1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-09 15:10:29 +02:00
guile/semi.h
Andy Wingo a4e1f55f37 Implement generational collection
Not really battle-tested but it seems to work.  Need to implement
heuristics for when to do generational vs full-heap GC.
2022-08-02 15:37:02 +02:00

326 lines
9.6 KiB
C

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include "large-object-space.h"
#include "precise-roots.h"
struct semi_space {
uintptr_t hp;
uintptr_t limit;
uintptr_t from_space;
uintptr_t to_space;
size_t page_size;
size_t stolen_pages;
uintptr_t base;
size_t size;
long count;
};
struct heap {
struct semi_space semi_space;
struct large_object_space large_object_space;
};
// One mutator per space, can just store the heap in the mutator.
struct mutator {
struct heap heap;
struct handle *roots;
};
static inline struct heap* mutator_heap(struct mutator *mut) {
return &mut->heap;
}
static inline struct semi_space* heap_semi_space(struct heap *heap) {
return &heap->semi_space;
}
static inline struct large_object_space* heap_large_object_space(struct heap *heap) {
return &heap->large_object_space;
}
static inline struct semi_space* mutator_semi_space(struct mutator *mut) {
return heap_semi_space(mutator_heap(mut));
}
static const uintptr_t ALIGNMENT = 8;
static uintptr_t align_up(uintptr_t addr, size_t align) {
return (addr + align - 1) & ~(align-1);
}
#define GC_HEADER uintptr_t _gc_header
static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static void collect(struct mutator *mut) NEVER_INLINE;
static void collect_for_alloc(struct mutator *mut, size_t bytes) NEVER_INLINE;
static void visit(struct gc_edge edge, void *visit_data);
static int semi_space_steal_pages(struct semi_space *space, size_t npages) {
size_t stolen_pages = space->stolen_pages + npages;
size_t old_limit_size = space->limit - space->to_space;
size_t new_limit_size =
(space->size - align_up(stolen_pages, 2) * space->page_size) / 2;
if (space->to_space + new_limit_size < space->hp)
return 0;
space->limit = space->to_space + new_limit_size;
space->stolen_pages = stolen_pages;
madvise((void*)(space->to_space + new_limit_size),
old_limit_size - new_limit_size,
MADV_DONTNEED);
madvise((void*)(space->from_space + new_limit_size),
old_limit_size - new_limit_size,
MADV_DONTNEED);
return 1;
}
static void semi_space_set_stolen_pages(struct semi_space *space, size_t npages) {
space->stolen_pages = npages;
size_t limit_size =
(space->size - align_up(npages, 2) * space->page_size) / 2;
space->limit = space->to_space + limit_size;
}
static void flip(struct semi_space *space) {
space->hp = space->from_space;
space->from_space = space->to_space;
space->to_space = space->hp;
space->limit = space->hp + space->size / 2;
space->count++;
}
static void* copy(struct semi_space *space, uintptr_t kind, void *obj) {
size_t size;
switch (kind) {
#define COMPUTE_SIZE(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
size = name##_size(obj); \
break;
FOR_EACH_HEAP_OBJECT_KIND(COMPUTE_SIZE)
#undef COMPUTE_SIZE
default:
abort ();
}
void *new_obj = (void*)space->hp;
memcpy(new_obj, obj, size);
*(uintptr_t*) obj = space->hp;
space->hp += align_up (size, ALIGNMENT);
return new_obj;
}
static uintptr_t scan(struct heap *heap, uintptr_t grey) {
void *obj = (void*)grey;
uintptr_t kind = *(uintptr_t*) obj;
switch (kind) {
#define SCAN_OBJECT(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
visit_##name##_fields((Name*)obj, visit, heap); \
return grey + align_up(name##_size((Name*)obj), ALIGNMENT);
FOR_EACH_HEAP_OBJECT_KIND(SCAN_OBJECT)
#undef SCAN_OBJECT
default:
abort ();
}
}
static void* forward(struct semi_space *space, void *obj) {
uintptr_t header_word = *(uintptr_t*)obj;
switch (header_word) {
#define CASE_ALLOC_KIND(name, Name, NAME) \
case ALLOC_KIND_##NAME:
FOR_EACH_HEAP_OBJECT_KIND(CASE_ALLOC_KIND)
#undef CASE_ALLOC_KIND
return copy(space, header_word, obj);
default:
return (void*)header_word;
}
}
static void visit_semi_space(struct heap *heap, struct semi_space *space,
struct gc_edge edge, void *obj) {
update_edge(edge, forward(space, obj));
}
static void visit_large_object_space(struct heap *heap,
struct large_object_space *space,
void *obj) {
if (large_object_space_copy(space, (uintptr_t)obj))
scan(heap, (uintptr_t)obj);
}
static int semi_space_contains(struct semi_space *space, void *obj) {
return (((uintptr_t)obj) - space->base) < space->size;
}
static void visit(struct gc_edge edge, void *visit_data) {
struct heap *heap = visit_data;
void *obj = dereference_edge(edge);
if (obj == NULL)
