mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-29 19:30:36 +02:00
* NEWS: * README: * doc/r5rs/r5rs.texi: * doc/ref/api-data.texi: * doc/ref/api-debug.texi: * doc/ref/api-evaluation.texi: * doc/ref/api-io.texi: * doc/ref/api-macros.texi: * doc/ref/api-procedures.texi: * doc/ref/api-scheduling.texi: * doc/ref/api-undocumented.texi: * doc/ref/libguile-concepts.texi: * doc/ref/posix.texi: * doc/ref/srfi-modules.texi: * doc/ref/vm.texi: * doc/ref/web.texi: * examples/box-dynamic-module/box.c: * examples/box-dynamic/box.c: * examples/box-module/box.c: * examples/box/box.c: * examples/safe/safe: * examples/scripts/README: * examples/scripts/hello: * gc-benchmarks/larceny/twobit-input-long.sch: * gc-benchmarks/larceny/twobit-smaller.sch: * gc-benchmarks/larceny/twobit.sch: * libguile/expand.c: * libguile/load.c: * libguile/net_db.c: * libguile/scmsigs.c: * libguile/srfi-14.c: * libguile/threads.c: * meta/guile.m4: * module/ice-9/match.upstream.scm: * module/ice-9/ports.scm: * module/language/cps/graphs.scm: * module/scripts/doc-snarf.scm: * module/srfi/srfi-19.scm: * module/system/repl/command.scm: * test-suite/tests/srfi-18.test: Fix typos. Signed-off-by: Ludovic Courtès <ludo@gnu.org>
360 lines
14 KiB
Scheme
360 lines
14 KiB
Scheme
;;; Continuation-passing style (CPS) intermediate language (IL)
|
|
|
|
;; Copyright (C) 2013-2015, 2017-2021 Free Software Foundation, Inc.
|
|
|
|
;;;; This library is free software; you can redistribute it and/or
|
|
;;;; modify it under the terms of the GNU Lesser General Public
|
|
;;;; License as published by the Free Software Foundation; either
|
|
;;;; version 3 of the License, or (at your option) any later version.
|
|
;;;;
|
|
;;;; This library is distributed in the hope that it will be useful,
|
|
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
;;;; Lesser General Public License for more details.
|
|
;;;;
|
|
;;;; You should have received a copy of the GNU Lesser General Public
|
|
;;;; License along with this library; if not, write to the Free Software
|
|
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
|
|
|
|
;;; Commentary:
|
|
;;;
|
|
;;; Helper facilities for working with graphs over intsets and intmaps.
|
|
;;;
|
|
;;; Code:
|
|
|
|
(define-module (language cps graphs)
|
|
#:use-module (ice-9 control)
|
|
#:use-module (ice-9 match)
|
|
#:use-module (srfi srfi-1)
|
|
#:use-module (language cps intset)
|
|
#:use-module (language cps intmap)
|
|
#:export (;; Various utilities.
|
|
fold1 fold2
|
|
trivial-intset
|
|
intmap-map
|
|
intmap-keys
|
|
invert-bijection invert-partition
|
|
rename-keys rename-intset rename-graph
|
|
intset->intmap
|
|
intmap-select
|
|
worklist-fold
|
|
fixpoint
|
|
|
|
;; Flow analysis.
|
|
invert-graph
|
|
compute-reverse-post-order
|
|
compute-strongly-connected-components
|
|
compute-sorted-strongly-connected-components
|
|
compute-reverse-control-flow-order
|
|
solve-flow-equations
|
|
compute-live-variables))
|
|
|
|
(define-inlinable (fold1 f l s0)
|
|
(let lp ((l l) (s0 s0))
|
|
(match l
|
|
(() s0)
|
|
((elt . l) (lp l (f elt s0))))))
|
|
|
|
(define-inlinable (fold2 f l s0 s1)
|
|
(let lp ((l l) (s0 s0) (s1 s1))
|
|
(match l
|
|
(() (values s0 s1))
|
|
((elt . l)
|
|
(call-with-values (lambda () (f elt s0 s1))
|
|
(lambda (s0 s1)
|
|
(lp l s0 s1)))))))
|
|
|
|
(define (trivial-intset set)
|
|
"Returns the sole member of @var{set}, if @var{set} has exactly one
|
|
member, or @code{#f} otherwise."
