mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
(scm_asinh, scm_acosh, scm_atanh, scm_truncate, $asinh, $acosh, $atanh, truncate): Use C library asinh, acosh, atanh and trunc, when available. (scm_inexact_to_exact): Expand isfinite to its definition !isinf. (isfinite): Remove, conflicts with C99 isfinite().
4307 lines
114 KiB
C
4307 lines
114 KiB
C
/* Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003 Free Software Foundation, Inc.
|
||
*
|
||
* Portions Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories
|
||
* and Bellcore. See scm_divide.
|
||
*
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public
|
||
* License as published by the Free Software Foundation; either
|
||
* version 2.1 of the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
*/
|
||
|
||
|
||
/* General assumptions:
|
||
* All objects satisfying SCM_COMPLEXP() have a non-zero complex component.
|
||
* All objects satisfying SCM_BIGP() are too large to fit in a fixnum.
|
||
* If an object satisfies integer?, it's either an inum, a bignum, or a real.
|
||
* If floor (r) == r, r is an int, and mpz_set_d will DTRT.
|
||
*/
|
||
|
||
/* TODO:
|
||
|
||
- see if special casing bignums and reals in integer-exponent when
|
||
possible (to use mpz_pow and mpf_pow_ui) is faster.
|
||
|
||
- look in to better short-circuiting of common cases in
|
||
integer-expt and elsewhere.
|
||
|
||
- see if direct mpz operations can help in ash and elsewhere.
|
||
|
||
*/
|
||
|
||
/* tell glibc (2.3) to give prototype for C99 trunc() */
|
||
#define _GNU_SOURCE
|
||
|
||
#if HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <math.h>
|
||
#include <ctype.h>
|
||
#include <string.h>
|
||
#include <gmp.h>
|
||
#include "libguile/_scm.h"
|
||
#include "libguile/feature.h"
|
||
#include "libguile/ports.h"
|
||
#include "libguile/root.h"
|
||
#include "libguile/smob.h"
|
||
#include "libguile/strings.h"
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/numbers.h"
|
||
#include "libguile/deprecation.h"
|
||
|
||
|
||
|
||
/*
|
||
Wonder if this might be faster for some of our code? A switch on
|
||
the numtag would jump directly to the right case, and the
|
||
SCM_I_NUMTAG code might be faster than repeated SCM_FOOP tests...
|
||
|
||
#define SCM_I_NUMTAG_NOTNUM 0
|
||
#define SCM_I_NUMTAG_INUM 1
|
||
#define SCM_I_NUMTAG_BIG scm_tc16_big
|
||
#define SCM_I_NUMTAG_REAL scm_tc16_real
|
||
#define SCM_I_NUMTAG_COMPLEX scm_tc16_complex
|
||
#define SCM_I_NUMTAG(x) \
|
||
(SCM_INUMP(x) ? SCM_I_NUMTAG_INUM \
|
||
: (SCM_IMP(x) ? SCM_I_NUMTAG_NOTNUM \
|
||
: (((0xfcff & SCM_CELL_TYPE (x)) == scm_tc7_smob) ? SCM_TYP16(x) \
|
||
: SCM_I_NUMTAG_NOTNUM)))
|
||
*/
|
||
|
||
|
||
#define SCM_SWAP(x, y) do { SCM __t = x; x = y; y = __t; } while (0)
|
||
|
||
/* FLOBUFLEN is the maximum number of characters neccessary for the
|
||
* printed or scm_string representation of an inexact number.
|
||
*/
|
||
#define FLOBUFLEN (10+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
|
||
|
||
#if defined (SCO)
|
||
#if ! defined (HAVE_ISNAN)
|
||
#define HAVE_ISNAN
|
||
static int
|
||
isnan (double x)
|
||
{
|
||
return (IsNANorINF (x) && NaN (x) && ! IsINF (x)) ? 1 : 0;
|
||
}
|
||
#endif
|
||
#if ! defined (HAVE_ISINF)
|
||
#define HAVE_ISINF
|
||
static int
|
||
isinf (double x)
|
||
{
|
||
return (IsNANorINF (x) && IsINF (x)) ? 1 : 0;
|
||
}
|
||
|
||
#endif
|
||
#endif
|
||
|
||
|
||
/* mpz_cmp_d only recognises infinities in gmp 4.2 and up.
