1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/libguile/numbers.c
Jim Blandy 3eeba8d4f5 * chars.c (scm_lowers, scm_uppers, scm_charnames, scm_charnums),
eval.c (s_expression, s_test, s_body, s_bindings, s_variable,
s_clauses, s_formals): Variables now const.
* eval.c (promsmob): Now const.
* macros.c (macrosmob): Now const.
* smob.c (scm_newsmob): Smobfuns argument now points to const.
(freecell, flob, bigob): Now const.
* dynl.c (scm_make_argv_from_stringlist, scm_coerce_rostring),
error.c (scm_error, scm_syserror, scm_syserror_msg,
scm_num_overflow, scm_out_of_range, scm_wrong_type_arg,
scm_memory_error, scm_misc_error, scm_wta), macros.c
(scm_make_synt), feature.c (scm_add_feature), filesys.c
(scm_input_waiting_p), gc.c (scm_gc_start, scm_igc,
scm_must_malloc, scm_must_realloc), gsubr.c (scm_make_gsubr),
numbers.c (scm_num2dbl, scm_two_doubles, scm_num2long,
scm_num2long_long, scm_num2ulong),
options.c (scm_options), posix.c (scm_convert_exec_args,
environ_list_to_c), procs.c (scm_make_subr_opt, scm_make_subr),
ramap.c (scm_ramapc), read.c (scm_flush_ws), socket.c
(scm_sock_fd_to_port, scm_fill_sockaddr, scm_addr_vector), stime.c
(setzone, restorezone, bdtime2c), strop.c (scm_i_index),
strports.c (scm_mkstrport), symbols.c (scm_intern_obarray_soft,
scm_intern_obarray, scm_intern, scm_intern0,
scm_sysintern0_no_module_lookup, scm_sysintern, scm_sysintern0,
scm_symbol_value0), unif.c (scm_aind, scm_shap2ra): Argument
indicating calling subr, error message text, reason for error,
symbol name or feature name are now pointer to const.
* snarf.h (SCM_PROC, SCM_PROC1): String variables are now const.
* procs.c (scm_init_iprocs): iproc argument now points to const.
* pairs.c (cxrs): Now const.
* chars.h, error.h, feature.h, filesys.h, gc.h, gsubr.h, macros.h,
numbers.h, options.h, procs.h, ramap.h, read.h, smob.h,
strports.h, symbols.h, unif.h: Update variable declarations and
function prototypes for above changes.
* dynl.c, dynl-dld.c, dynl-dl.c, dynl-shl.c (sysdep_dynl_link,
sysdep_dynl_unlink, sysdep_dynl_func): Arguments FNAME, SUBR, and
SYMB now point to const.
1999-02-06 12:31:04 +00:00

4823 lines
95 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996,1997,1998 Free Software Foundation, Inc.
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
* Boston, MA 02111-1307 USA
*
* As a special exception, the Free Software Foundation gives permission
* for additional uses of the text contained in its release of GUILE.
*
* The exception is that, if you link the GUILE library with other files
* to produce an executable, this does not by itself cause the
* resulting executable to be covered by the GNU General Public License.
* Your use of that executable is in no way restricted on account of
* linking the GUILE library code into it.
*
* This exception does not however invalidate any other reasons why
* the executable file might be covered by the GNU General Public License.
*
* This exception applies only to the code released by the
* Free Software Foundation under the name GUILE. If you copy
* code from other Free Software Foundation releases into a copy of
* GUILE, as the General Public License permits, the exception does
* not apply to the code that you add in this way. To avoid misleading
* anyone as to the status of such modified files, you must delete
* this exception notice from them.
*
* If you write modifications of your own for GUILE, it is your choice
* whether to permit this exception to apply to your modifications.
* If you do not wish that, delete this exception notice. */
#include <stdio.h>
#include <math.h>
#include "_scm.h"
#include "genio.h"
#include "unif.h"
#include "numbers.h"
#define DIGITS '0':case '1':case '2':case '3':case '4':\
case '5':case '6':case '7':case '8':case '9'
/* IS_INF tests its floating point number for infiniteness
*/
#ifndef IS_INF
#define IS_INF(x) ((x) == (x) / 2)
#endif
/* MAXEXP is the maximum double precision expontent
* FLTMAX is less than or scm_equal the largest single precision float
*/
#ifdef SCM_FLOATS
#ifdef STDC_HEADERS
#ifndef GO32
#include <float.h>
#endif /* ndef GO32 */
#endif /* def STDC_HEADERS */
#ifdef DBL_MAX_10_EXP
#define MAXEXP DBL_MAX_10_EXP
#else
#define MAXEXP 308 /* IEEE doubles */
#endif /* def DBL_MAX_10_EXP */
#ifdef FLT_MAX
#define FLTMAX FLT_MAX
#else
#define FLTMAX 1e+23
#endif /* def FLT_MAX */
#endif /* def SCM_FLOATS */
SCM_PROC (s_exact_p, "exact?", 1, 0, 0, scm_exact_p);
SCM
scm_exact_p (x)
SCM x;
{
if (SCM_INUMP (x))
return SCM_BOOL_T;
#ifdef SCM_BIGDIG
if (SCM_NIMP (x) && SCM_BIGP (x))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM_PROC (s_odd_p, "odd?", 1, 0, 0, scm_odd_p);
SCM
scm_odd_p (n)
SCM n;
{
#ifdef SCM_BIGDIG
if (SCM_NINUMP (n))
{
SCM_ASSERT (SCM_NIMP (n) && SCM_BIGP (n), n, SCM_ARG1, s_odd_p);
return (1 & SCM_BDIGITS (n)[0]) ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_odd_p);
#endif
return (4 & (int) n) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC (s_even_p, "even?", 1, 0, 0, scm_even_p);
SCM
scm_even_p (n)
SCM n;
{
#ifdef SCM_BIGDIG
if (SCM_NINUMP (n))
{
SCM_ASSERT (SCM_NIMP (n) && SCM_BIGP (n), n, SCM_ARG1, s_even_p);
return (1 & SCM_BDIGITS (n)[0]) ? SCM_BOOL_F : SCM_BOOL_T;
}
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_even_p);
#endif
return (4 & (int) n) ? SCM_BOOL_F : SCM_BOOL_T;
}
SCM_PROC (s_abs, "abs", 1, 0, 0, scm_abs);
SCM
scm_abs (x)
SCM x;
{
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_abs);
if (SCM_TYP16 (x) == scm_tc16_bigpos)
return x;
return scm_copybig (x, 0);
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_abs);
#endif
if (SCM_INUM (x) >= 0)
return x;
x = - SCM_INUM (x);
if (!SCM_POSFIXABLE (x))
#ifdef SCM_BIGDIG
return scm_long2big (x);
#else
scm_num_overflow (s_abs);
#endif
return SCM_MAKINUM (x);
}
SCM_PROC (s_quotient, "quotient", 2, 0, 0, scm_quotient);
SCM
scm_quotient (x, y)
SCM x;
SCM y;
{
register long z;
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
long w;
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_quotient);
if (SCM_NINUMP (y))
{
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 2);
}
z = SCM_INUM (y);
SCM_ASRTGO (z, ov);
if (1 == z)
return x;
if (z < 0)
z = -z;
if (z < SCM_BIGRAD)
{
w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0));
scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w), (SCM_BIGDIG) z);
return scm_normbig (w);
}
#ifndef SCM_DIGSTOOBIG
w = scm_pseudolong (z);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & w, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 2);
#else
{
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (z, zdigs);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
zdigs, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 2);
}
#endif
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_quotient);
}
#endif
return SCM_INUM0;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_quotient);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_quotient);
#endif
if ((z = SCM_INUM (y)) == 0)
{
ov:
scm_num_overflow (s_quotient);
}
z = SCM_INUM (x) / z;
#ifdef BADIVSGNS
{
#if (__TURBOC__ == 1)
long t = ((y < 0) ? -SCM_INUM (x) : SCM_INUM (x)) % SCM_INUM (y);
#else
long t = SCM_INUM (x) % SCM_INUM (y);
#endif
if (t == 0);
else if (t < 0)
if (x < 0);
else
z--;
else if (x < 0)
z++;
}
#endif
if (!SCM_FIXABLE (z))
#ifdef SCM_BIGDIG
return scm_long2big (z);
#else
scm_num_overflow (s_quotient);
#endif
return SCM_MAKINUM (z);
}
SCM_PROC (s_remainder, "remainder", 2, 0, 0, scm_remainder);
SCM
scm_remainder (x, y)
SCM x;
SCM y;
{
register long z;
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_remainder);
if (SCM_NINUMP (y))
{
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x), 0);
}
if (!(z = SCM_INUM (y)))
goto ov;
return scm_divbigint (x, z, SCM_BIGSIGN (x), 0);
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_remainder);
}
#endif
return x;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_remainder);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_remainder);
#endif
if (!(z = SCM_INUM (y)))
{
ov:
scm_num_overflow (s_remainder);
}
#if (__TURBOC__ == 1)
if (z < 0)
z = -z;
#endif
z = SCM_INUM (x) % z;
#ifdef BADIVSGNS
if (!z);
else if (z < 0)
if (x < 0);
else
z += SCM_INUM (y);
else if (x < 0)
z -= SCM_INUM (y);
#endif
return SCM_MAKINUM (z);
}
SCM_PROC (s_modulo, "modulo", 2, 0, 0, scm_modulo);
SCM
scm_modulo (x, y)
SCM x;
SCM y;
{
register long yy, z;
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_modulo);
if (SCM_NINUMP (y))
{
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y),
(SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)) ? 1 : 0);
}
if (!(z = SCM_INUM (y)))
goto ov;
return scm_divbigint (x, z, y < 0,
(SCM_BIGSIGN (x) ? (y > 0) : (y < 0)) ? 1 : 0);
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_modulo);
}
#endif
return (SCM_BIGSIGN (y) ? (x > 0) : (x < 0)) ? scm_sum (x, y) : x;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_modulo);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_modulo);
#endif
if (!(yy = SCM_INUM (y)))
{
ov:
scm_num_overflow (s_modulo);
}
#if (__TURBOC__==1)
z = SCM_INUM (x);
z = ((yy < 0) ? -z : z) % yy;
#else
z = SCM_INUM (x) % yy;
#endif
return SCM_MAKINUM (((yy < 0) ? (z > 0) : (z < 0)) ? z + yy : z);
}
SCM_PROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd);
SCM
scm_gcd (x, y)
SCM x;
SCM y;
{
register long u, v, k, t;
if (SCM_UNBNDP (y))
return SCM_UNBNDP (x) ? SCM_INUM0 : x;
tailrec:
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
big_gcd:
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_gcd);
if (SCM_BIGSIGN (x))
x = scm_copybig (x, 0);
newy:
if (SCM_NINUMP (y))
{
SCM_ASSERT (SCM_NIMP (y) && SCM_BIGP (y), y, SCM_ARG2, s_gcd);
if (SCM_BIGSIGN (y))
y = scm_copybig (y, 0);
switch (scm_bigcomp (x, y))
{
case -1:
swaprec:
t = scm_remainder (x, y);
x = y;
y = t;
goto tailrec;
case 0:
return x;
case 1:
y = scm_remainder (y, x);
goto newy;
}
/* instead of the switch, we could just
return scm_gcd (y, scm_modulo (x, y)); */
}
if (SCM_INUM0 == y)
