERR;
SCM_SIMPLE_VECTOR_SET (*signal_handlers, i, SCM_BOOL_F);
}
#else
if (orig_handlers[i] != SIG_ERR)
{
if (signal (i, orig_handlers[i]) == SIG_ERR)
SCM_SYSERROR;
orig_handlers[i] = SIG_ERR;
SCM_SIMPLE_VECTOR_SET (*signal_handlers, i, SCM_BOOL_F);
}
#endif
}
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
#if HAVE_DECL_ALARM
SCM_DEFINE (scm_alarm, "alarm", 1, 0, 0,
(SCM i),
"Set a timer to raise a @code{SIGALRM} signal after the specified\n"
"number of seconds (an integer). It's advisable to install a signal\n"
"handler for\n"
"@code{SIGALRM} beforehand, since the default action is to terminate\n"
"the process.\n\n"
"The return value indicates the time remaining for the previous alarm,\n"
"if any. The new value replaces the previous alarm. If there was\n"
"no previous alarm, the return value is zero.")
#define FUNC_NAME s_scm_alarm
{
return scm_from_uint (alarm (scm_to_uint (i)));
}
#undef FUNC_NAME
#endif /* HAVE_ALARM */
static void
pack_tv (struct timeval *tv, SCM seconds, SCM microseconds)
{
tv->tv_sec = scm_to_long (seconds);
tv->tv_usec = scm_to_long (microseconds);
/* Allow usec to be outside the range [0, 999999). */
tv->tv_sec += tv->tv_usec / (1000 * 1000);
tv->tv_usec %= 1000 * 1000;
}
static SCM
unpack_tv (const struct timeval *tv)
{
return scm_cons (scm_from_long (tv->tv_sec), scm_from_long (tv->tv_usec));
}
#ifdef HAVE_SETITIMER
SCM_DEFINE (scm_setitimer, "setitimer", 5, 0, 0,
(SCM which_timer,
SCM interval_seconds, SCM interval_microseconds,
SCM value_seconds, SCM value_microseconds),
"Set the timer specified by @var{which_timer} according to the given\n"
"@var{interval_seconds}, @var{interval_microseconds},\n"
"@var{value_seconds}, and @var{value_microseconds} values.\n"
"\n"
"Return information about the timer's previous setting."
"\n"
"Errors are handled as described in the guile info pages under ``POSIX\n"
"Interface Conventions''.\n"
"\n"
"The timers available are: @code{ITIMER_REAL}, @code{ITIMER_VIRTUAL},\n"
"and @code{ITIMER_PROF}.\n"
"\n"
"The return value will be a list of two cons pairs representing the\n"
"current state of the given timer. The first pair is the seconds and\n"
"microseconds of the timer @code{it_interval}, and the second pair is\n"
"the seconds and microseconds of the timer @code{it_value}."
"\n"
"@code{ITIMER_PROF} or @code{ITIMER_VIRTUAL} are not supported on\n"
"some platforms and will always error. @code{(provided? 'ITIMER_PROF)}\n"
"and @code{(provided? 'ITIMER_VIRTUAL)} report whether those timers\n"
"are supported.\n")
#define FUNC_NAME s_scm_setitimer
{
int rv;
int c_which_timer;
struct itimerval new_timer;
struct itimerval old_timer;
c_which_timer = SCM_NUM2INT(1, which_timer);
pack_tv (&new_timer.it_interval, interval_seconds, interval_microseconds);
pack_tv (&new_timer.it_value, value_seconds, value_microseconds);
SCM_SYSCALL(rv = setitimer(c_which_timer, &new_timer, &old_timer));
if(rv != 0)
SCM_SYSERROR;
return scm_list_2 (unpack_tv (&old_timer.it_interval),
unpack_tv (&old_timer.it_value));
}
#undef FUNC_NAME
#endif /* HAVE_SETITIMER */
#ifdef HAVE_GETITIMER
SCM_DEFINE (scm_getitimer, "getitimer", 1, 0, 0,
(SCM which_timer),
"Return information about the timer specified by @var{which_timer}"
"\n"
"Errors are handled as described in the guile info pages under ``POSIX\n"
"Interface Conventions''.\n"
"\n"
"The timers available are: @code{ITIMER_REAL}, @code{ITIMER_VIRTUAL},\n"
"and @code{ITIMER_PROF}.\n"
"\n"
"The return value will be a list of two cons pairs representing the\n"
"current state of the given timer. The first pair is the seconds and\n"
"microseconds of the timer @code{it_interval}, and the second pair is\n"
"the seconds and microseconds of the timer @code{it_value}."