|
||
For prior versions use an explicit check here. */
|
||
#if __GNU_MP_VERSION < 4 \
|
||
|| (__GNU_MP_VERSION == 4 && __GNU_MP_VERSION_MINOR < 2)
|
||
#define xmpz_cmp_d(z, d) \
|
||
(xisinf (d) ? (d < 0.0 ? 1 : -1) : mpz_cmp_d (z, d))
|
||
#else
|
||
#define xmpz_cmp_d(z, d) mpz_cmp_d (z, d)
|
||
#endif
|
||
|
||
|
||
|
||
static SCM abs_most_negative_fixnum;
|
||
static mpz_t z_negative_one;
|
||
|
||
|
||
|
||
static const char s_bignum[] = "bignum";
|
||
|
||
SCM_C_INLINE SCM
|
||
scm_i_mkbig ()
|
||
{
|
||
/* Return a newly created bignum. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init (SCM_I_BIG_MPZ (z));
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE static SCM
|
||
scm_i_clonebig (SCM src_big, int same_sign_p)
|
||
{
|
||
/* Copy src_big's value, negate it if same_sign_p is false, and return. */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (src_big));
|
||
if (!same_sign_p) mpz_neg (SCM_I_BIG_MPZ (z), SCM_I_BIG_MPZ (z));
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE int
|
||
scm_i_bigcmp (SCM x, SCM y)
|
||
{
|
||
/* Return neg if x < y, pos if x > y, and 0 if x == y */
|
||
/* presume we already know x and y are bignums */
|
||
int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return result;
|
||
}
|
||
|
||
SCM_C_INLINE SCM
|
||
scm_i_dbl2big (double d)
|
||
{
|
||
/* results are only defined if d is an integer */
|
||
SCM z = scm_double_cell (scm_tc16_big, 0, 0, 0);
|
||
mpz_init_set_d (SCM_I_BIG_MPZ (z), d);
|
||
return z;
|
||
}
|
||
|
||
SCM_C_INLINE double
|
||
scm_i_big2dbl (SCM b)
|
||
{
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (b));
|
||
scm_remember_upto_here_1 (b);
|
||
return result;
|
||
}
|
||
|
||
SCM_C_INLINE SCM
|
||
scm_i_normbig (SCM b)
|
||
{
|
||
/* convert a big back to a fixnum if it'll fit */
|
||
/* presume b is a bignum */
|
||
if (mpz_fits_slong_p (SCM_I_BIG_MPZ (b)))
|
||
{
|
||
long val = mpz_get_si (SCM_I_BIG_MPZ (b));
|
||
if (SCM_FIXABLE (val))
|
||
b = SCM_MAKINUM (val);
|
||
}
|
||
return b;
|
||
}
|
||
|
||
SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an exact number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_exact_p
|
||
{
|
||
if (SCM_INUMP (x)) return SCM_BOOL_T;
|
||
if (SCM_BIGP (x)) return SCM_BOOL_T;
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an odd number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_odd_p
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
long val = SCM_INUM (n);
|
||
return SCM_BOOL ((val & 1L) != 0);
|
||
} else if (SCM_BIGP (n)) {
|
||
int odd_p = mpz_odd_p (SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_BOOL (odd_p);
|
||
} else if (scm_inf_p (n)) {
|
||
return SCM_BOOL_T;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is an even number, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_even_p
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
long val = SCM_INUM (n);
|
||
return SCM_BOOL ((val & 1L) == 0);
|
||
} else if (SCM_BIGP (n)) {
|
||
int even_p = mpz_even_p (SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_BOOL (even_p);
|
||
} else if (scm_inf_p (n)) {
|
||