return x;
goto swaprec;
}
if (SCM_NINUMP (y))
{
t = x;
x = y;
y = t;
goto big_gcd;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_gcd);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_gcd);
#endif
u = SCM_INUM (x);
if (u < 0)
u = -u;
v = SCM_INUM (y);
if (v < 0)
v = -v;
else if (0 == v)
goto getout;
if (0 == u)
{
u = v;
goto getout;
}
for (k = 1; !(1 & ((int) u | (int) v)); k <<= 1, u >>= 1, v >>= 1);
if (1 & (int) u)
t = -v;
else
{
t = u;
b3:
t = SCM_SRS (t, 1);
}
if (!(1 & (int) t))
goto b3;
if (t > 0)
u = t;
else
v = -t;
if ((t = u - v))
goto b3;
u = u * k;
getout:
if (!SCM_POSFIXABLE (u))
#ifdef SCM_BIGDIG
return scm_long2big (u);
#else
scm_num_overflow (s_gcd);
#endif
return SCM_MAKINUM (u);
}
SCM_PROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm);
SCM
scm_lcm (n1, n2)
SCM n1;
SCM n2;
{
SCM d;
if (SCM_UNBNDP (n2))
{
n2 = SCM_MAKINUM (1L);
if (SCM_UNBNDP (n1))
return n2;
}
d = scm_gcd (n1, n2);
if (SCM_INUM0 == d)
return d;
return scm_abs (scm_product (n1, scm_quotient (n2, d)));
}
#ifndef SCM_BIGDIG
#ifndef SCM_FLOATS
#define scm_long2num SCM_MAKINUM
#endif
#endif
#ifndef scm_long2num
SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand);
SCM
scm_logand (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_MAKINUM (-1);
return n1;
}
return scm_ulong2num (scm_num2ulong (n1, (char *) SCM_ARG1, s_logand)
& scm_num2ulong (n2, (char *) SCM_ARG2, s_logand));
}
SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior);
SCM
scm_logior (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_INUM0;
return n1;
}
return scm_ulong2num (scm_num2ulong (n1, (char *) SCM_ARG1, s_logior)
| scm_num2ulong (n2, (char *) SCM_ARG2, s_logior));
}
SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor);
SCM
scm_logxor (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_INUM0;
return n1;
}
return scm_ulong2num (scm_num2ulong (n1, (char *) SCM_ARG1, s_logxor)
^ scm_num2ulong (n2, (char *) SCM_ARG2, s_logxor));
}
SCM_PROC (s_logtest, "logtest", 2, 0, 0, scm_logtest);
SCM
scm_logtest (n1, n2)
SCM n1;
SCM n2;
{
return ((scm_num2ulong (n1, (char *) SCM_ARG1, s_logtest)
& scm_num2ulong (n2, (char *) SCM_ARG2, s_logtest))
? SCM_BOOL_T : SCM_BOOL_F);
}
SCM_PROC (s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p);
SCM
scm_logbit_p (n1, n2)
SCM n1;
SCM n2;
{
return (((1 << scm_num2long (n1, (char *) SCM_ARG1, s_logtest))
& scm_num2ulong (n2, (char *) SCM_ARG2, s_logtest))
? SCM_BOOL_T : SCM_BOOL_F);
}
#else
SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand);
SCM
scm_logand (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_MAKINUM (-1);
return n1;
}
return SCM_MAKINUM (SCM_INUM (n1) & SCM_INUM (n2));
}
SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior);
SCM
scm_logior (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_INUM0;
return n1;
}
return SCM_MAKINUM (SCM_INUM (n1) | SCM_INUM (n2));
}
SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor);
SCM
scm_logxor (n1, n2)
SCM n1;
SCM n2;
{
if (SCM_UNBNDP (n2))
{
if (SCM_UNBNDP (n1))
return SCM_INUM0;
return n1;
}
return SCM_MAKINUM (SCM_INUM (n1) ^ SCM_INUM (n2));
}
SCM_PROC (s_logtest, "logtest", 2, 0, 0, scm_logtest);
SCM
scm_logtest (n1, n2)
SCM n1;
SCM n2;
{
SCM_ASSERT (SCM_INUMP (n1), n1, SCM_ARG1, s_logtest);
SCM_ASSERT (SCM_INUMP (n2), n2, SCM_ARG2, s_logtest);
return (SCM_INUM (n1) & SCM_INUM (n2)) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC (s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p);
SCM
scm_logbit_p (n1, n2)
SCM n1;
SCM n2;
{
SCM_ASSERT (SCM_INUMP (n1) && SCM_INUM (n1) >= 0, n1, SCM_ARG1, s_logbit_p);
SCM_ASSERT (SCM_INUMP (n2), n2, SCM_ARG2, s_logbit_p);
return ((1 << SCM_INUM (n1)) & SCM_INUM (n2)) ? SCM_BOOL_T : SCM_BOOL_F;
}
#endif
SCM_PROC (s_lognot, "lognot", 1, 0, 0, scm_lognot);
SCM
scm_lognot (n)
SCM n;
{
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_lognot);
return scm_difference (SCM_MAKINUM (-1L), n);
}
SCM_PROC (s_integer_expt, "integer-expt", 2, 0, 0, scm_integer_expt);
SCM
scm_integer_expt (z1, z2)
SCM z1;
SCM z2;
{
SCM acc = SCM_MAKINUM (1L);
#ifdef SCM_BIGDIG
if (SCM_INUM0 == z1 || acc == z1)
return z1;
else if (SCM_MAKINUM (-1L) == z1)
return SCM_BOOL_F == scm_even_p (z2) ? z1 : acc;
#endif
SCM_ASSERT (SCM_INUMP (z2), z2, SCM_ARG2, s_integer_expt);
z2 = SCM_INUM (z2);
if (z2 < 0)
{
z2 = -z2;
z1 = scm_divide (z1, SCM_UNDEFINED);
}
while (1)
{
if (0 == z2)
return acc;
if (1 == z2)
return scm_product (acc, z1);
if (z2 & 1)
acc = scm_product (acc, z1);
z1 = scm_product (z1, z1);
z2 >>= 1;
}
}
SCM_PROC (s_ash, "ash", 2, 0, 0, scm_ash);
SCM
scm_ash (n, cnt)
SCM n;
SCM cnt;
{
SCM res = SCM_INUM (n);
SCM_ASSERT (SCM_INUMP (cnt), cnt, SCM_ARG2, s_ash);
#ifdef SCM_BIGDIG
if (cnt < 0)
{
res = scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (-SCM_INUM (cnt)));
if (SCM_NFALSEP (scm_negative_p (n)))
return scm_sum (SCM_MAKINUM (-1L),
scm_quotient (scm_sum (SCM_MAKINUM (1L), n), res));
else
return scm_quotient (n, res);
}
else
return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_ash);
cnt = SCM_INUM (cnt);
if (cnt < 0)
return SCM_MAKINUM (SCM_SRS (res, -cnt));
res = SCM_MAKINUM (res << cnt);
if (SCM_INUM (res) >> cnt != SCM_INUM (n))
scm_num_overflow (s_ash);
return res;
#endif
}
SCM_PROC (s_bit_extract, "bit-extract", 3, 0, 0, scm_bit_extract);
SCM
scm_bit_extract (n, start, end)
SCM n;
SCM start;
SCM end;
{
SCM_ASSERT (SCM_INUMP (start), start, SCM_ARG2, s_bit_extract);
SCM_ASSERT (SCM_INUMP (end), end, SCM_ARG3, s_bit_extract);
start = SCM_INUM (start);
end = SCM_INUM (end);
SCM_ASSERT (end >= start, SCM_MAKINUM (end), SCM_OUTOFRANGE, s_bit_extract);
#ifdef SCM_BIGDIG
if (SCM_NINUMP (n))
return
scm_logand (scm_difference (scm_integer_expt (SCM_MAKINUM (2),
SCM_MAKINUM (end - start)),
SCM_MAKINUM (1L)),
scm_ash (n, SCM_MAKINUM (-start)));
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_bit_extract);
#endif
return SCM_MAKINUM ((SCM_INUM (n) >> start) & ((1L << (end - start)) - 1));
}
char scm_logtab[] = { 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 };
SCM_PROC (s_logcount, "logcount", 1, 0, 0, scm_logcount);
SCM
scm_logcount (n)
SCM n;
{
register unsigned long c = 0;
register long nn;
#ifdef SCM_BIGDIG
if (SCM_NINUMP (n))
{
scm_sizet i;
SCM_BIGDIG *ds, d;
SCM_ASSERT (SCM_NIMP (n) && SCM_BIGP (n), n, SCM_ARG1, s_logcount);
if (SCM_BIGSIGN (n))
return scm_logcount (scm_difference (SCM_MAKINUM (-1L), n));
ds = SCM_BDIGITS (n);
for (i = SCM_NUMDIGS (n); i--;)
for (d = ds[i]; d; d >>= 4)
c += scm_logtab[15 & d];
return SCM_MAKINUM (c);
}
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_logcount);
#endif
if ((nn = SCM_INUM (n)) < 0)
nn = -1 - nn;
for (; nn; nn >>= 4)
c += scm_logtab[15 & nn];
return SCM_MAKINUM (c);
}
char scm_ilentab[] = { 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 };
SCM_PROC (s_integer_length, "integer-length", 1, 0, 0, scm_integer_length);
SCM
scm_integer_length (n)
SCM n;
{
register unsigned long c = 0;
register long nn;
unsigned int l = 4;
#ifdef SCM_BIGDIG
if (SCM_NINUMP (n))
{
SCM_BIGDIG *ds, d;
SCM_ASSERT (SCM_NIMP (n) && SCM_BIGP (n), n, SCM_ARG1, s_integer_length);
if (SCM_BIGSIGN (n))
return scm_integer_length (scm_difference (SCM_MAKINUM (-1L), n));
ds = SCM_BDIGITS (n);
d = ds[c = SCM_NUMDIGS (n) - 1];
for (c *= SCM_BITSPERDIG; d; d >>= 4)
{
c += 4;
l = scm_ilentab[15 & d];
}
return SCM_MAKINUM (c - 4 + l);
}
#else
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_integer_length);
#endif
if ((nn = SCM_INUM (n)) < 0)
nn = -1 - nn;
for (; nn; nn >>= 4)
{
c += 4;
l = scm_ilentab[15 & nn];
}
return SCM_MAKINUM (c - 4 + l);
}
#ifdef SCM_BIGDIG
char scm_s_bignum[] = "bignum";
SCM
scm_mkbig (nlen, sign)
scm_sizet nlen;
int sign;
{
SCM v = nlen;
/* Cast to SCM to avoid signed/unsigned comparison warnings. */
if (((v << 16) >> 16) != (SCM) nlen)
scm_wta (SCM_MAKINUM (nlen), (char *) SCM_NALLOC, scm_s_bignum);
SCM_NEWCELL (v);
SCM_DEFER_INTS;
SCM_SETCHARS (v, scm_must_malloc ((long) (nlen * sizeof (SCM_BIGDIG)),
scm_s_bignum));
SCM_SETNUMDIGS (v, nlen, sign ? scm_tc16_bigneg : scm_tc16_bigpos);
SCM_ALLOW_INTS;
return v;
}
SCM
scm_big2inum (b, l)
SCM b;
scm_sizet l;
{
unsigned long num = 0;
SCM_BIGDIG *tmp = SCM_BDIGITS (b);
while (l--)
num = SCM_BIGUP (num) + tmp[l];
if (SCM_TYP16 (b) == scm_tc16_bigpos)
{
if (SCM_POSFIXABLE (num))
return SCM_MAKINUM (num);
}
else if (SCM_UNEGFIXABLE (num))
return SCM_MAKINUM (-num);
return b;
}
char s_adjbig[] = "scm_adjbig";
SCM
scm_adjbig (b, nlen)
SCM b;
scm_sizet nlen;
{
scm_sizet nsiz = nlen;
if (((nsiz << 16) >> 16) != nlen)
scm_wta (scm_ulong2num (nsiz), (char *) SCM_NALLOC, s_adjbig);
SCM_DEFER_INTS;
{
SCM_BIGDIG *digits
= ((SCM_BIGDIG *)
scm_must_realloc ((char *) SCM_CHARS (b),
(long) (SCM_NUMDIGS (b) * sizeof (SCM_BIGDIG)),
(long) (nsiz * sizeof (SCM_BIGDIG)), s_adjbig));
SCM_SETCHARS (b, digits);
SCM_SETNUMDIGS (b, nsiz, SCM_TYP16 (b));
}
SCM_ALLOW_INTS;
return b;
}
SCM
scm_normbig (b)
SCM b;
{
#ifndef _UNICOS
scm_sizet nlen = SCM_NUMDIGS (b);
#else
int nlen = SCM_NUMDIGS (b); /* unsigned nlen breaks on Cray when nlen => 0 */
#endif
SCM_BIGDIG *zds = SCM_BDIGITS (b);
while (nlen-- && !zds[nlen]);
nlen++;
if (nlen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
if (SCM_INUMP (b = scm_big2inum (b, (scm_sizet) nlen)))
return b;
if (SCM_NUMDIGS (b) == nlen)
return b;
return scm_adjbig (b, (scm_sizet) nlen);
}
SCM
scm_copybig (b, sign)
SCM b;
int sign;
{
scm_sizet i = SCM_NUMDIGS (b);
SCM ans = scm_mkbig (i, sign);
SCM_BIGDIG *src = SCM_BDIGITS (b), *dst = SCM_BDIGITS (ans);
while (i--)
dst[i] = src[i];
return ans;
}
SCM
scm_long2big (n)
long n;
{
scm_sizet i = 0;
SCM_BIGDIG *digits;
SCM ans = scm_mkbig (SCM_DIGSPERLONG, n < 0);
digits = SCM_BDIGITS (ans);
if (n < 0)
n = -n;
while (i < SCM_DIGSPERLONG)
{
digits[i++] = SCM_BIGLO (n);
n = SCM_BIGDN ((unsigned long) n);
}
return ans;
}
#ifdef LONGLONGS
SCM
scm_long_long2big (n)
long_long n;
{
scm_sizet i;
SCM_BIGDIG *digits;
SCM ans;
int n_digits;
{
long tn;
tn = (long) n;
if ((long long) tn == n)
return scm_long2big (tn);