return;
else if (semi_space_contains(heap_semi_space(heap), obj))
visit_semi_space(heap, heap_semi_space(heap), edge, obj);
else if (large_object_space_contains(heap_large_object_space(heap), obj))
visit_large_object_space(heap, heap_large_object_space(heap), obj);
else
abort();
}
static void collect(struct mutator *mut) {
struct heap *heap = mutator_heap(mut);
struct semi_space *semi = heap_semi_space(heap);
struct large_object_space *large = heap_large_object_space(heap);
// fprintf(stderr, "start collect #%ld:\n", space->count);
large_object_space_start_gc(large, 0);
flip(semi);
uintptr_t grey = semi->hp;
for (struct handle *h = mut->roots; h; h = h->next)
visit(gc_edge(&h->v), heap);
// fprintf(stderr, "pushed %zd bytes in roots\n", space->hp - grey);
while(grey < semi->hp)
grey = scan(heap, grey);
large_object_space_finish_gc(large, 0);
semi_space_set_stolen_pages(semi, large->live_pages_at_last_collection);
// fprintf(stderr, "%zd bytes copied\n", (space->size>>1)-(space->limit-space->hp));
}
static void collect_for_alloc(struct mutator *mut, size_t bytes) {
collect(mut);
struct semi_space *space = mutator_semi_space(mut);
if (space->limit - space->hp < bytes) {
fprintf(stderr, "ran out of space, heap size %zu\n", space->size);
abort();
}
}
static const size_t LARGE_OBJECT_THRESHOLD = 8192;
static void* allocate_large(struct mutator *mut, enum alloc_kind kind,
size_t size) {
struct heap *heap = mutator_heap(mut);
struct large_object_space *space = heap_large_object_space(heap);
struct semi_space *semi_space = heap_semi_space(heap);
size_t npages = large_object_space_npages(space, size);
if (!semi_space_steal_pages(semi_space, npages)) {
collect(mut);
if (!semi_space_steal_pages(semi_space, npages)) {
fprintf(stderr, "ran out of space, heap size %zu\n", semi_space->size);
abort();
}
}
void *ret = large_object_space_alloc(space, npages);
if (!ret)
ret = large_object_space_obtain_and_alloc(space, npages);
if (!ret) {
perror("weird: we have the space but mmap didn't work");
abort();
}
*(uintptr_t*)ret = kind;
return ret;
}
static inline void* allocate(struct mutator *mut, enum alloc_kind kind,
size_t size) {
if (size >= LARGE_OBJECT_THRESHOLD)
return allocate_large(mut, kind, size);
struct semi_space *space = mutator_semi_space(mut);
while (1) {
uintptr_t addr = space->hp;
uintptr_t new_hp = align_up (addr + size, ALIGNMENT);
if (space->limit < new_hp) {
collect_for_alloc(mut, size);
continue;
}
space->hp = new_hp;
void *ret = (void *)addr;
uintptr_t *header_word = ret;
*header_word = kind;
// FIXME: Allow allocator to avoid initializing pointerless memory?
// if (kind == NODE)
clear_memory(addr + sizeof(uintptr_t), size - sizeof(uintptr_t));
return ret;
}
}
static inline void* allocate_pointerless(struct mutator *mut,
enum alloc_kind kind, size_t size) {
return allocate(mut, kind, size);
}
static inline void init_field(void *obj, void **addr, void *val) {
*addr = val;
}
static inline void set_field(void *obj, void **addr, void *val) {
*addr = val;
}
static int initialize_semi_space(struct semi_space *space, size_t size) {
// Allocate even numbers of pages.
size_t page_size = getpagesize();
size = align_up(size, page_size * 2);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
return 0;
}
space->to_space = space->hp = space->base = (uintptr_t) mem;
space->from_space = space->base + size / 2;
space->page_size = page_size;
space->stolen_pages = 0;
space->size = size;
space->count = 0;
return 1;
}
static int initialize_gc(size_t heap_size, struct heap **heap,
struct mutator **mut) {
*mut = calloc(1, sizeof(struct mutator));
if (!*mut) abort();
*heap = mutator_heap(*mut);
struct semi_space *space = mutator_semi_space(*mut);
if (!initialize_semi_space(space, heap_size))
return 0;
if (!large_object_space_init(heap_large_object_space(*heap), *heap))
return 0;
(*mut)->roots = NULL;
return 1;
}
static struct mutator* initialize_gc_for_thread(uintptr_t *stack_base,
struct heap *heap) {
fprintf(stderr,
"Semispace copying collector not appropriate for multithreaded use.\n");
exit(1);
}
static void finish_gc_for_thread(struct mutator *space) {
}
static void* call_without_gc(struct mutator *mut, void* (*f)(void*),
void *data) {
// Can't be threads, then there won't be collection.
return f(data);
}
static inline void print_start_gc_stats(struct heap *heap) {
}
static inline void print_end_gc_stats(struct heap *heap) {
struct semi_space *space = heap_semi_space(heap);
printf("Completed %ld collections\n", space->count);
printf("Heap size is %zd\n", space->size);
}