return SCM_BOOL_T;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static int
|
||
xisinf (double x)
|
||
{
|
||
#if defined (HAVE_ISINF)
|
||
return isinf (x);
|
||
#elif defined (HAVE_FINITE) && defined (HAVE_ISNAN)
|
||
return (! (finite (x) || isnan (x)));
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
static int
|
||
xisnan (double x)
|
||
{
|
||
#if defined (HAVE_ISNAN)
|
||
return isnan (x);
|
||
#else
|
||
return 0;
|
||
#endif
|
||
}
|
||
|
||
SCM_DEFINE (scm_inf_p, "inf?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is infinite, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_inf_p
|
||
{
|
||
if (SCM_REALP (n)) {
|
||
return SCM_BOOL (xisinf (SCM_REAL_VALUE (n)));
|
||
} else if (SCM_COMPLEXP (n)) {
|
||
return SCM_BOOL (xisinf (SCM_COMPLEX_REAL (n))
|
||
|| xisinf (SCM_COMPLEX_IMAG (n)));
|
||
} else {
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_nan_p, "nan?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return @code{#t} if @var{n} is a NaN, @code{#f}\n"
|
||
"otherwise.")
|
||
#define FUNC_NAME s_scm_nan_p
|
||
{
|
||
if (SCM_REALP (n)) {
|
||
return SCM_BOOL (xisnan (SCM_REAL_VALUE (n)));
|
||
} else if (SCM_COMPLEXP (n)) {
|
||
return SCM_BOOL (xisnan (SCM_COMPLEX_REAL (n))
|
||
|| xisnan (SCM_COMPLEX_IMAG (n)));
|
||
} else {
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* Guile's idea of infinity. */
|
||
static double guile_Inf;
|
||
|
||
/* Guile's idea of not a number. */
|
||
static double guile_NaN;
|
||
|
||
static void
|
||
guile_ieee_init (void)
|
||
{
|
||
#if defined (HAVE_ISINF) || defined (HAVE_FINITE)
|
||
|
||
/* Some version of gcc on some old version of Linux used to crash when
|
||
trying to make Inf and NaN. */
|
||
|
||
#if defined (SCO)
|
||
double tmp = 1.0;
|
||
guile_Inf = 1.0 / (tmp - tmp);
|
||
#elif defined (__alpha__) && ! defined (linux)
|
||
extern unsigned int DINFINITY[2];
|
||
guile_Inf = (*(X_CAST(double *, DINFINITY)));
|
||
#else
|
||
double tmp = 1e+10;
|
||
guile_Inf = tmp;
|
||
for (;;)
|
||
{
|
||
guile_Inf *= 1e+10;
|
||
if (guile_Inf == tmp)
|
||
break;
|
||
tmp = guile_Inf;
|
||
}
|
||
#endif
|
||
|
||
#endif
|
||
|
||
#if defined (HAVE_ISNAN)
|
||
|
||
#if defined (__alpha__) && ! defined (linux)
|
||
extern unsigned int DQNAN[2];
|
||
guile_NaN = (*(X_CAST(double *, DQNAN)));
|
||
#else
|
||
guile_NaN = guile_Inf / guile_Inf;
|
||
#endif
|
||
|
||
#endif
|
||
}
|
||
|
||
SCM_DEFINE (scm_inf, "inf", 0, 0, 0,
|
||
(void),
|
||
"Return Inf.")
|
||
#define FUNC_NAME s_scm_inf
|
||
{
|
||
static int initialized = 0;
|
||
if (! initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_make_real (guile_Inf);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_nan, "nan", 0, 0, 0,
|
||
(void),
|
||
"Return NaN.")
|
||
#define FUNC_NAME s_scm_nan
|
||
{
|
||
static int initialized = 0;
|
||
if (! initialized)
|
||
{
|
||
guile_ieee_init ();
|
||
initialized = 1;
|
||
}
|
||
return scm_make_real (guile_NaN);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_PRIMITIVE_GENERIC (scm_abs, "abs", 1, 0, 0,
|
||
(SCM x),
|
||
"Return the absolute value of @var{x}.")