|
|
(let ((first (intset-next set)))
|
|
(and first
|
|
(not (intset-next set (1+ first)))
|
|
first)))
|
|
|
|
(define (intmap-map proc map)
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (k v out) (intmap-add! out k (proc k v)))
|
|
map
|
|
empty-intmap)))
|
|
|
|
(define (intmap-keys map)
|
|
"Return an intset of the keys in @var{map}."
|
|
(persistent-intset
|
|
(intmap-fold (lambda (k v keys) (intset-add! keys k)) map empty-intset)))
|
|
|
|
(define (invert-bijection map)
|
|
"Assuming the values of @var{map} are integers and are unique, compute
|
|
a map in which each value maps to its key. If the values are not
|
|
unique, an error will be signaled."
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (k v out) (intmap-add! out v k)) map empty-intmap)))
|
|
|
|
(define (invert-partition map)
|
|
"Assuming the values of @var{map} are disjoint intsets, compute a map
|
|
in which each member of each set maps to its key. If the values are not
|
|
disjoint, an error will be signaled."
|
|
(intmap-fold (lambda (k v* out)
|
|
(intset-fold (lambda (v out) (intmap-add out v k)) v* out))
|
|
map empty-intmap))
|
|
|
|
(define (intset->intmap f set)
|
|
(persistent-intmap
|
|
(intset-fold (lambda (label preds)
|
|
(intmap-add! preds label (f label)))
|
|
set empty-intmap)))
|
|
|
|
(define (intmap-select map set)
|
|
(persistent-intmap
|
|
(intset-fold (lambda (label out)
|
|
(intmap-add! out label (intmap-ref map label)))
|
|
set empty-intmap)))
|
|
|
|
(define worklist-fold
|
|
(case-lambda
|
|
((f in out)
|
|
(let lp ((in in) (out out))
|
|
(if (eq? in empty-intset)
|
|
out
|
|
(call-with-values (lambda () (f in out)) lp))))
|
|
((f in out0 out1)
|
|
(let lp ((in in) (out0 out0) (out1 out1))
|
|
(if (eq? in empty-intset)
|
|
(values out0 out1)
|
|
(call-with-values (lambda () (f in out0 out1)) lp))))))
|
|
|
|
(define fixpoint
|
|
(case-lambda
|
|
((f x)
|
|
(let lp ((x x))
|
|
(let ((x* (f x)))
|
|
(if (eq? x x*) x* (lp x*)))))
|
|
((f x0 x1)
|
|
(let lp ((x0 x0) (x1 x1))
|
|
(call-with-values (lambda () (f x0 x1))
|
|
(lambda (x0* x1*)
|
|
(if (and (eq? x0 x0*) (eq? x1 x1*))
|
|
(values x0* x1*)
|
|
(lp x0* x1*))))))))
|
|
|
|
(define (compute-reverse-post-order succs start)
|
|
"Compute a reverse post-order numbering for a depth-first walk over
|
|
nodes reachable from the start node."
|
|
(let visit ((label start) (order '()) (visited empty-intset))
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold (lambda (succ order visited)
|
|
(if (intset-ref visited succ)
|
|
(values order visited)
|
|
(visit succ order visited)))
|
|
(intmap-ref succs label)
|
|
order
|
|
(intset-add! visited label)))
|
|
(lambda (order visited)
|
|
;; After visiting successors, add label to the reverse post-order.
|
|
(values (cons label order) visited)))))
|
|
|
|
(define (invert-graph succs)
|
|
"Given a graph PRED->SUCC..., where PRED is a label and SUCC... is an
|
|
intset of successors, return a graph SUCC->PRED...."
|
|
(intmap-fold (lambda (pred succs preds)
|
|
(intset-fold
|
|
(lambda (succ preds)
|
|
(intmap-add preds succ pred intset-add))
|
|
succs
|
|
preds))
|
|
succs
|
|
(intmap-map (lambda (label _) empty-intset) succs)))
|
|
|
|
(define (rename-keys map old->new)
|
|
"Return a fresh intmap containing F(K) -> V for K and V in MAP, where
|
|
F is looking up K in the intmap OLD->NEW."