}
{
long_long tn;
for (tn = n, n_digits = 0;
tn;
++n_digits, tn = SCM_BIGDN ((ulong_long) tn))
;
}
i = 0;
ans = scm_mkbig (n_digits, n < 0);
digits = SCM_BDIGITS (ans);
if (n < 0)
n = -n;
while (i < n_digits)
{
digits[i++] = SCM_BIGLO (n);
n = SCM_BIGDN ((ulong_long) n);
}
return ans;
}
#endif
SCM
scm_2ulong2big (np)
unsigned long *np;
{
unsigned long n;
scm_sizet i;
SCM_BIGDIG *digits;
SCM ans;
ans = scm_mkbig (2 * SCM_DIGSPERLONG, 0);
digits = SCM_BDIGITS (ans);
n = np[0];
for (i = 0; i < SCM_DIGSPERLONG; ++i)
{
digits[i] = SCM_BIGLO (n);
n = SCM_BIGDN ((unsigned long) n);
}
n = np[1];
for (i = 0; i < SCM_DIGSPERLONG; ++i)
{
digits[i + SCM_DIGSPERLONG] = SCM_BIGLO (n);
n = SCM_BIGDN ((unsigned long) n);
}
return ans;
}
SCM
scm_ulong2big (n)
unsigned long n;
{
scm_sizet i = 0;
SCM_BIGDIG *digits;
SCM ans = scm_mkbig (SCM_DIGSPERLONG, 0);
digits = SCM_BDIGITS (ans);
while (i < SCM_DIGSPERLONG)
{
digits[i++] = SCM_BIGLO (n);
n = SCM_BIGDN (n);
}
return ans;
}
int
scm_bigcomp (x, y)
SCM x;
SCM y;
{
int xsign = SCM_BIGSIGN (x);
int ysign = SCM_BIGSIGN (y);
scm_sizet xlen, ylen;
/* Look at the signs, first. */
if (ysign < xsign)
return 1;
if (ysign > xsign)
return -1;
/* They're the same sign, so see which one has more digits. Note
that, if they are negative, the longer number is the lesser. */
ylen = SCM_NUMDIGS (y);
xlen = SCM_NUMDIGS (x);
if (ylen > xlen)
return (xsign) ? -1 : 1;
if (ylen < xlen)
return (xsign) ? 1 : -1;
/* They have the same number of digits, so find the most significant
digit where they differ. */
while (xlen)
{
--xlen;
if (SCM_BDIGITS (y)[xlen] != SCM_BDIGITS (x)[xlen])
/* Make the discrimination based on the digit that differs. */
return ((SCM_BDIGITS (y)[xlen] > SCM_BDIGITS (x)[xlen])
? (xsign ? -1 : 1)
: (xsign ? 1 : -1));
}
/* The numbers are identical. */
return 0;
}
#ifndef SCM_DIGSTOOBIG
long
scm_pseudolong (x)
long x;
{
union
{
long l;
SCM_BIGDIG bd[SCM_DIGSPERLONG];
}
p;
scm_sizet i = 0;
if (x < 0)
x = -x;
while (i < SCM_DIGSPERLONG)
{
p.bd[i++] = SCM_BIGLO (x);
x = SCM_BIGDN (x);
}
/* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */
return p.l;
}
#else
void
scm_longdigs (x, digs)
long x;
SCM_BIGDIG digs[];
{
scm_sizet i = 0;
if (x < 0)
x = -x;
while (i < SCM_DIGSPERLONG)
{
digs[i++] = SCM_BIGLO (x);
x = SCM_BIGDN (x);
}
}
#endif
SCM
scm_addbig (x, nx, xsgn, bigy, sgny)
SCM_BIGDIG *x;
scm_sizet nx;
int xsgn;
SCM bigy;
int sgny;
{
/* Assumes nx <= SCM_NUMDIGS(bigy) */
/* Assumes xsgn and sgny scm_equal either 0 or 0x0100 */
long num = 0;
scm_sizet i = 0, ny = SCM_NUMDIGS (bigy);
SCM z = scm_copybig (bigy, SCM_BIGSIGN (bigy) ^ sgny);
SCM_BIGDIG *zds = SCM_BDIGITS (z);
if (xsgn ^ SCM_BIGSIGN (z))
{
do
{
num += (long) zds[i] - x[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = SCM_BIGLO (num);
num = 0;
}
}
while (++i < nx);
if (num && nx == ny)
{
num = 1;
i = 0;
SCM_SETCAR (z, SCM_CAR (z) ^ 0x0100);
do
{
num += (SCM_BIGRAD - 1) - zds[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (i < ny);
}
else
while (i < ny)
{
num += zds[i];
if (num < 0)
{
zds[i++] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i++] = SCM_BIGLO (num);
num = 0;
}
}
}
else
{
do
{
num += (long) zds[i] + x[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (i < nx);
if (!num)
return z;
while (i < ny)
{
num += zds[i];
zds[i++] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
if (!num)
return z;
}
if (num)
{
z = scm_adjbig (z, ny + 1);
SCM_BDIGITS (z)[ny] = num;
return z;
}
}
return scm_normbig (z);
}
SCM
scm_mulbig (x, nx, y, ny, sgn)
SCM_BIGDIG *x;
scm_sizet nx;
SCM_BIGDIG *y;
scm_sizet ny;
int sgn;
{
scm_sizet i = 0, j = nx + ny;
unsigned long n = 0;
SCM z = scm_mkbig (j, sgn);
SCM_BIGDIG *zds = SCM_BDIGITS (z);
while (j--)
zds[j] = 0;
do
{
j = 0;
if (x[i])
{
do
{
n += zds[i + j] + ((unsigned long) x[i] * y[j]);
zds[i + j++] = SCM_BIGLO (n);
n = SCM_BIGDN (n);
}
while (j < ny);
if (n)
{
zds[i + j] = n;
n = 0;
}
}
}
while (++i < nx);
return scm_normbig (z);
}
/* Sun's compiler complains about the fact that this function has an
ANSI prototype in numbers.h, but a K&R declaration here, and the
two specify different promotions for the third argument. I'm going
to turn this into an ANSI declaration, and see if anyone complains
about it not being K&R. */
unsigned int
scm_divbigdig (SCM_BIGDIG * ds,
scm_sizet h,
SCM_BIGDIG div)
{
register unsigned long t2 = 0;
while (h--)
{
t2 = SCM_BIGUP (t2) + ds[h];
ds[h] = t2 / div;
t2 %= div;
}
return t2;
}
SCM
scm_divbigint (x, z, sgn, mode)
SCM x;
long z;
int sgn;
int mode;
{
if (z < 0)
z = -z;
if (z < SCM_BIGRAD)
{
register unsigned long t2 = 0;
register SCM_BIGDIG *ds = SCM_BDIGITS (x);
scm_sizet nd = SCM_NUMDIGS (x);
while (nd--)
t2 = (SCM_BIGUP (t2) + ds[nd]) % z;
if (mode && t2)
t2 = z - t2;
return SCM_MAKINUM (sgn ? -t2 : t2);
}
{
#ifndef SCM_DIGSTOOBIG
unsigned long t2 = scm_pseudolong (z);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & t2, SCM_DIGSPERLONG,
sgn, mode);
#else
SCM_BIGDIG t2[SCM_DIGSPERLONG];
scm_longdigs (z, t2);
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
t2, SCM_DIGSPERLONG,
sgn, mode);
#endif
}
}
SCM
scm_divbigbig (x, nx, y, ny, sgn, modes)
SCM_BIGDIG *x;
scm_sizet nx;
SCM_BIGDIG *y;
scm_sizet ny;
int sgn;
int modes;
{
/* modes description
0 remainder
1 scm_modulo
2 quotient
3 quotient but returns 0 if division is not exact. */
scm_sizet i = 0, j = 0;
long num = 0;
unsigned long t2 = 0;
SCM z, newy;
SCM_BIGDIG d = 0, qhat, *zds, *yds;
/* algorithm requires nx >= ny */
if (nx < ny)
switch (modes)
{
case 0: /* remainder -- just return x */
z = scm_mkbig (nx, sgn);
zds = SCM_BDIGITS (z);
do
{
zds[i] = x[i];
}
while (++i < nx);
return z;
case 1: /* scm_modulo -- return y-x */
z = scm_mkbig (ny, sgn);
zds = SCM_BDIGITS (z);
do
{
num += (long) y[i] - x[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = num;
num = 0;
}
}
while (++i < nx);
while (i < ny)
{
num += y[i];
if (num < 0)
{
zds[i++] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i++] = num;
num = 0;
}
}
goto doadj;
case 2:
return SCM_INUM0; /* quotient is zero */
case 3:
return 0; /* the division is not exact */
}
z = scm_mkbig (nx == ny ? nx + 2 : nx + 1, sgn);
zds = SCM_BDIGITS (z);
if (nx == ny)
zds[nx + 1] = 0;
while (!y[ny - 1])
ny--; /* in case y came in as a psuedolong */
if (y[ny - 1] < (SCM_BIGRAD >> 1))
{ /* normalize operands */
d = SCM_BIGRAD / (y[ny - 1] + 1);
newy = scm_mkbig (ny, 0);
yds = SCM_BDIGITS (newy);
while (j < ny)
{
t2 += (unsigned long) y[j] * d;
yds[j++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
y = yds;
j = 0;
t2 = 0;
while (j < nx)
{
t2 += (unsigned long) x[j] * d;
zds[j++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
zds[j] = t2;
}
else
{
zds[j = nx] = 0;
while (j--)
zds[j] = x[j];
}
j = nx == ny ? nx + 1 : nx; /* dividend needs more digits than divisor */
do
{ /* loop over digits of quotient */
if (zds[j] == y[ny - 1])
qhat = SCM_BIGRAD - 1;
else
qhat = (SCM_BIGUP (zds[j]) + zds[j - 1]) / y[ny - 1];
if (!qhat)
continue;
i = 0;
num = 0;
t2 = 0;
do
{ /* multiply and subtract */
t2 += (unsigned long) y[i] * qhat;
num += zds[j - ny + i] - SCM_BIGLO (t2);
if (num < 0)
{
zds[j - ny + i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[j - ny + i] = num;
num = 0;
}
t2 = SCM_BIGDN (t2);
}
while (++i < ny);
num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */
while (num)
{ /* "add back" required */
i = 0;
num = 0;
qhat--;
do
{
num += (long) zds[j - ny + i] + y[i];
zds[j - ny + i] = SCM_BIGLO (num);
num = SCM_BIGDN (num);
}
while (++i < ny);
num--;
}
if (modes & 2)
zds[j] = qhat;
}
while (--j >= ny);
switch (modes)
{
case 3: /* check that remainder==0 */
for (j = ny; j && !zds[j - 1]; --j);
if (j)
return 0;
case 2: /* move quotient down in z */
j = (nx == ny ? nx + 2 : nx + 1) - ny;
for (i = 0; i < j; i++)
zds[i] = zds[i + ny];
ny = i;
break;
case 1: /* subtract for scm_modulo */
i = 0;
num = 0;
j = 0;
do
{
num += y[i] - zds[i];
j = j | zds[i];
if (num < 0)
{
zds[i] = num + SCM_BIGRAD;
num = -1;
}
else
{
zds[i] = num;
num = 0;
}
}
while (++i < ny);
if (!j)
return SCM_INUM0;
case 0: /* just normalize remainder */
if (d)
scm_divbigdig (zds, ny, d);
}
doadj:
for (j = ny; j && !zds[j - 1]; --j);
if (j * SCM_BITSPERDIG <= sizeof (SCM) * SCM_CHAR_BIT)
if (SCM_INUMP (z = scm_big2inum (z, j)))
return z;
return scm_adjbig (z, j);
}
#endif
/*** NUMBERS -> STRINGS ***/
#ifdef SCM_FLOATS
int scm_dblprec;
static double fx[] =
{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
5e-11, 5e-12, 5e-13, 5e-14, 5e-15,
5e-16, 5e-17, 5e-18, 5e-19, 5e-20};
static scm_sizet idbl2str SCM_P ((double f, char *a));
static scm_sizet
idbl2str (f, a)
double f;
char *a;
{
int efmt, dpt, d, i, wp = scm_dblprec;
scm_sizet ch = 0;
int exp = 0;
if (f == 0.0)
goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
if (f < 0.0)
{
f = -f;
a[ch++] = '-';
}
else if (f > 0.0);
else
goto funny;
if (IS_INF (f))
{
if (ch == 0)
a[ch++] = '+';
funny:
a[ch++] = '#';
a[ch++] = '.';
a[ch++] = '#';
return ch;
}
#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
make-uniform-vector, from causing infinite loops. */
while (f < 1.0)
{
f *= 10.0;
if (exp-- < DBL_MIN_10_EXP)
goto funny;
}
while (f > 10.0)
{
f *= 0.10;
if (exp++ > DBL_MAX_10_EXP)
goto funny;
}
#else
while (f < 1.0)
{
f *= 10.0;
exp--;
}
while (f > 10.0)
{
f /= 10.0;
exp++;
}
#endif
if (f + fx[wp] >= 10.0)
{
f = 1.0;
exp++;
}
zero:
#ifdef ENGNOT
dpt = (exp + 9999) % 3;
exp -= dpt++;
efmt = 1;
#else
efmt = (exp < -3) || (exp > wp + 2);
if (!efmt)
{
if (exp < 0)
{
a[ch++] = '0';
a[ch++] = '.';
dpt = exp;
while (++dpt)
a[ch++] = '0';
}
else
dpt = exp + 1;
}
else
dpt = 1;
#endif
do
{
d = f;
f -= d;
a[ch++] = d + '0';
if (f < fx[wp])
break;
if (f + fx[wp] >= 1.0)
{
a[ch - 1]++;
break;
}
f *= 10.0;
if (!(--dpt))
a[ch++] = '.';
}
while (wp--);
if (dpt > 0)
{
#ifndef ENGNOT
if ((dpt > 4) && (exp > 6))
{
d = (a[0] == '-' ? 2 : 1);
for (i = ch++; i > d; i--)
a[i] = a[i - 1];
a[d] = '.';
efmt = 1;
}
else
#endif
{
while (--dpt)
a[ch++] = '0';
a[ch++] = '.';
}
}
if (a[ch - 1] == '.')