|
||
#define FUNC_NAME
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long int xx = SCM_INUM (x);
|
||
if (xx >= 0) {
|
||
return x;
|
||
} else if (SCM_POSFIXABLE (-xx)) {
|
||
return SCM_MAKINUM (-xx);
|
||
} else {
|
||
return scm_i_long2big (-xx);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
const int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
if (sgn < 0) {
|
||
return scm_i_clonebig (x, 0);
|
||
} else {
|
||
return x;
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
return scm_make_real (fabs (SCM_REAL_VALUE (x)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_scm_abs, x, 1, s_scm_abs);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
|
||
/* "Return the quotient of the numbers @var{x} and @var{y}."
|
||
*/
|
||
SCM
|
||
scm_quotient (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_quotient);
|
||
} else {
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
return scm_i_long2big (z);
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
|
||
&& (scm_i_bigcmp (abs_most_negative_fixnum, y) == 0))
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
return SCM_MAKINUM (-1);
|
||
}
|
||
else
|
||
return SCM_MAKINUM (0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_quotient);
|
||
} else if (yy == 1) {
|
||
return x;
|
||
} else {
|
||
SCM result = scm_i_mkbig ();
|
||
if (yy < 0) {
|
||
mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - yy);
|
||
mpz_neg(SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
} else {
|
||
mpz_tdiv_q_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
|
||
}
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_tdiv_q(SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
|
||
}
|
||
}
|
||
|
||
SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
|
||
/* "Return the remainder of the numbers @var{x} and @var{y}.\n"
|
||
* "@lisp\n"
|
||
* "(remainder 13 4) @result{} 1\n"
|
||
* "(remainder -13 4) @result{} -1\n"
|
||
* "@end lisp"
|
||
*/
|
||
SCM
|
||
scm_remainder (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_remainder);
|
||
} else {
|
||
long z = SCM_INUM (x) % yy;
|
||
return SCM_MAKINUM (z);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
if ((SCM_INUM (x) == SCM_MOST_NEGATIVE_FIXNUM)
|
||
&& (scm_i_bigcmp (abs_most_negative_fixnum, y) == 0))
|
||
{
|
||
/* Special case: x == fixnum-min && y == abs (fixnum-min) */
|
||
return SCM_MAKINUM (0);
|
||
}
|
||
else
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_remainder);
|
||
} else {
|
||
SCM result = scm_i_mkbig ();
|
||
if (yy < 0) yy = - yy;
|
||
mpz_tdiv_r_ui(SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ(x), yy);
|
||
scm_remember_upto_here_1(x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_tdiv_r (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2(x, y);
|
||
return scm_i_normbig (result);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
|
||
/* "Return the modulo of the numbers @var{x} and @var{y}.\n"
|
||
* "@lisp\n"
|
||
* "(modulo 13 4) @result{} 1\n"
|
||
* "(modulo -13 4) @result{} 3\n"
|
||
* "@end lisp"
|
||
*/
|
||
SCM
|
||
scm_modulo (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
/* FIXME: I think this may be a bug on some arches -- results
|
||
of % with negative second arg are undefined... */
|
||
long z = xx % yy;
|
||
long result;
|
||
|
||
if (yy < 0) {
|
||
if (z > 0) result = z + yy;
|
||
else result = z;
|
||
} else {
|
||
if (z < 0) result = z + yy;
|
||
else result = z;
|
||
}
|
||
return SCM_MAKINUM (result);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
|
||
if (sgn_y == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
mpz_t z_x;
|
||
SCM result;
|
||
|
||
if (sgn_y < 0) {
|
||
SCM pos_y = scm_i_clonebig (y, 0);
|
||
/* do this after the last scm_op */
|
||
mpz_init_set_si (z_x, xx);
|
||