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (k v out)
|
|
(intmap-add! out (intmap-ref old->new k) v))
|
|
map
|
|
empty-intmap)))
|
|
|
|
(define (rename-intset set old->new)
|
|
"Return a fresh intset of F(K) for K in SET, where F is looking up K
|
|
in the intmap OLD->NEW."
|
|
(intset-fold (lambda (old set) (intset-add set (intmap-ref old->new old)))
|
|
set empty-intset))
|
|
|
|
(define (rename-graph graph old->new)
|
|
"Return a fresh intmap containing F(K) -> intset(F(V)...) for K and
|
|
intset(V...) in GRAPH, where F is looking up K in the intmap OLD->NEW."
|
|
(persistent-intmap
|
|
(intmap-fold (lambda (pred succs out)
|
|
(intmap-add! out
|
|
(intmap-ref old->new pred)
|
|
(rename-intset succs old->new)))
|
|
graph
|
|
empty-intmap)))
|
|
|
|
(define (compute-strongly-connected-components succs start)
|
|
"Given a LABEL->SUCCESSOR... graph, compute a SCC->LABEL... map
|
|
partitioning the labels into strongly connected components (SCCs)."
|
|
(let ((preds (invert-graph succs)))
|
|
(define (visit-scc scc sccs-by-label)
|
|
(let visit ((label scc) (sccs-by-label sccs-by-label))
|
|
(if (intmap-ref sccs-by-label label (lambda (_) #f))
|
|
sccs-by-label
|
|
(intset-fold visit
|
|
(intmap-ref preds label)
|
|
(intmap-add sccs-by-label label scc)))))
|
|
(intmap-fold
|
|
(lambda (label scc sccs)
|
|
(let ((labels (intset-add empty-intset label)))
|
|
(intmap-add sccs scc labels intset-union)))
|
|
(fold visit-scc empty-intmap (compute-reverse-post-order succs start))
|
|
empty-intmap)))
|
|
|
|
(define (compute-sorted-strongly-connected-components edges)
|
|
"Given a LABEL->SUCCESSOR... graph, return a list of strongly
|
|
connected components in sorted order."
|
|
(define nodes
|
|
(intmap-keys edges))
|
|
;; Add a "start" node that links to all nodes in the graph, and then
|
|
;; remove it from the result.
|
|
(define start
|
|
(if (eq? nodes empty-intset)
|
|
0
|
|
(1+ (intset-prev nodes))))
|
|
(define components
|
|
(intmap-remove
|
|
(compute-strongly-connected-components (intmap-add edges start nodes)
|
|
start)
|
|
start))
|
|
(define node-components
|
|
(intmap-fold (lambda (id nodes out)
|
|
(intset-fold (lambda (node out) (intmap-add out node id))
|
|
nodes out))
|
|
components
|
|
empty-intmap))
|
|
(define (node-component node)
|
|
(intmap-ref node-components node))
|
|
(define (component-successors id nodes)
|
|
(intset-remove
|
|
(intset-fold (lambda (node out)
|
|
(intset-fold
|
|
(lambda (successor out)
|
|
(intset-add out (node-component successor)))
|
|
(intmap-ref edges node)
|
|
out))
|
|
nodes
|
|
empty-intset)
|
|
id))
|
|
(define component-edges
|
|
(intmap-map component-successors components))
|
|
(define preds
|
|
(invert-graph component-edges))
|
|
(define roots
|
|
(intmap-fold (lambda (id succs out)
|
|
(if (eq? empty-intset succs)
|
|
(intset-add out id)
|
|
out))
|
|
component-edges
|
|
empty-intset))
|
|
;; As above, add a "start" node that links to the roots, and remove it
|
|
;; from the result.
|
|
(match (compute-reverse-post-order (intmap-add preds start roots) start)
|
|
(((? (lambda (id) (eqv? id start))) . ids)
|
|
(map (lambda (id) (intmap-ref components id)) ids))))
|
|
|
|
(define (compute-reverse-control-flow-order preds)
|
|
"Return a LABEL->ORDER bijection where ORDER is a contiguous set of
|
|
integers starting from 0 and incrementing in sort order. There is a
|
|
precondition that labels in PREDS are already renumbered in reverse post
|
|
order."