a[ch++] = '0'; /* trailing zero */
if (efmt && exp)
{
a[ch++] = 'e';
if (exp < 0)
{
exp = -exp;
a[ch++] = '-';
}
for (i = 10; i <= exp; i *= 10);
for (i /= 10; i; i /= 10)
{
a[ch++] = exp / i + '0';
exp %= i;
}
}
return ch;
}
static scm_sizet iflo2str SCM_P ((SCM flt, char *str));
static scm_sizet
iflo2str (flt, str)
SCM flt;
char *str;
{
scm_sizet i;
#ifdef SCM_SINGLES
if (SCM_SINGP (flt))
i = idbl2str (SCM_FLO (flt), str);
else
#endif
i = idbl2str (SCM_REAL (flt), str);
if (SCM_CPLXP (flt))
{
if (0 <= SCM_IMAG (flt)) /* jeh */
str[i++] = '+'; /* jeh */
i += idbl2str (SCM_IMAG (flt), &str[i]);
str[i++] = 'i';
}
return i;
}
#endif /* SCM_FLOATS */
scm_sizet
scm_iint2str (num, rad, p)
long num;
int rad;
char *p;
{
scm_sizet j;
register int i = 1, d;
register long n = num;
if (n < 0)
{
n = -n;
i++;
}
for (n /= rad; n > 0; n /= rad)
i++;
j = i;
n = num;
if (n < 0)
{
n = -n;
*p++ = '-';
i--;
}
while (i--)
{
d = n % rad;
n /= rad;
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
}
return j;
}
#ifdef SCM_BIGDIG
static SCM big2str SCM_P ((SCM b, register unsigned int radix));
static SCM
big2str (b, radix)
SCM b;
register unsigned int radix;
{
SCM t = scm_copybig (b, 0); /* sign of temp doesn't matter */
register SCM_BIGDIG *ds = SCM_BDIGITS (t);
scm_sizet i = SCM_NUMDIGS (t);
scm_sizet j = radix == 16 ? (SCM_BITSPERDIG * i) / 4 + 2
: radix >= 10 ? (SCM_BITSPERDIG * i * 241L) / 800 + 2
: (SCM_BITSPERDIG * i) + 2;
scm_sizet k = 0;
scm_sizet radct = 0;
scm_sizet ch; /* jeh */
SCM_BIGDIG radpow = 1, radmod = 0;
SCM ss = scm_makstr ((long) j, 0);
char *s = SCM_CHARS (ss), c;
while ((long) radpow * radix < SCM_BIGRAD)
{
radpow *= radix;
radct++;
}
s[0] = scm_tc16_bigneg == SCM_TYP16 (b) ? '-' : '+';
while ((i || radmod) && j)
{
if (k == 0)
{
radmod = (SCM_BIGDIG) scm_divbigdig (ds, i, radpow);
k = radct;
if (!ds[i - 1])
i--;
}
c = radmod % radix;
radmod /= radix;
k--;
s[--j] = c < 10 ? c + '0' : c + 'a' - 10;
}
ch = s[0] == '-' ? 1 : 0; /* jeh */
if (ch < j)
{ /* jeh */
for (i = j; j < SCM_LENGTH (ss); j++)
s[ch + j - i] = s[j]; /* jeh */
scm_vector_set_length_x (ss, /* jeh */
(SCM) SCM_MAKINUM (ch + SCM_LENGTH (ss) - i));
}
return scm_return_first (ss, t);
}
#endif
SCM_PROC (s_number_to_string, "number->string", 1, 1, 0, scm_number_to_string);
SCM
scm_number_to_string (x, radix)
SCM x;
SCM radix;
{
if (SCM_UNBNDP (radix))
radix = SCM_MAKINUM (10L);
else
SCM_ASSERT (SCM_INUMP (radix), radix, SCM_ARG2, s_number_to_string);
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
char num_buf[SCM_FLOBUFLEN];
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
return big2str (x, (unsigned int) SCM_INUM (radix));
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_number_to_string);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_INEXP (x),
x, SCM_ARG1, s_number_to_string);
#endif
return scm_makfromstr (num_buf, iflo2str (x, num_buf), 0);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x),
x, SCM_ARG1, s_number_to_string);
return big2str (x, (unsigned int) SCM_INUM (radix));
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_number_to_string);
#endif
#endif
{
char num_buf[SCM_INTBUFLEN];
return scm_makfromstr (num_buf,
scm_iint2str (SCM_INUM (x),
(int) SCM_INUM (radix),
num_buf),
0);
}
}
/* These print routines are stubbed here so that scm_repl.c doesn't need
SCM_FLOATS or SCM_BIGDIGs conditionals */
int
scm_floprint (sexp, port, pstate)
SCM sexp;
SCM port;
scm_print_state *pstate;
{
#ifdef SCM_FLOATS
char num_buf[SCM_FLOBUFLEN];
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
#else
scm_ipruk ("float", sexp, port);
#endif
return !0;
}
int
scm_bigprint (exp, port, pstate)
SCM exp;
SCM port;
scm_print_state *pstate;
{
#ifdef SCM_BIGDIG
exp = big2str (exp, (unsigned int) 10);
scm_lfwrite (SCM_CHARS (exp), (scm_sizet) SCM_LENGTH (exp), port);
#else
scm_ipruk ("bignum", exp, port);
#endif
return !0;
}
/*** END nums->strs ***/
/*** STRINGS -> NUMBERS ***/
static SCM scm_small_istr2int SCM_P ((char *str, long len, long radix));
static SCM
scm_small_istr2int (str, len, radix)
char *str;
long len;
long radix;
{
register long n = 0, ln;
register int c;
register int i = 0;
int lead_neg = 0;
if (0 >= len)
return SCM_BOOL_F; /* zero scm_length */
switch (*str)
{ /* leading sign */
case '-':
lead_neg = 1;
case '+':
if (++i == len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
}
do
{
switch (c = str[i++])
{
case DIGITS:
c = c - '0';
goto accumulate;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accumulate;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accumulate:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
ln = n;
n = n * radix - c;
/* Negation is a workaround for HP700 cc bug */
if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM))
goto ovfl;
break;
default:
return SCM_BOOL_F; /* not a digit */
}
}
while (i < len);
if (!lead_neg)
if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM)
goto ovfl;
return SCM_MAKINUM (n);
ovfl: /* overflow scheme integer */
return SCM_BOOL_F;
}
SCM
scm_istr2int (str, len, radix)
char *str;
long len;
long radix;
{
scm_sizet j;
register scm_sizet k, blen = 1;
scm_sizet i = 0;
int c;
SCM res;
register SCM_BIGDIG *ds;
register unsigned long t2;
if (0 >= len)
return SCM_BOOL_F; /* zero scm_length */
/* Short numbers we parse directly into an int, to avoid the overhead
of creating a bignum. */
if (len < 6)
return scm_small_istr2int (str, len, radix);
if (16 == radix)
j = 1 + (4 * len * sizeof (char)) / (SCM_BITSPERDIG);
else if (10 <= radix)
j = 1 + (84 * len * sizeof (char)) / (SCM_BITSPERDIG * 25);
else
j = 1 + (len * sizeof (char)) / (SCM_BITSPERDIG);
switch (str[0])
{ /* leading sign */
case '-':
case '+':
if (++i == (unsigned) len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
}
res = scm_mkbig (j, '-' == str[0]);
ds = SCM_BDIGITS (res);
for (k = j; k--;)
ds[k] = 0;
do
{
switch (c = str[i++])
{
case DIGITS:
c = c - '0';
goto accumulate;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accumulate;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accumulate:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
k = 0;
t2 = c;
moretodo:
while (k < blen)
{
/* printf ("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]); */
t2 += ds[k] * radix;
ds[k++] = SCM_BIGLO (t2);
t2 = SCM_BIGDN (t2);
}
if (blen > j)
scm_num_overflow ("bignum");
if (t2)
{
blen++;
goto moretodo;
}
break;
default:
return SCM_BOOL_F; /* not a digit */
}
}
while (i < (unsigned) len);
if (blen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
if (SCM_INUMP (res = scm_big2inum (res, blen)))
return res;
if (j == blen)
return res;
return scm_adjbig (res, blen);
}
#ifdef SCM_FLOATS
SCM
scm_istr2flo (str, len, radix)
char *str;
long len;
long radix;
{
register int c, i = 0;
double lead_sgn;
double res = 0.0, tmp = 0.0;
int flg = 0;
int point = 0;
SCM second;
if (i >= len)
return SCM_BOOL_F; /* zero scm_length */
switch (*str)
{ /* leading sign */
case '-':
lead_sgn = -1.0;
i++;
break;
case '+':
lead_sgn = 1.0;
i++;
break;
default:
lead_sgn = 0.0;
}
if (i == len)
return SCM_BOOL_F; /* bad if lone `+' or `-' */
if (str[i] == 'i' || str[i] == 'I')
{ /* handle `+i' and `-i' */
if (lead_sgn == 0.0)
return SCM_BOOL_F; /* must have leading sign */
if (++i < len)
return SCM_BOOL_F; /* `i' not last character */
return scm_makdbl (0.0, lead_sgn);
}
do
{ /* check initial digits */
switch (c = str[i])
{
case DIGITS:
c = c - '0';
goto accum1;
case 'D':
case 'E':
case 'F':
if (radix == 10)
goto out1; /* must be exponent */
case 'A':
case 'B':
case 'C':
c = c - 'A' + 10;
goto accum1;
case 'd':
case 'e':
case 'f':
if (radix == 10)
goto out1;
case 'a':
case 'b':
case 'c':
c = c - 'a' + 10;
accum1:
if (c >= radix)
return SCM_BOOL_F; /* bad digit for radix */
res = res * radix + c;
flg = 1; /* res is valid */
break;
default:
goto out1;
}
}
while (++i < len);
out1:
/* if true, then we did see a digit above, and res is valid */
if (i == len)
goto done;
/* By here, must have seen a digit,
or must have next char be a `.' with radix==10 */
if (!flg)
if (!(str[i] == '.' && radix == 10))
return SCM_BOOL_F;
while (str[i] == '#')
{ /* optional sharps */
res *= radix;
if (++i == len)
goto done;
}
if (str[i] == '/')
{
while (++i < len)
{
switch (c = str[i])
{
case DIGITS:
c = c - '0';
goto accum2;
case 'A':
case 'B':
case 'C':
case 'D':
case 'E':
case 'F':
c = c - 'A' + 10;
goto accum2;
case 'a':
case 'b':
case 'c':
case 'd':
case 'e':
case 'f':
c = c - 'a' + 10;
accum2:
if (c >= radix)
return SCM_BOOL_F;
tmp = tmp * radix + c;
break;
default:
goto out2;
}
}
out2:
if (tmp == 0.0)
return SCM_BOOL_F; /* `slash zero' not allowed */
if (i < len)
while (str[i] == '#')
{ /* optional sharps */
tmp *= radix;
if (++i == len)
break;
}
res /= tmp;
goto done;
}
if (str[i] == '.')