result = pos_y; /* re-use this bignum */
|
||
mpz_mod (SCM_I_BIG_MPZ (result), z_x, SCM_I_BIG_MPZ (pos_y));
|
||
scm_remember_upto_here_1 (pos_y);
|
||
} else {
|
||
result = scm_i_mkbig ();
|
||
/* do this after the last scm_op */
|
||
mpz_init_set_si (z_x, xx);
|
||
mpz_mod (SCM_I_BIG_MPZ (result), z_x, SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
}
|
||
|
||
if ((sgn_y < 0) && mpz_sgn (SCM_I_BIG_MPZ (result)) != 0) {
|
||
mpz_add (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (y),
|
||
SCM_I_BIG_MPZ (result));
|
||
}
|
||
scm_remember_upto_here_1 (y);
|
||
/* and do this before the next one */
|
||
mpz_clear (z_x);
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mod_ui (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
(yy < 0) ? - yy : yy);
|
||
scm_remember_upto_here_1 (x);
|
||
if ((yy < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)) {
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (result),
|
||
- yy);
|
||
}
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
if (sgn_y == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
SCM result = scm_i_mkbig ();
|
||
int y_sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM pos_y = scm_i_clonebig (y, y_sgn >= 0);
|
||
mpz_mod (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (pos_y));
|
||
|
||
scm_remember_upto_here_1 (x);
|
||
if ((y_sgn < 0) && (mpz_sgn (SCM_I_BIG_MPZ (result)) != 0)) {
|
||
mpz_add (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (y),
|
||
SCM_I_BIG_MPZ (result));
|
||
}
|
||
scm_remember_upto_here_2 (y, pos_y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
|
||
}
|
||
}
|
||
|
||
SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
|
||
/* "Return the greatest common divisor of all arguments.\n"
|
||
* "If called without arguments, 0 is returned."
|
||
*/
|
||
SCM
|
||
scm_gcd (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
return (SCM_UNBNDP (x)) ? SCM_INUM0 : x;
|
||
|
||
if (SCM_INUMP (x))
|
||
{
|
||
if (SCM_INUMP (y))
|
||
{
|
||
long xx = SCM_INUM (x);
|
||
long yy = SCM_INUM (y);
|
||
long u = xx < 0 ? -xx : xx;
|
||
long v = yy < 0 ? -yy : yy;
|
||
long result;
|
||
if (xx == 0) {
|
||
result = v;
|
||
} else if (yy == 0) {
|
||
result = u;
|
||
} else {
|
||
long k = 1;
|
||
long t;
|
||
/* Determine a common factor 2^k */
|
||
while (!(1 & (u | v)))
|
||
{
|
||
k <<= 1;
|
||
u >>= 1;
|
||
v >>= 1;
|
||
}
|
||
/* Now, any factor 2^n can be eliminated */
|
||
if (u & 1)
|
||
t = -v;
|
||
else
|
||
{
|
||
t = u;
|
||
b3:
|
||
t = SCM_SRS (t, 1);
|
||
}
|
||
if (!(1 & t))
|
||
goto b3;
|
||
if (t > 0)
|
||
u = t;
|
||
else
|
||
v = -t;
|
||
t = u - v;
|
||
if (t != 0)
|
||
goto b3;
|
||
result = u * k;
|
||
}
|
||
return SCM_POSFIXABLE (result) \
|
||
? SCM_MAKINUM (result) : scm_i_long2big (result);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
SCM mx = scm_i_mkbig ();
|
||
mpz_set_si(SCM_I_BIG_MPZ (mx), SCM_INUM (x));
|
||
scm_remember_upto_here_1 (x);
|
||
mpz_gcd(SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (mx), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2(mx, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
{
|
||
if (SCM_INUMP (y))
|
||
{
|
||
unsigned long result;
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0)
|
||
return scm_abs (x);
|
||
if (yy < 0) yy = -yy;
|
||
result = mpz_gcd_ui (NULL, SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_POSFIXABLE (result) \
|
||
? SCM_MAKINUM (result) : scm_ulong2num (result);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_gcd(SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2(x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
|
||
}
|
||
|
||
SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
|
||
/* "Return the least common multiple of the arguments.\n"
|
||
* "If called without arguments, 1 is returned."