|
|
(define (has-back-edge? preds)
|
|
(let/ec return
|
|
(intmap-fold (lambda (label labels)
|
|
(intset-fold (lambda (pred)
|
|
(if (<= label pred)
|
|
(return #t)
|
|
(values)))
|
|
labels)
|
|
(values))
|
|
preds)
|
|
#f))
|
|
(if (has-back-edge? preds)
|
|
;; This is more involved than forward control flow because not all
|
|
;; live labels are reachable from the tail.
|
|
(persistent-intmap
|
|
(fold2 (lambda (component order n)
|
|
(intset-fold (lambda (label order n)
|
|
(values (intmap-add! order label n)
|
|
(1+ n)))
|
|
component order n))
|
|
(reverse (compute-sorted-strongly-connected-components preds))
|
|
empty-intmap 0))
|
|
;; Just reverse forward control flow.
|
|
(let ((max (intmap-prev preds)))
|
|
(intmap-map (lambda (label labels) (- max label)) preds))))
|
|
|
|
(define (intset-pop set)
|
|
(match (intset-next set)
|
|
(#f (values set #f))
|
|
(i (values (intset-remove set i) i))))
|
|
|
|
(define* (solve-flow-equations succs in out kill gen subtract add meet
|
|
#:optional (worklist (intmap-keys succs)))
|
|
"Find a fixed point for flow equations for SUCCS, where INIT is the
|
|
initial state at each node in SUCCS. KILL and GEN are intmaps
|
|
indicating the state that is killed or defined at every node, and
|
|
SUBTRACT, ADD, and MEET operates on that state."
|
|
(define (visit label in out)
|
|
(let* ((in-1 (intmap-ref in label))
|
|
(kill-1 (intmap-ref kill label))
|
|
(gen-1 (intmap-ref gen label))
|
|
(out-1 (intmap-ref out label))
|
|
(out-1* (add (subtract in-1 kill-1) gen-1)))
|
|
(if (eq? out-1 out-1*)
|
|
(values empty-intset in out)
|
|
(let ((out (intmap-replace! out label out-1*)))
|
|
(call-with-values
|
|
(lambda ()
|
|
(intset-fold (lambda (succ in changed)
|
|
(let* ((in-1 (intmap-ref in succ))
|
|
(in-1* (meet in-1 out-1*)))
|
|
(if (eq? in-1 in-1*)
|
|
(values in changed)
|
|
(values (intmap-replace! in succ in-1*)
|
|
(intset-add changed succ)))))
|
|
(intmap-ref succs label) in empty-intset))
|
|
(lambda (in changed)
|
|
(values changed in out)))))))
|
|
|
|
(let run ((worklist worklist) (in in) (out out))
|
|
(call-with-values (lambda () (intset-pop worklist))
|
|
(lambda (worklist popped)
|
|
(if popped
|
|
(call-with-values (lambda () (visit popped in out))
|
|
(lambda (changed in out)
|
|
(run (intset-union worklist changed) in out)))
|
|
(values (persistent-intmap in)
|
|
(persistent-intmap out)))))))
|
|
|
|
(define (compute-live-variables preds defs uses)
|
|
"Compute and return two values mapping LABEL->VAR..., where VAR... are
|
|
the definitions that are live before and after LABEL, as intsets."
|
|
(let* ((old->new (compute-reverse-control-flow-order preds))
|
|
(init (persistent-intmap (intmap-fold
|
|
(lambda (old new init)
|
|
(intmap-add! init new empty-intset))
|
|
old->new empty-intmap))))
|
|
(call-with-values
|
|
(lambda ()
|
|
(solve-flow-equations (rename-graph preds old->new)
|
|
init init
|
|
(rename-keys defs old->new)
|
|
(rename-keys uses old->new)
|
|
intset-subtract intset-union intset-union))
|
|
(lambda (in out)
|
|
;; As a reverse control-flow problem, the values flowing into a
|
|
;; node are actually the live values after the node executes.
|
|
;; Funny, innit? So we return them in the reverse order.
|
|
(let ((new->old (invert-bijection old->new)))
|
|
(values (rename-keys out new->old)
|
|
(rename-keys in new->old)))))))
|