{ /* decimal point notation */
if (radix != 10)
return SCM_BOOL_F; /* must be radix 10 */
while (++i < len)
{
switch (c = str[i])
{
case DIGITS:
point--;
res = res * 10.0 + c - '0';
flg = 1;
break;
default:
goto out3;
}
}
out3:
if (!flg)
return SCM_BOOL_F; /* no digits before or after decimal point */
if (i == len)
goto adjust;
while (str[i] == '#')
{ /* ignore remaining sharps */
if (++i == len)
goto adjust;
}
}
switch (str[i])
{ /* exponent */
case 'd':
case 'D':
case 'e':
case 'E':
case 'f':
case 'F':
case 'l':
case 'L':
case 's':
case 'S':
{
int expsgn = 1, expon = 0;
if (radix != 10)
return SCM_BOOL_F; /* only in radix 10 */
if (++i == len)
return SCM_BOOL_F; /* bad exponent */
switch (str[i])
{
case '-':
expsgn = (-1);
case '+':
if (++i == len)
return SCM_BOOL_F; /* bad exponent */
}
if (str[i] < '0' || str[i] > '9')
return SCM_BOOL_F; /* bad exponent */
do
{
switch (c = str[i])
{
case DIGITS:
expon = expon * 10 + c - '0';
if (expon > MAXEXP)
return SCM_BOOL_F; /* exponent too large */
break;
default:
goto out4;
}
}
while (++i < len);
out4:
point += expsgn * expon;
}
}
adjust:
if (point >= 0)
while (point--)
res *= 10.0;
else
#ifdef _UNICOS
while (point++)
res *= 0.1;
#else
while (point++)
res /= 10.0;
#endif
done:
/* at this point, we have a legitimate floating point result */
if (lead_sgn == -1.0)
res = -res;
if (i == len)
return scm_makdbl (res, 0.0);
if (str[i] == 'i' || str[i] == 'I')
{ /* pure imaginary number */
if (lead_sgn == 0.0)
return SCM_BOOL_F; /* must have leading sign */
if (++i < len)
return SCM_BOOL_F; /* `i' not last character */
return scm_makdbl (0.0, res);
}
switch (str[i++])
{
case '-':
lead_sgn = -1.0;
break;
case '+':
lead_sgn = 1.0;
break;
case '@':
{ /* polar input for complex number */
/* get a `real' for scm_angle */
second = scm_istr2flo (&str[i], (long) (len - i), radix);
if (!(SCM_INEXP (second)))
return SCM_BOOL_F; /* not `real' */
if (SCM_CPLXP (second))
return SCM_BOOL_F; /* not `real' */
tmp = SCM_REALPART (second);
return scm_makdbl (res * cos (tmp), res * sin (tmp));
}
default:
return SCM_BOOL_F;
}
/* at this point, last char must be `i' */
if (str[len - 1] != 'i' && str[len - 1] != 'I')
return SCM_BOOL_F;
/* handles `x+i' and `x-i' */
if (i == (len - 1))
return scm_makdbl (res, lead_sgn);
/* get a `ureal' for complex part */
second = scm_istr2flo (&str[i], (long) ((len - i) - 1), radix);
if (!(SCM_INEXP (second)))
return SCM_BOOL_F; /* not `ureal' */
if (SCM_CPLXP (second))
return SCM_BOOL_F; /* not `ureal' */
tmp = SCM_REALPART (second);
if (tmp < 0.0)
return SCM_BOOL_F; /* not `ureal' */
return scm_makdbl (res, (lead_sgn * tmp));
}
#endif /* SCM_FLOATS */
SCM
scm_istring2number (str, len, radix)
char *str;
long len;
long radix;
{
int i = 0;
char ex = 0;
char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */
SCM res;
if (len == 1)
if (*str == '+' || *str == '-') /* Catches lone `+' and `-' for speed */
return SCM_BOOL_F;
while ((len - i) >= 2 && str[i] == '#' && ++i)
switch (str[i++])
{
case 'b':
case 'B':
if (rx_p++)
return SCM_BOOL_F;
radix = 2;
break;
case 'o':
case 'O':
if (rx_p++)
return SCM_BOOL_F;
radix = 8;
break;
case 'd':
case 'D':
if (rx_p++)
return SCM_BOOL_F;
radix = 10;
break;
case 'x':
case 'X':
if (rx_p++)
return SCM_BOOL_F;
radix = 16;
break;
case 'i':
case 'I':
if (ex_p++)
return SCM_BOOL_F;
ex = 2;
break;
case 'e':
case 'E':
if (ex_p++)
return SCM_BOOL_F;
ex = 1;
break;
default:
return SCM_BOOL_F;
}
switch (ex)
{
case 1:
return scm_istr2int (&str[i], len - i, radix);
case 0:
res = scm_istr2int (&str[i], len - i, radix);
if (SCM_NFALSEP (res))
return res;
#ifdef SCM_FLOATS
case 2:
return scm_istr2flo (&str[i], len - i, radix);
#endif
}
return SCM_BOOL_F;
}
SCM_PROC (s_string_to_number, "string->number", 1, 1, 0, scm_string_to_number);
SCM
scm_string_to_number (str, radix)
SCM str;
SCM radix;
{
SCM answer;
if (SCM_UNBNDP (radix))
radix = SCM_MAKINUM (10L);
else
SCM_ASSERT (SCM_INUMP (radix), radix, SCM_ARG2, s_string_to_number);
SCM_ASSERT (SCM_NIMP (str) && SCM_ROSTRINGP (str),
str, SCM_ARG1, s_string_to_number);
answer = scm_istring2number (SCM_ROCHARS (str),
SCM_ROLENGTH (str),
SCM_INUM (radix));
return scm_return_first (answer, str);
}
/*** END strs->nums ***/
#ifdef SCM_FLOATS
SCM
scm_makdbl (x, y)
double x;
double y;
{
SCM z;
if ((y == 0.0) && (x == 0.0))
return scm_flo0;
SCM_NEWCELL (z);
SCM_DEFER_INTS;
if (y == 0.0)
{
#ifdef SCM_SINGLES
float fx = x;
#ifndef SCM_SINGLESONLY
if ((-FLTMAX < x) && (x < FLTMAX) && (fx == x))
#endif
{
SCM_SETCAR (z, scm_tc_flo);
SCM_FLO (z) = x;
SCM_ALLOW_INTS;
return z;
}
#endif /* def SCM_SINGLES */
SCM_SETCDR (z, (SCM) scm_must_malloc (1L * sizeof (double), "real"));
SCM_SETCAR (z, scm_tc_dblr);
}
else
{
SCM_SETCDR (z, (SCM) scm_must_malloc (2L * sizeof (double), "complex"));
SCM_SETCAR (z, scm_tc_dblc);
SCM_IMAG (z) = y;
}
SCM_REAL (z) = x;
SCM_ALLOW_INTS;
return z;
}
#endif
SCM
scm_bigequal (x, y)
SCM x;
SCM y;
{
#ifdef SCM_BIGDIG
if (0 == scm_bigcomp (x, y))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM
scm_floequal (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
if (SCM_REALPART (x) != SCM_REALPART (y))
return SCM_BOOL_F;
if (!(SCM_CPLXP (x) && (SCM_IMAG (x) != SCM_IMAG (y))))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
SCM_PROC (s_complex_p, "complex?", 1, 0, 0, scm_number_p);
SCM
scm_number_p (x)
SCM x;
{
if (SCM_INUMP (x))
return SCM_BOOL_T;
#ifdef SCM_FLOATS
if (SCM_NIMP (x) && SCM_NUMP (x))
return SCM_BOOL_T;
#else
#ifdef SCM_BIGDIG
if (SCM_NIMP (x) && SCM_NUMP (x))
return SCM_BOOL_T;
#endif
#endif
return SCM_BOOL_F;
}
#ifdef SCM_FLOATS
SCM_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p);
SCM_PROC (s_rational_p, "rational?", 1, 0, 0, scm_real_p);
SCM
scm_real_p (x)
SCM x;
{
if (SCM_INUMP (x))
return SCM_BOOL_T;
if (SCM_IMP (x))
return SCM_BOOL_F;
if (SCM_REALP (x))
return SCM_BOOL_T;
#ifdef SCM_BIGDIG
if (SCM_BIGP (x))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM_PROC (s_int_p, "integer?", 1, 0, 0, scm_integer_p);
SCM
scm_integer_p (x)
SCM x;
{
double r;
if (SCM_INUMP (x))
return SCM_BOOL_T;
if (SCM_IMP (x))
return SCM_BOOL_F;
#ifdef SCM_BIGDIG
if (SCM_BIGP (x))
return SCM_BOOL_T;
#endif
if (!SCM_INEXP (x))
return SCM_BOOL_F;
if (SCM_CPLXP (x))
return SCM_BOOL_F;
r = SCM_REALPART (x);
if (r == floor (r))
return SCM_BOOL_T;
return SCM_BOOL_F;
}
#endif /* SCM_FLOATS */
SCM_PROC (s_inexact_p, "inexact?", 1, 0, 0, scm_inexact_p);
SCM
scm_inexact_p (x)
SCM x;
{
#ifdef SCM_FLOATS
if (SCM_NIMP (x) && SCM_INEXP (x))
return SCM_BOOL_T;
#endif
return SCM_BOOL_F;
}
SCM_PROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p);
SCM
scm_num_eq_p (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
SCM t;
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_eq_p);
}
#endif
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
return SCM_BOOL_F;
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return (0 == scm_bigcomp (x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
SCM_ASRTGO (SCM_INEXP (y), bady);
bigreal:
return ((SCM_REALP (y) && (scm_big2dbl (x) == SCM_REALPART (y)))
? SCM_BOOL_T
: SCM_BOOL_F);
}
SCM_ASRTGO (SCM_INEXP (x), badx);
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_INEXP (x), x, SCM_ARG1, s_eq_p);
#endif
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto realint;
}
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
t = x;
x = y;
y = t;
goto bigreal;
}
SCM_ASRTGO (SCM_INEXP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_INEXP (y), bady);
#endif
if (SCM_REALPART (x) != SCM_REALPART (y))
return SCM_BOOL_F;
if (SCM_CPLXP (x))
return ((SCM_CPLXP (y) && (SCM_IMAG (x) == SCM_IMAG (y)))
? SCM_BOOL_T
: SCM_BOOL_F);
return SCM_CPLXP (y) ? SCM_BOOL_F : SCM_BOOL_T;
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return SCM_BOOL_F;
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_eq_p);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_eq_p);
}
#endif
#endif
realint:
return ((SCM_REALP (y) && (((double) SCM_INUM (x)) == SCM_REALPART (y)))
? SCM_BOOL_T
: SCM_BOOL_F);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_eq_p);
if (SCM_INUMP (y))
return SCM_BOOL_F;
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return (0 == scm_bigcomp (x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_eq_p);
}
#endif
return SCM_BOOL_F;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_eq_p);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_eq_p);
#endif
#endif
return ((long) x == (long) y) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p);
SCM
scm_less_p (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_less_p);
}
#endif
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? SCM_BOOL_T : SCM_BOOL_F;
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return (1 == scm_bigcomp (x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
SCM_ASRTGO (SCM_REALP (y), bady);
return ((scm_big2dbl (x) < SCM_REALPART (y))
? SCM_BOOL_T
: SCM_BOOL_F);
}
SCM_ASRTGO (SCM_REALP (x), badx);
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_REALP (x), x, SCM_ARG1, s_less_p);
#endif
if (SCM_INUMP (y))
return ((SCM_REALPART (x) < ((double) SCM_INUM (y)))
? SCM_BOOL_T
: SCM_BOOL_F);
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return (SCM_REALPART (x) < scm_big2dbl (y)) ? SCM_BOOL_T : SCM_BOOL_F;
SCM_ASRTGO (SCM_REALP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_REALP (y), bady);
#endif
return (SCM_REALPART (x) < SCM_REALPART (y)) ? SCM_BOOL_T : SCM_BOOL_F;
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return SCM_BIGSIGN (y) ? SCM_BOOL_F : SCM_BOOL_T;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_less_p);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_less_p);
}
#endif
#endif
return ((((double) SCM_INUM (x)) < SCM_REALPART (y))
? SCM_BOOL_T
: SCM_BOOL_F);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_less_p);
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? SCM_BOOL_T : SCM_BOOL_F;
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return (1 == scm_bigcomp (x, y)) ? SCM_BOOL_T : SCM_BOOL_F;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_less_p);
}
#endif
return SCM_BIGSIGN (y) ? SCM_BOOL_F : SCM_BOOL_T;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_less_p);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_less_p);
#endif
#endif
return ((long) x < (long) y) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC1 (s_gr_p, ">", scm_tc7_rpsubr, scm_gr_p);
SCM
scm_gr_p (x, y)
SCM x;
SCM y;
{
return scm_less_p (y, x);
}
SCM_PROC1 (s_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p);
SCM
scm_leq_p (x, y)
SCM x;
SCM y;
{
return SCM_BOOL_NOT (scm_less_p (y, x));
}
SCM_PROC1 (s_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p);
SCM
scm_geq_p (x, y)
SCM x;
SCM y;
{
return SCM_BOOL_NOT (scm_less_p (x, y));