|
||
*/
|
||
SCM
|
||
scm_lcm (SCM n1, SCM n2)
|
||
{
|
||
if (SCM_UNBNDP (n2))
|
||
{
|
||
if (SCM_UNBNDP (n1))
|
||
return SCM_MAKINUM (1L);
|
||
n2 = SCM_MAKINUM (1L);
|
||
}
|
||
|
||
SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1),
|
||
g_lcm, n1, n2, SCM_ARG1, s_lcm);
|
||
SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2),
|
||
g_lcm, n1, n2, SCM_ARGn, s_lcm);
|
||
|
||
if (SCM_INUMP (n1))
|
||
{
|
||
if (SCM_INUMP (n2))
|
||
{
|
||
SCM d = scm_gcd (n1, n2);
|
||
if (SCM_EQ_P (d, SCM_INUM0))
|
||
return d;
|
||
else
|
||
return scm_abs (scm_product (n1, scm_quotient (n2, d)));
|
||
}
|
||
else
|
||
{
|
||
/* inum n1, big n2 */
|
||
inumbig:
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
long nn1 = SCM_INUM (n1);
|
||
if (nn1 == 0) return SCM_INUM0;
|
||
if (nn1 < 0) nn1 = - nn1;
|
||
mpz_lcm_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (n2), nn1);
|
||
scm_remember_upto_here_1 (n2);
|
||
return result;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
/* big n1 */
|
||
if (SCM_INUMP (n2))
|
||
{
|
||
SCM_SWAP (n1, n2);
|
||
goto inumbig;
|
||
}
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_lcm(SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2(n1, n2);
|
||
/* shouldn't need to normalize b/c lcm of 2 bigs should be big */
|
||
return result;
|
||
}
|
||
}
|
||
}
|
||
|
||
#ifndef scm_long2num
|
||
#define SCM_LOGOP_RETURN(x) scm_ulong2num(x)
|
||
#else
|
||
#define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x)
|
||
#endif
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise AND of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logand) @result{} -1\n"
|
||
"(logand 7) @result{} 7\n"
|
||
"(logand #b111 #b011 #\b001) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logand
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_MAKINUM (-1);
|
||
} else if (!SCM_NUMBERP (n1)) {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 & nn2);
|
||
} else if SCM_BIGP (n2) {
|
||
intbig:
|
||
if (n1 == 0) return SCM_INUM0;
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_and (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_and (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return scm_i_normbig (result_z);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise OR of the integer arguments.\n\n"
|
||
"@lisp\n"
|
||
"(logior) @result{} 0\n"
|
||
"(logior 7) @result{} 7\n"
|
||
"(logior #b000 #b001 #b011) @result{} 3\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logior
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 | nn2);
|
||
} else if (SCM_BIGP (n2)) {
|
||
intbig:
|
||
if (nn1 == 0) return n2;
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_ior (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return result_z;
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_ior (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return result_z;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Return the bitwise XOR of the integer arguments. A bit is\n"
|
||
"set in the result if it is set in an odd number of arguments.\n"
|
||
"@lisp\n"
|
||
"(logxor) @result{} 0\n"
|
||
"(logxor 7) @result{} 7\n"
|
||
"(logxor #b000 #b001 #b011) @result{} 2\n"
|
||
"(logxor #b000 #b001 #b011 #b011) @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logxor
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 ^ nn2);