"\n"
"@code{ITIMER_PROF} or @code{ITIMER_VIRTUAL} are not supported on\n"
"some platforms and will always error. @code{(provided? 'ITIMER_PROF)}\n"
"and @code{(provided? 'ITIMER_VIRTUAL)} report whether those timers\n"
"are supported.\n")
#define FUNC_NAME s_scm_getitimer
{
int rv;
int c_which_timer;
struct itimerval old_timer;
c_which_timer = SCM_NUM2INT(1, which_timer);
SCM_SYSCALL(rv = getitimer(c_which_timer, &old_timer));
if(rv != 0)
SCM_SYSERROR;
return scm_list_2 (scm_cons (scm_from_long (old_timer.it_interval.tv_sec),
scm_from_long (old_timer.it_interval.tv_usec)),
scm_cons (scm_from_long (old_timer.it_value.tv_sec),
scm_from_long (old_timer.it_value.tv_usec)));
}
#undef FUNC_NAME
#endif /* HAVE_GETITIMER */
#ifdef HAVE_PAUSE
SCM_DEFINE (scm_pause, "pause", 0, 0, 0,
(),
"Pause the current process (thread?) until a signal arrives whose\n"
"action is to either terminate the current process or invoke a\n"
"handler procedure. The return value is unspecified.")
#define FUNC_NAME s_scm_pause
{
pause ();
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
#endif
SCM_DEFINE (scm_sleep, "sleep", 1, 0, 0,
(SCM i),
"Wait for the given number of seconds (an integer) or until a signal\n"
"arrives. The return value is zero if the time elapses or the number\n"
"of seconds remaining otherwise.\n"
"\n"
"See also @code{usleep}.")
#define FUNC_NAME s_scm_sleep
{
return scm_from_uint (scm_std_sleep (scm_to_uint (i)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_usleep, "usleep", 1, 0, 0,
(SCM i),
"Wait the given period @var{usecs} microseconds (an integer).\n"
"If a signal arrives the wait stops and the return value is the\n"
"time remaining, in microseconds. If the period elapses with no\n"
"signal the return is zero.\n"
"\n"
"On most systems the process scheduler is not microsecond accurate and\n"
"the actual period slept by @code{usleep} may be rounded to a system\n"
"clock tick boundary. Traditionally such ticks were 10 milliseconds\n"
"apart, and that interval is often still used.\n"
"\n"
"See also @code{sleep}.")
#define FUNC_NAME s_scm_usleep
{
return scm_from_ulong (scm_std_usleep (scm_to_ulong (i)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_raise, "raise", 1, 0, 0,
(SCM sig),
"Sends a specified signal @var{sig} to the current process, where\n"
"@var{sig} is as described for the kill procedure.")
#define FUNC_NAME s_scm_raise
{
if (raise (scm_to_int (sig)) != 0)
SCM_SYSERROR;
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
void
scm_i_close_signal_pipe()
{
/* SIGNAL_DELIVERY_THREAD_MUTEX is only locked while the signal delivery
thread is being launched. The thread that calls this function is
already holding the thread admin mutex, so if the delivery thread hasn't
been launched at this point, it never will be before shutdown. */
scm_i_pthread_mutex_lock (&signal_delivery_thread_mutex);
#if SCM_USE_PTHREAD_THREADS
if (scm_i_signal_delivery_thread != NULL)
close (signal_pipe[1]);
#endif
scm_i_pthread_mutex_unlock (&signal_delivery_thread_mutex);
}
void
scm_init_scmsigs ()
{
int i;
signal_handlers =
SCM_VARIABLE_LOC (scm_c_define ("signal-handlers",
scm_c_make_vector (NSIG, SCM_BOOL_F)));
signal_handler_asyncs = scm_c_make_vector (NSIG, SCM_BOOL_F);
signal_handler_threads = scm_c_make_vector (NSIG, SCM_BOOL_F);
for (i = 0; i < NSIG; i++)
{
#ifdef HAVE_SIGACTION
orig_handlers[i].sa_handler = SIG_ERR;
#else
orig_handlers[i] = SIG_ERR;
#endif
}
scm_c_define ("NSIG", scm_from_long (NSIG));
scm_c_define ("SIG_IGN", scm_from_long ((long) SIG_IGN));
scm_c_define ("SIG_DFL", scm_from_long ((long) SIG_DFL));
#ifdef SA_NOCLDSTOP
scm_c_define ("SA_NOCLDSTOP", scm_from_long (SA_NOCLDSTOP));
#endif
#ifdef SA_RESTART
scm_c_define ("SA_RESTART", scm_from_long (SA_RESTART));
#endif
#if defined(HAVE_SETITIMER) || defined(HAVE_GETITIMER)
/* Stuff needed by setitimer and getitimer. */
scm_c_define ("ITIMER_REAL", scm_from_int (ITIMER_REAL));
scm_c_define ("ITIMER_VIRTUAL", scm_from_int (ITIMER_VIRTUAL));
scm_c_define ("ITIMER_PROF", scm_from_int (ITIMER_PROF));
#ifdef HAVE_USABLE_GETITIMER_PROF
scm_add_feature ("ITIMER_PROF");
#endif
#ifdef HAVE_USABLE_GETITIMER_VIRTUAL
scm_add_feature ("ITIMER_VIRTUAL");
#endif
#endif /* defined(HAVE_SETITIMER) || defined(HAVE_GETITIMER) */
#include "scmsigs.x"
}