}
SCM_PROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p);
SCM
scm_zero_p (z)
SCM z;
{
#ifdef SCM_FLOATS
if (SCM_NINUMP (z))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
return SCM_BOOL_F;
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_zero_p);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_INEXP (z), z, SCM_ARG1, s_zero_p);
#endif
return (z == scm_flo0) ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (z))
{
SCM_ASSERT (SCM_NIMP (z) && SCM_BIGP (z), z, SCM_ARG1, s_zero_p);
return SCM_BOOL_F;
}
#else
SCM_ASSERT (SCM_INUMP (z), z, SCM_ARG1, s_zero_p);
#endif
#endif
return (z == SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p);
SCM
scm_positive_p (x)
SCM x;
{
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
return SCM_TYP16 (x) == scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_positive_p);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_REALP (x), x, SCM_ARG1, s_positive_p);
#endif
return (SCM_REALPART (x) > 0.0) ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_positive_p);
return SCM_TYP16 (x) == scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_positive_p);
#endif
#endif
return (x > SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p);
SCM
scm_negative_p (x)
SCM x;
{
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
return SCM_TYP16 (x) == scm_tc16_bigpos ? SCM_BOOL_F : SCM_BOOL_T;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_negative_p);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_REALP (x), x, SCM_ARG1, s_negative_p);
#endif
return (SCM_REALPART (x) < 0.0) ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_negative_p);
return (SCM_TYP16 (x) == scm_tc16_bigneg) ? SCM_BOOL_T : SCM_BOOL_F;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_negative_p);
#endif
#endif
return (x < SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F;
}
SCM_PROC1 (s_max, "max", scm_tc7_asubr, scm_max);
SCM
scm_max (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
double z;
#endif
if (SCM_UNBNDP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NUMBERP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_max);
}
#endif
return x;
}
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? y : x;
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return (1 == scm_bigcomp (x, y)) ? y : x;
SCM_ASRTGO (SCM_REALP (y), bady);
z = scm_big2dbl (x);
return (z < SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0);
}
SCM_ASRTGO (SCM_REALP (x), badx);
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_REALP (x), x, SCM_ARG1, s_max);
#endif
if (SCM_INUMP (y))
return ((SCM_REALPART (x) < (z = SCM_INUM (y)))
? scm_makdbl (z, 0.0)
: x);
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return ((SCM_REALPART (x) < (z = scm_big2dbl (y)))
? scm_makdbl (z, 0.0)
: x);
SCM_ASRTGO (SCM_REALP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_REALP (y), bady);
#endif
return (SCM_REALPART (x) < SCM_REALPART (y)) ? y : x;
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return SCM_BIGSIGN (y) ? x : y;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_max);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_max);
}
#endif
#endif
return (((z = SCM_INUM (x)) < SCM_REALPART (y))
? y
: scm_makdbl (z, 0.0));
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_max);
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? y : x;
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return (1 == scm_bigcomp (x, y)) ? y : x;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_max);
}
#endif
return SCM_BIGSIGN (y) ? x : y;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_max);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_max);
#endif
#endif
return ((long) x < (long) y) ? y : x;
}
SCM_PROC1 (s_min, "min", scm_tc7_asubr, scm_min);
SCM
scm_min (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
double z;
#endif
if (SCM_UNBNDP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NUMBERP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_min);
}
#endif
return x;
}
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? x : y;
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return (-1 == scm_bigcomp (x, y)) ? y : x;
SCM_ASRTGO (SCM_REALP (y), bady);
z = scm_big2dbl (x);
return (z > SCM_REALPART (y)) ? y : scm_makdbl (z, 0.0);
}
SCM_ASRTGO (SCM_REALP (x), badx);
#else
SCM_ASSERT (SCM_NIMP (x) && SCM_REALP (x), x, SCM_ARG1, s_min);
#endif
if (SCM_INUMP (y))
return ((SCM_REALPART (x) > (z = SCM_INUM (y)))
? scm_makdbl (z, 0.0)
: x);
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return ((SCM_REALPART (x) > (z = scm_big2dbl (y)))
? scm_makdbl (z, 0.0)
: x);
SCM_ASRTGO (SCM_REALP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_REALP (y), bady);
#endif
return (SCM_REALPART (x) > SCM_REALPART (y)) ? y : x;
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return SCM_BIGSIGN (y) ? y : x;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_min);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_REALP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_min);
}
#endif
#endif
return (((z = SCM_INUM (x)) > SCM_REALPART (y))
? y
: scm_makdbl (z, 0.0));
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_min);
if (SCM_INUMP (y))
return SCM_BIGSIGN (x) ? x : y;
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return (-1 == scm_bigcomp (x, y)) ? y : x;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_min);
}
#endif
return SCM_BIGSIGN (y) ? y : x;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_min);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_min);
#endif
#endif
return ((long) x > (long) y) ? y : x;
}
SCM_PROC1 (s_sum, "+", scm_tc7_asubr, scm_sum);
SCM
scm_sum (x, y)
SCM x;
SCM y;
{
if (SCM_UNBNDP (y))
{
if (SCM_UNBNDP (x))
return SCM_INUM0;
#ifndef SCM_RECKLESS
if (!(SCM_NUMBERP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_sum);
}
#endif
return x;
}
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
SCM t;
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto intbig;
}
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y))
{
t = x;
x = y;
y = t;
}
return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BIGSIGN (x),
y, 0);
}
SCM_ASRTGO (SCM_INEXP (y), bady);
bigreal:
return scm_makdbl (scm_big2dbl (x) + SCM_REALPART (y),
SCM_CPLXP (y) ? SCM_IMAG (y) : 0.0);
}
SCM_ASRTGO (SCM_INEXP (x), badx);
#else
SCM_ASRTGO (SCM_NIMP (x) && SCM_INEXP (x), badx);
#endif
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto intreal;
}
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
t = x;
x = y;
y = t;
goto bigreal;
}
#ifndef SCM_RECKLESS
else if (!(SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_sum);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_sum);
}
#endif
#endif
{
double i = 0.0;
if (SCM_CPLXP (x))
i = SCM_IMAG (x);
if (SCM_CPLXP (y))
i += SCM_IMAG (y);
return scm_makdbl (SCM_REALPART (x) + SCM_REALPART (y), i);
}
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
intbig:
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_addbig ((SCM_BIGDIG *) & z,
SCM_DIGSPERLONG,
(x < 0) ? 0x0100 : 0,
y, 0);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0,
y, 0);
#endif
}
}
SCM_ASRTGO (SCM_INEXP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_INEXP (y), bady);
#endif
intreal:
return scm_makdbl (SCM_INUM (x) + SCM_REALPART (y),
SCM_CPLXP (y) ? SCM_IMAG (y) : 0.0);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM t;
SCM_ASRTGO (SCM_NIMP (x) && SCM_BIGP (x), badx);
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto intbig;
}
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y))
{
t = x;
x = y;
y = t;
}
return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x),
y, 0);
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_sum);
}
#endif
intbig:
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_addbig (&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0);
#endif
}
}
#else
SCM_ASRTGO (SCM_INUMP (x), badx);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_sum);
#endif
#endif
x = SCM_INUM (x) + SCM_INUM (y);
if (SCM_FIXABLE (x))
return SCM_MAKINUM (x);
#ifdef SCM_BIGDIG
return scm_long2big (x);
#else
#ifdef SCM_FLOATS
return scm_makdbl ((double) x, 0.0);
#else
scm_num_overflow (s_sum);
return SCM_UNSPECIFIED;
#endif
#endif
}
SCM_PROC1 (s_difference, "-", scm_tc7_asubr, scm_difference);
SCM
scm_difference (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_difference);
}
#endif
if (SCM_UNBNDP (y))
{
#ifdef SCM_BIGDIG
if (SCM_BIGP (x))
{
x = scm_copybig (x, !SCM_BIGSIGN (x));
return (SCM_NUMDIGS (x) * SCM_BITSPERDIG / SCM_CHAR_BIT
<= sizeof (SCM)
? scm_big2inum (x, SCM_NUMDIGS (x))
: x);
}
#endif
SCM_ASRTGO (SCM_INEXP (x), badx);
return scm_makdbl (- SCM_REALPART (x),
SCM_CPLXP (x) ? -SCM_IMAG (x) : 0.0);
}
if (SCM_INUMP (y))
return scm_sum (x, SCM_MAKINUM (- SCM_INUM (y)));
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (x))
{
if (SCM_BIGP (y))
return ((SCM_NUMDIGS (x) < SCM_NUMDIGS (y))
? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BIGSIGN (x),
y, 0x0100)
: scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ^ 0x0100,
x, 0));
SCM_ASRTGO (SCM_INEXP (y), bady);
return scm_makdbl (scm_big2dbl (x) - SCM_REALPART (y),
SCM_CPLXP (y) ? -SCM_IMAG (y) : 0.0);
}
SCM_ASRTGO (SCM_INEXP (x), badx);
if (SCM_BIGP (y))
return scm_makdbl (SCM_REALPART (x) - scm_big2dbl (y),
SCM_CPLXP (x) ? SCM_IMAG (x) : 0.0);
SCM_ASRTGO (SCM_INEXP (y), bady);
#else
SCM_ASRTGO (SCM_INEXP (x), badx);
SCM_ASRTGO (SCM_NIMP (y) && SCM_INEXP (y), bady);
#endif
if (SCM_CPLXP (x))
{
if (SCM_CPLXP (y))
return scm_makdbl (SCM_REAL (x) - SCM_REAL (y),
SCM_IMAG (x) - SCM_IMAG (y));
else
return scm_makdbl (SCM_REAL (x) - SCM_REALPART (y), SCM_IMAG (x));
}
return scm_makdbl (SCM_REALPART (x) - SCM_REALPART (y),
SCM_CPLXP (y) ? - SCM_IMAG (y) : 0.0);
}
if (SCM_UNBNDP (y))
{
x = -SCM_INUM (x);
goto checkx;
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
(x < 0) ? 0x0100 : 0,
y, 0x0100);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0,
y, 0x0100);
#endif
}
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_difference);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_difference);
}
#endif
#endif
return scm_makdbl (SCM_INUM (x) - SCM_REALPART (y),
SCM_CPLXP (y) ? -SCM_IMAG (y) : 0.0);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_difference);
if (SCM_UNBNDP (y))
{
x = scm_copybig (x, !SCM_BIGSIGN (x));
return (SCM_NUMDIGS (x) * SCM_BITSPERDIG / SCM_CHAR_BIT
<= sizeof (SCM)
? scm_big2inum (x, SCM_NUMDIGS (x))
: x);
}
if (SCM_INUMP (y))
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (y));
return scm_addbig (&z, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100,
x, 0);
#endif
}
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return (SCM_NUMDIGS (x) < SCM_NUMDIGS (y)) ?
scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), SCM_BIGSIGN (x),
y, 0x0100) :
scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y), SCM_BIGSIGN (y) ^ 0x0100,
x, 0);
}
if (SCM_UNBNDP (y))
{
x = -SCM_INUM (x);
goto checkx;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_difference);
}
#endif
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_addbig (&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0,
y, 0x0100);
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_addbig (zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0,
y, 0x0100);
#endif
}
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_difference);
if (SCM_UNBNDP (y))
{
x = -SCM_INUM (x);
goto checkx;
}
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_difference);
#endif
#endif
x = SCM_INUM (x) - SCM_INUM (y);
checkx:
if (SCM_FIXABLE (x))
return SCM_MAKINUM (x);
#ifdef SCM_BIGDIG
return scm_long2big (x);
#else
#ifdef SCM_FLOATS
return scm_makdbl ((double) x, 0.0);
#else
scm_num_overflow (s_difference);
return SCM_UNSPECIFIED;
#endif
#endif
}
SCM_PROC1 (s_product, "*", scm_tc7_asubr, scm_product);
SCM
scm_product (x, y)
SCM x;
SCM y;
{
if (SCM_UNBNDP (y))
{
if (SCM_UNBNDP (x))
return SCM_MAKINUM (1L);
#ifndef SCM_RECKLESS
if (!(SCM_NUMBERP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_product);
}
#endif
return x;
}
#ifdef SCM_FLOATS
if (SCM_NINUMP (x))
{
SCM t;
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (x), badx);
if (SCM_BIGP (x))
{
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto intbig;
}
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y));
SCM_ASRTGO (SCM_INEXP (y), bady);
bigreal:
{
double bg = scm_big2dbl (x);
return scm_makdbl (bg * SCM_REALPART (y),
SCM_CPLXP (y) ? bg * SCM_IMAG (y) : 0.0);
}
}
SCM_ASRTGO (SCM_INEXP (x), badx);
#else
SCM_ASRTGO (SCM_NIMP (x) && SCM_INEXP (x), badx);
#endif
if (SCM_INUMP (y))
{
t = x;
x = y;
y = t;
goto intreal;
}
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
t = x;
x = y;
y = t;
goto bigreal;
}
#ifndef SCM_RECKLESS
else if (!(SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_product);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_product);
}
#endif
#endif
if (SCM_CPLXP (x))
{
if (SCM_CPLXP (y))
return scm_makdbl (SCM_REAL (x) * SCM_REAL (y)
- SCM_IMAG (x) * SCM_IMAG (y),
SCM_REAL (x) * SCM_IMAG (y)
+ SCM_IMAG (x) * SCM_REAL (y));
else
return scm_makdbl (SCM_REAL (x) * SCM_REALPART (y),
SCM_IMAG (x) * SCM_REALPART (y));
}
return scm_makdbl (SCM_REALPART (x) * SCM_REALPART (y),
SCM_CPLXP (y)
? SCM_REALPART (x) * SCM_IMAG (y)
: 0.0);
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
intbig:
if (SCM_INUM0 == x)
return x;
if (SCM_MAKINUM (1L) == x)
return y;
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_mulbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (x > 0) : (x < 0));
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_mulbig (zdigs, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (x > 0) : (x < 0));
#endif
}
}
SCM_ASRTGO (SCM_INEXP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_INEXP (y), bady);
#endif
intreal:
return scm_makdbl (SCM_INUM (x) * SCM_REALPART (y),
SCM_CPLXP (y) ? SCM_INUM (x) * SCM_IMAG (y) : 0.0);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM_ASRTGO (SCM_NIMP (x) && SCM_BIGP (x), badx);
if (SCM_INUMP (y))
{
SCM t = x;
x = y;
y = t;
goto intbig;
}
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y));
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_product);
}
#endif
intbig:
if (SCM_INUM0 == x)
return x;
if (SCM_MAKINUM (1L) == x)
return y;
{
#ifndef SCM_DIGSTOOBIG
long z = scm_pseudolong (SCM_INUM (x));
return scm_mulbig (&z, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (x > 0) : (x < 0));
#else
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (SCM_INUM (x), zdigs);
return scm_mulbig (zdigs, SCM_DIGSPERLONG,
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (y) ? (x > 0) : (x < 0));
#endif
}
}
#else
SCM_ASRTGO (SCM_INUMP (x), badx);
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_product);
#endif
#endif
{
long i, j, k;
i = SCM_INUM (x);
if (0 == i)
return x;
j = SCM_INUM (y);
k = i * j;
y = SCM_MAKINUM (k);
if (k != SCM_INUM (y) || k / i != j)
#ifdef SCM_BIGDIG
{
int sgn = (i < 0) ^ (j < 0);
#ifndef SCM_DIGSTOOBIG
i = scm_pseudolong (i);
j = scm_pseudolong (j);
return scm_mulbig ((SCM_BIGDIG *) & i, SCM_DIGSPERLONG,
(SCM_BIGDIG *) & j, SCM_DIGSPERLONG, sgn);
#else /* SCM_DIGSTOOBIG */
SCM_BIGDIG idigs[SCM_DIGSPERLONG];
SCM_BIGDIG jdigs[SCM_DIGSPERLONG];
scm_longdigs (i, idigs);
scm_longdigs (j, jdigs);
return scm_mulbig (idigs, SCM_DIGSPERLONG,
jdigs, SCM_DIGSPERLONG,
sgn);
#endif
}
#else
#ifdef SCM_FLOATS
return scm_makdbl (((double) i) * ((double) j), 0.0);
#else
scm_num_overflow (s_product);
#endif
#endif
return y;
}
}
double
scm_num2dbl (a, why)
SCM a;
const char *why;
{
if (SCM_INUMP (a))
return (double) SCM_INUM (a);
#ifdef SCM_FLOATS
SCM_ASSERT (SCM_NIMP (a), a, "wrong type argument", why);
if (SCM_REALP (a))
return (SCM_REALPART (a));
#endif
#ifdef SCM_BIGDIG
return scm_big2dbl (a);
#endif
SCM_ASSERT (0, a, "wrong type argument", why);
return SCM_UNSPECIFIED;
}
SCM_PROC1 (s_divide, "/", scm_tc7_asubr, scm_divide);
SCM
scm_divide (x, y)
SCM x;
SCM y;
{
#ifdef SCM_FLOATS
double d, r, i, a;
if (SCM_NINUMP (x))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (x)))
{
badx:
scm_wta (x, (char *) SCM_ARG1, s_divide);
}
#endif
if (SCM_UNBNDP (y))
{
#ifdef SCM_BIGDIG
if (SCM_BIGP (x))
return scm_makdbl (1.0 / scm_big2dbl (x), 0.0);
#endif
SCM_ASRTGO (SCM_INEXP (x), badx);
if (SCM_REALP (x))
return scm_makdbl (1.0 / SCM_REALPART (x), 0.0);
r = SCM_REAL (x);
i = SCM_IMAG (x);
d = r * r + i * i;
return scm_makdbl (r / d, -i / d);
}
#ifdef SCM_BIGDIG
if (SCM_BIGP (x))
{
SCM z;
if (SCM_INUMP (y))
{
z = SCM_INUM (y);
#ifndef SCM_RECKLESS
if (!z)
scm_num_overflow (s_divide);
#endif
if (1 == z)
return x;
if (z < 0)
z = -z;
if (z < SCM_BIGRAD)
{
SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0));
return (scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w),
(SCM_BIGDIG) z)
? scm_makdbl (scm_big2dbl (x) / SCM_INUM (y), 0.0)
: scm_normbig (w));
}
#ifndef SCM_DIGSTOOBIG
z = scm_pseudolong (z);
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
(SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3);
#else
{
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (z, zdigs);
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
zdigs, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3);
}
#endif
return z ? z : scm_makdbl (scm_big2dbl (x) / SCM_INUM (y), 0.0);
}
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3);
return z ? z : scm_makdbl (scm_big2dbl (x) / scm_big2dbl (y),
0.0);
}
SCM_ASRTGO (SCM_INEXP (y), bady);
if (SCM_REALP (y))
return scm_makdbl (scm_big2dbl (x) / SCM_REALPART (y), 0.0);
a = scm_big2dbl (x);
goto complex_div;
}
#endif
SCM_ASRTGO (SCM_INEXP (x), badx);
if (SCM_INUMP (y))
{
d = SCM_INUM (y);
goto basic_div;
}
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
{
d = scm_big2dbl (y);
goto basic_div;
}
SCM_ASRTGO (SCM_INEXP (y), bady);
#else
SCM_ASRTGO (SCM_NIMP (y) && SCM_INEXP (y), bady);
#endif
if (SCM_REALP (y))
{
d = SCM_REALPART (y);
basic_div:
return scm_makdbl (SCM_REALPART (x) / d,
SCM_CPLXP (x) ? SCM_IMAG (x) / d : 0.0);
}
a = SCM_REALPART (x);
if (SCM_REALP (x))
goto complex_div;
r = SCM_REAL (y);
i = SCM_IMAG (y);
d = r * r + i * i;
return scm_makdbl ((a * r + SCM_IMAG (x) * i) / d,
(SCM_IMAG (x) * r - a * i) / d);
}
if (SCM_UNBNDP (y))
{
if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x))
return x;
return scm_makdbl (1.0 / ((double) SCM_INUM (x)), 0.0);
}
if (SCM_NINUMP (y))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (y), bady);
if (SCM_BIGP (y))
return scm_makdbl (SCM_INUM (x) / scm_big2dbl (y), 0.0);
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_divide);
}
#endif
#else
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_INEXP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_divide);
}
#endif
#endif
if (SCM_REALP (y))
return scm_makdbl (SCM_INUM (x) / SCM_REALPART (y), 0.0);
a = SCM_INUM (x);
complex_div:
r = SCM_REAL (y);
i = SCM_IMAG (y);
d = r * r + i * i;
return scm_makdbl ((a * r) / d, (-a * i) / d);
}
#else
#ifdef SCM_BIGDIG
if (SCM_NINUMP (x))
{
SCM z;
SCM_ASSERT (SCM_NIMP (x) && SCM_BIGP (x), x, SCM_ARG1, s_divide);
if (SCM_UNBNDP (y))
goto ov;
if (SCM_INUMP (y))
{
z = SCM_INUM (y);
if (!z)
goto ov;
if (1 == z)
return x;
if (z < 0)
z = -z;
if (z < SCM_BIGRAD)
{
SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (y > 0) : (y < 0));
if (scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w),
(SCM_BIGDIG) z))
goto ov;
return w;
}
#ifndef SCM_DIGSTOOBIG
z = scm_pseudolong (z);
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
&z, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3);
#else
{
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
scm_longdigs (z, zdigs);
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
zdigs, SCM_DIGSPERLONG,
SCM_BIGSIGN (x) ? (y > 0) : (y < 0), 3);
}
#endif
}
else
{
SCM_ASRTGO (SCM_NIMP (y) && SCM_BIGP (y), bady);
z = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
SCM_BDIGITS (y), SCM_NUMDIGS (y),
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3);
}
if (!z)
goto ov;
return z;
}
if (SCM_UNBNDP (y))
{
if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x))
return x;
goto ov;
}
if (SCM_NINUMP (y))
{
#ifndef SCM_RECKLESS
if (!(SCM_NIMP (y) && SCM_BIGP (y)))
{
bady:
scm_wta (y, (char *) SCM_ARG2, s_divide);
}
#endif
goto ov;
}
#else
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_divide);
if (SCM_UNBNDP (y))
{
if ((SCM_MAKINUM (1L) == x) || (SCM_MAKINUM (-1L) == x))
return x;
goto ov;
}
SCM_ASSERT (SCM_INUMP (y), y, SCM_ARG2, s_divide);
#endif
#endif
{
long z = SCM_INUM (y);
if ((0 == z) || SCM_INUM (x) % z)
goto ov;
z = SCM_INUM (x) / z;
if (SCM_FIXABLE (z))
return SCM_MAKINUM (z);
#ifdef SCM_BIGDIG
return scm_long2big (z);
#endif
#ifdef SCM_FLOATS
ov:
return scm_makdbl (((double) SCM_INUM (x)) / ((double) SCM_INUM (y)), 0.0);
#else
ov:
scm_num_overflow (s_divide);
return SCM_UNSPECIFIED;
#endif
}
}
#ifdef SCM_FLOATS
SCM_PROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh);
double
scm_asinh (x)
double x;
{
return log (x + sqrt (x * x + 1));
}
SCM_PROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh);
double
scm_acosh (x)
double x;
{
return log (x + sqrt (x * x - 1));
}
SCM_PROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh);
double
scm_atanh (x)
double x;
{
return 0.5 * log ((1 + x) / (1 - x));
}
SCM_PROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate);
double
scm_truncate (x)
double x;
{
if (x < 0.0)
return -floor (-x);
return floor (x);
}
SCM_PROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round);