|
||
} else if (SCM_BIGP (n2)) {
|
||
intbig:
|
||
{
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_t nn1_z;
|
||
mpz_init_set_si (nn1_z, nn1);
|
||
mpz_xor (SCM_I_BIG_MPZ (result_z), nn1_z, SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_1 (n2);
|
||
mpz_clear (nn1_z);
|
||
return scm_i_normbig (result_z);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
SCM result_z = scm_i_mkbig ();
|
||
mpz_xor (SCM_I_BIG_MPZ (result_z),
|
||
SCM_I_BIG_MPZ (n1),
|
||
SCM_I_BIG_MPZ (n2));
|
||
scm_remember_upto_here_2 (n1, n2);
|
||
return scm_i_normbig (result_z);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
|
||
(SCM j, SCM k),
|
||
"@lisp\n"
|
||
"(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
|
||
"(logtest #b0100 #b1011) @result{} #f\n"
|
||
"(logtest #b0100 #b0111) @result{} #t\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logtest
|
||
{
|
||
long int nj;
|
||
|
||
if (SCM_INUMP (j)) {
|
||
nj = SCM_INUM (j);
|
||
if (SCM_INUMP (k)) {
|
||
long nk = SCM_INUM (k);
|
||
return SCM_BOOL (nj & nk);
|
||
} else if (SCM_BIGP (k)) {
|
||
intbig:
|
||
if (nj == 0) return SCM_BOOL_F;
|
||
{
|
||
SCM result;
|
||
mpz_t nj_z;
|
||
mpz_init_set_si (nj_z, nj);
|
||
mpz_and (nj_z, nj_z, SCM_I_BIG_MPZ (k));
|
||
scm_remember_upto_here_1 (k);
|
||
result = SCM_BOOL (mpz_sgn (nj_z) != 0);
|
||
mpz_clear (nj_z);
|
||
return result;
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
} else if (SCM_BIGP (j)) {
|
||
if (SCM_INUMP (k)) {
|
||
SCM_SWAP (j, k);
|
||
nj = SCM_INUM (j);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (k)) {
|
||
SCM result;
|
||
mpz_t result_z;
|
||
mpz_init (result_z);
|
||
mpz_and (result_z,
|
||
SCM_I_BIG_MPZ (j),
|
||
SCM_I_BIG_MPZ (k));
|
||
scm_remember_upto_here_2 (j, k);
|
||
result = SCM_BOOL (mpz_sgn (result_z) != 0);
|
||
mpz_clear (result_z);
|
||
return result;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, k);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, j);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
|
||
(SCM index, SCM j),
|
||
"@lisp\n"
|
||
"(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
|
||
"(logbit? 0 #b1101) @result{} #t\n"
|
||
"(logbit? 1 #b1101) @result{} #f\n"
|
||
"(logbit? 2 #b1101) @result{} #t\n"
|
||
"(logbit? 3 #b1101) @result{} #t\n"
|
||
"(logbit? 4 #b1101) @result{} #f\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logbit_p
|
||
{
|
||
unsigned long int iindex;
|
||
|
||
SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0);
|
||
iindex = (unsigned long int) SCM_INUM (index);
|
||
|
||
if (SCM_INUMP (j)) {
|
||
return SCM_BOOL ((1L << iindex) & SCM_INUM (j));
|
||
} else if (SCM_BIGP (j)) {
|
||
int val = mpz_tstbit (SCM_I_BIG_MPZ (j), iindex);
|
||
scm_remember_upto_here_1 (j);
|
||
return SCM_BOOL (val);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the integer which is the 2s-complement of the integer\n"
|
||
"argument.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (lognot #b10000000) 2)\n"
|
||
" @result{} \"-10000001\"\n"
|
||
"(number->string (lognot #b0) 2)\n"
|
||
" @result{} \"-1\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_lognot
|
||
{
|
||
return scm_difference (SCM_MAKINUM (-1L), n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
|
||
(SCM n, SCM k),
|
||
"Return @var{n} raised to the non-negative integer exponent\n"
|
||