double
scm_round (x)
double x;
{
double plus_half = x + 0.5;
double result = floor (plus_half);
/* Adjust so that the scm_round is towards even. */
return (plus_half == result && plus_half / 2 != floor (plus_half / 2))
? result - 1 : result;
}
SCM_PROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact);
double
scm_exact_to_inexact (z)
double z;
{
return z;
}
SCM_PROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor);
SCM_PROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil);
SCM_PROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)()) sqrt);
SCM_PROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)()) fabs);
SCM_PROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)()) exp);
SCM_PROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)()) log);
SCM_PROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)()) sin);
SCM_PROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)()) cos);
SCM_PROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)()) tan);
SCM_PROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)()) asin);
SCM_PROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)()) acos);
SCM_PROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)()) atan);
SCM_PROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)()) sinh);
SCM_PROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)()) cosh);
SCM_PROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)()) tanh);
struct dpair
{
double x, y;
};
static void scm_two_doubles (SCM z1,
SCM z2,
const char *sstring,
struct dpair * xy);
static void
scm_two_doubles (z1, z2, sstring, xy)
SCM z1, z2;
const char *sstring;
struct dpair *xy;
{
if (SCM_INUMP (z1))
xy->x = SCM_INUM (z1);
else
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z1), badz1);
if (SCM_BIGP (z1))
xy->x = scm_big2dbl (z1);
else
{
#ifndef SCM_RECKLESS
if (!(SCM_REALP (z1)))
badz1:scm_wta (z1, (char *) SCM_ARG1, sstring);
#endif
xy->x = SCM_REALPART (z1);
}
#else
{
SCM_ASSERT (SCM_NIMP (z1) && SCM_REALP (z1), z1, SCM_ARG1, sstring);
xy->x = SCM_REALPART (z1);
}
#endif
}
if (SCM_INUMP (z2))
xy->y = SCM_INUM (z2);
else
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z2), badz2);
if (SCM_BIGP (z2))
xy->y = scm_big2dbl (z2);
else
{
#ifndef SCM_RECKLESS
if (!(SCM_REALP (z2)))
badz2:scm_wta (z2, (char *) SCM_ARG2, sstring);
#endif
xy->y = SCM_REALPART (z2);
}
#else
{
SCM_ASSERT (SCM_NIMP (z2) && SCM_REALP (z2), z2, SCM_ARG2, sstring);
xy->y = SCM_REALPART (z2);
}
#endif
}
}
SCM_PROC (s_sys_expt, "$expt", 2, 0, 0, scm_sys_expt);
SCM
scm_sys_expt (z1, z2)
SCM z1;
SCM z2;
{
struct dpair xy;
scm_two_doubles (z1, z2, s_sys_expt, &xy);
return scm_makdbl (pow (xy.x, xy.y), 0.0);
}
SCM_PROC (s_sys_atan2, "$atan2", 2, 0, 0, scm_sys_atan2);
SCM
scm_sys_atan2 (z1, z2)
SCM z1;
SCM z2;
{
struct dpair xy;
scm_two_doubles (z1, z2, s_sys_atan2, &xy);
return scm_makdbl (atan2 (xy.x, xy.y), 0.0);
}
SCM_PROC (s_make_rectangular, "make-rectangular", 2, 0, 0, scm_make_rectangular);
SCM
scm_make_rectangular (z1, z2)
SCM z1;
SCM z2;
{
struct dpair xy;
scm_two_doubles (z1, z2, s_make_rectangular, &xy);
return scm_makdbl (xy.x, xy.y);
}
SCM_PROC (s_make_polar, "make-polar", 2, 0, 0, scm_make_polar);
SCM
scm_make_polar (z1, z2)
SCM z1;
SCM z2;
{
struct dpair xy;
scm_two_doubles (z1, z2, s_make_polar, &xy);
return scm_makdbl (xy.x * cos (xy.y), xy.x * sin (xy.y));
}
SCM_PROC (s_real_part, "real-part", 1, 0, 0, scm_real_part);
SCM
scm_real_part (z)
SCM z;
{
if (SCM_NINUMP (z))
{
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
return z;
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_real_part);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_INEXP (z), z, SCM_ARG1, s_real_part);
#endif
if (SCM_CPLXP (z))
return scm_makdbl (SCM_REAL (z), 0.0);
}
return z;
}
SCM_PROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part);
SCM
scm_imag_part (z)
SCM z;
{
if (SCM_INUMP (z))
return SCM_INUM0;
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
return SCM_INUM0;
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_imag_part);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_INEXP (z), z, SCM_ARG1, s_imag_part);
#endif
if (SCM_CPLXP (z))
return scm_makdbl (SCM_IMAG (z), 0.0);
return scm_flo0;
}
SCM_PROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude);
SCM
scm_magnitude (z)
SCM z;
{
if (SCM_INUMP (z))
return scm_abs (z);
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
return scm_abs (z);
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_magnitude);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_INEXP (z), z, SCM_ARG1, s_magnitude);
#endif
if (SCM_CPLXP (z))
{
double i = SCM_IMAG (z), r = SCM_REAL (z);
return scm_makdbl (sqrt (i * i + r * r), 0.0);
}
return scm_makdbl (fabs (SCM_REALPART (z)), 0.0);
}
SCM_PROC (s_angle, "angle", 1, 0, 0, scm_angle);
SCM
scm_angle (z)
SCM z;
{
double x, y = 0.0;
if (SCM_INUMP (z))
{
x = (z >= SCM_INUM0) ? 1.0 : -1.0;
goto do_angle;
}
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
{
x = (SCM_TYP16 (z) == scm_tc16_bigpos) ? 1.0 : -1.0;
goto do_angle;
}
#ifndef SCM_RECKLESS
if (!(SCM_INEXP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_angle);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_INEXP (z), z, SCM_ARG1, s_angle);
#endif
if (SCM_REALP (z))
{
x = SCM_REALPART (z);
goto do_angle;
}
x = SCM_REAL (z);
y = SCM_IMAG (z);
do_angle:
return scm_makdbl (atan2 (y, x), 0.0);
}
SCM_PROC (s_inexact_to_exact, "inexact->exact", 1, 0, 0, scm_inexact_to_exact);
SCM
scm_inexact_to_exact (z)
SCM z;
{
if (SCM_INUMP (z))
return z;
#ifdef SCM_BIGDIG
SCM_ASRTGO (SCM_NIMP (z), badz);
if (SCM_BIGP (z))
return z;
#ifndef SCM_RECKLESS
if (!(SCM_REALP (z)))
{
badz:
scm_wta (z, (char *) SCM_ARG1, s_inexact_to_exact);
}
#endif
#else
SCM_ASSERT (SCM_NIMP (z) && SCM_REALP (z), z, SCM_ARG1, s_inexact_to_exact);
#endif
#ifdef SCM_BIGDIG
{
double u = floor (SCM_REALPART (z) + 0.5);
if ((u <= SCM_MOST_POSITIVE_FIXNUM) && (-u <= -SCM_MOST_NEGATIVE_FIXNUM))
{
/* Negation is a workaround for HP700 cc bug */
SCM ans = SCM_MAKINUM ((long) u);
if (SCM_INUM (ans) == (long) u)
return ans;
}
SCM_ASRTGO (!IS_INF (u), badz); /* problem? */
return scm_dbl2big (u);
}
#else
return SCM_MAKINUM ((long) floor (SCM_REALPART (z) + 0.5));
#endif
}
#else /* ~SCM_FLOATS */
SCM_PROC (s_trunc, "truncate", 1, 0, 0, scm_trunc);
SCM
scm_trunc (x)
SCM x;
{
SCM_ASSERT (SCM_INUMP (x), x, SCM_ARG1, s_truncate);
return x;
}
#endif /* SCM_FLOATS */
#ifdef SCM_BIGDIG
#ifdef SCM_FLOATS
/* d must be integer */
SCM
scm_dbl2big (d)
double d;
{
scm_sizet i = 0;
long c;
SCM_BIGDIG *digits;
SCM ans;
double u = (d < 0) ? -d : d;
while (0 != floor (u))
{
u /= SCM_BIGRAD;
i++;
}
ans = scm_mkbig (i, d < 0);
digits = SCM_BDIGITS (ans);
while (i--)
{
u *= SCM_BIGRAD;
c = floor (u);
u -= c;
digits[i] = c;
}
#ifndef SCM_RECKLESS
if (u != 0)
scm_num_overflow ("dbl2big");
#endif
return ans;
}
double
scm_big2dbl (b)
SCM b;
{
double ans = 0.0;
scm_sizet i = SCM_NUMDIGS (b);
SCM_BIGDIG *digits = SCM_BDIGITS (b);
while (i--)
ans = digits[i] + SCM_BIGRAD * ans;
if (scm_tc16_bigneg == SCM_TYP16 (b))
return -ans;
return ans;
}
#endif
#endif
SCM
scm_long2num (sl)
long sl;
{
if (!SCM_FIXABLE (sl))
{
#ifdef SCM_BIGDIG
return scm_long2big (sl);
#else
#ifdef SCM_FLOATS
return scm_makdbl ((double) sl, 0.0);
#else
return SCM_BOOL_F;
#endif
#endif
}
return SCM_MAKINUM (sl);
}
#ifdef LONGLONGS
SCM
scm_long_long2num (sl)
long_long sl;
{
if (!SCM_FIXABLE (sl))
{
#ifdef SCM_BIGDIG
return scm_long_long2big (sl);
#else
#ifdef SCM_FLOATS
return scm_makdbl ((double) sl, 0.0);
#else
return SCM_BOOL_F;
#endif
#endif
}
return SCM_MAKINUM (sl);
}
#endif
SCM
scm_ulong2num (sl)
unsigned long sl;
{
if (!SCM_POSFIXABLE (sl))
{
#ifdef SCM_BIGDIG
return scm_ulong2big (sl);
#else
#ifdef SCM_FLOATS
return scm_makdbl ((double) sl, 0.0);
#else
return SCM_BOOL_F;
#endif
#endif
}
return SCM_MAKINUM (sl);
}
long
scm_num2long (num, pos, s_caller)
SCM num;
char *pos;
const char *s_caller;
{
long res;
if (SCM_INUMP (num))
{
res = SCM_INUM (num);
return res;
}
SCM_ASRTGO (SCM_NIMP (num), errout);
#ifdef SCM_FLOATS
if (SCM_REALP (num))
{
double u = SCM_REALPART (num);
res = u;
if ((double) res == u)
{
return res;
}
}
#endif
#ifdef SCM_BIGDIG
if (SCM_BIGP (num))
{
long oldres;
scm_sizet l;
res = 0;
oldres = 0;
for (l = SCM_NUMDIGS (num); l--;)
{
res = SCM_BIGUP (res) + SCM_BDIGITS (num)[l];
if (res < oldres)
goto errout;
oldres = res;
}
if (SCM_TYP16 (num) == scm_tc16_bigpos)
return res;
else
return -res;
}
#endif
errout:
scm_wta (num, pos, s_caller);
return SCM_UNSPECIFIED;
}
#ifdef LONGLONGS
long_long
scm_num2long_long (num, pos, s_caller)
SCM num;
char *pos;
const char *s_caller;
{
long_long res;
if (SCM_INUMP (num))
{
res = SCM_INUM ((long_long) num);
return res;
}
SCM_ASRTGO (SCM_NIMP (num), errout);
#ifdef SCM_FLOATS
if (SCM_REALP (num))
{
double u = SCM_REALPART (num);
if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u)
&& (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3)))
{
res = u;
return res;
}
}
#endif
#ifdef SCM_BIGDIG
if (SCM_BIGP (num))
{
scm_sizet l = SCM_NUMDIGS (num);
SCM_ASRTGO (SCM_DIGSPERLONGLONG >= l, errout);
res = 0;
for (; l--;)
res = SCM_LONGLONGBIGUP (res) + SCM_BDIGITS (num)[l];
return res;
}
#endif
errout:
scm_wta (num, pos, s_caller);
return SCM_UNSPECIFIED;
}
#endif
unsigned long
scm_num2ulong (num, pos, s_caller)
SCM num;
char *pos;
const char *s_caller;
{
unsigned long res;
if (SCM_INUMP (num))
{
res = SCM_INUM ((unsigned long) num);
return res;
}
SCM_ASRTGO (SCM_NIMP (num), errout);
#ifdef SCM_FLOATS
if (SCM_REALP (num))
{
double u = SCM_REALPART (num);
if ((0 <= u) && (u <= (unsigned long) ~0L))
{
res = u;
return res;
}
}
#endif
#ifdef SCM_BIGDIG
if (SCM_BIGP (num))
{
unsigned long oldres;
scm_sizet l;
res = 0;
oldres = 0;
for (l = SCM_NUMDIGS (num); l--;)
{
res = SCM_BIGUP (res) + SCM_BDIGITS (num)[l];
if (res < oldres)
goto errout;
oldres = res;
}
return res;
}
#endif
errout:
scm_wta (num, pos, s_caller);
return SCM_UNSPECIFIED;
}
#ifdef SCM_FLOATS
#ifndef DBL_DIG
static void add1 SCM_P ((double f, double *fsum));
static void
add1 (f, fsum)
double f, *fsum;
{
*fsum = f + 1.0;
}
#endif
#endif
void
scm_init_numbers ()
{
#ifdef SCM_FLOATS
SCM_NEWCELL (scm_flo0);
#ifdef SCM_SINGLES
SCM_SETCAR (scm_flo0, scm_tc_flo);
SCM_FLO (scm_flo0) = 0.0;
#else
SCM_SETCDR (scm_flo0, (SCM) scm_must_malloc (1L * sizeof (double), "real"));
SCM_REAL (scm_flo0) = 0.0;
SCM_SETCAR (scm_flo0, scm_tc_dblr);
#endif
#ifdef DBL_DIG
scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
#else
{ /* determine floating point precision */
double f = 0.1;
double fsum = 1.0 + f;
while (fsum != 1.0)
{
f /= 10.0;
if (++scm_dblprec > 20)
break;
add1 (f, &fsum);
}
scm_dblprec = scm_dblprec - 1;
}
#endif /* DBL_DIG */
#endif
#include "numbers.x"
}