"@var{k}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-expt 2 5)\n"
|
||
" @result{} 32\n"
|
||
"(integer-expt -3 3)\n"
|
||
" @result{} -27\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_expt
|
||
{
|
||
long i2 = 0;
|
||
SCM z_i2 = SCM_BOOL_F;
|
||
int i2_is_big = 0;
|
||
SCM acc = SCM_MAKINUM (1L);
|
||
|
||
/* 0^0 == 1 according to R5RS */
|
||
if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc))
|
||
return SCM_FALSEP (scm_zero_p(k)) ? n : acc;
|
||
else if (SCM_EQ_P (n, SCM_MAKINUM (-1L)))
|
||
return SCM_FALSEP (scm_even_p (k)) ? n : acc;
|
||
|
||
if (SCM_INUMP (k))
|
||
i2 = SCM_INUM (k);
|
||
else if (SCM_BIGP (k))
|
||
{
|
||
z_i2 = scm_i_clonebig (k, 1);
|
||
mpz_init_set (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (k));
|
||
scm_remember_upto_here_1 (k);
|
||
i2_is_big = 1;
|
||
}
|
||
else if (SCM_REALP (k))
|
||
{
|
||
double r = SCM_REAL_VALUE (k);
|
||
if (floor (r) != r)
|
||
SCM_WRONG_TYPE_ARG (2, k);
|
||
if ((r > SCM_MOST_POSITIVE_FIXNUM) || (r < SCM_MOST_NEGATIVE_FIXNUM))
|
||
{
|
||
z_i2 = scm_i_mkbig ();
|
||
mpz_init_set_d (SCM_I_BIG_MPZ (z_i2), r);
|
||
i2_is_big = 1;
|
||
}
|
||
else
|
||
{
|
||
i2 = r;
|
||
}
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (2, k);
|
||
|
||
if (i2_is_big)
|
||
{
|
||
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == -1)
|
||
{
|
||
mpz_neg (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2));
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
while (1)
|
||
{
|
||
if (mpz_sgn(SCM_I_BIG_MPZ (z_i2)) == 0)
|
||
{
|
||
mpz_clear (SCM_I_BIG_MPZ (z_i2));
|
||
return acc;
|
||
}
|
||
if (mpz_cmp_ui(SCM_I_BIG_MPZ (z_i2), 1) == 0)
|
||
{
|
||
mpz_clear (SCM_I_BIG_MPZ (z_i2));
|
||
return scm_product (acc, n);
|
||
}
|
||
if (mpz_tstbit(SCM_I_BIG_MPZ (z_i2), 0))
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
mpz_fdiv_q_2exp (SCM_I_BIG_MPZ (z_i2), SCM_I_BIG_MPZ (z_i2), 1);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
if (i2 < 0)
|
||
{
|
||
i2 = -i2;
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
while (1)
|
||
{
|
||
if (0 == i2)
|
||
return acc;
|
||
if (1 == i2)
|
||
return scm_product (acc, n);
|
||
if (i2 & 1)
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
i2 >>= 1;
|
||
}
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
|
||
(SCM n, SCM cnt),
|
||
"The function ash performs an arithmetic shift left by @var{cnt}\n"
|
||
"bits (or shift right, if @var{cnt} is negative). 'Arithmetic'\n"
|
||
"means, that the function does not guarantee to keep the bit\n"
|
||
"structure of @var{n}, but rather guarantees that the result\n"
|
||
"will always be rounded towards minus infinity. Therefore, the\n"
|
||
"results of ash and a corresponding bitwise shift will differ if\n"
|
||
"@var{n} is negative.\n"
|
||
"\n"
|
||
"Formally, the function returns an integer equivalent to\n"
|
||
"@code{(inexact->exact (floor (* @var{n} (expt 2 @var{cnt}))))}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (ash #b1 3) 2) @result{} \"1000\"\n"
|
||
"(number->string (ash #b1010 -1) 2) @result{} \"101\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ash
|
||
{
|
||
long bits_to_shift;
|
||
|
||
SCM_VALIDATE_INUM (2, cnt);
|
||
|
||
bits_to_shift = SCM_INUM (cnt);
|
||
|
||
if (bits_to_shift < 0)
|
||
{
|
||
/* Shift right by abs(cnt) bits. This is realized as a division
|
||
by div:=2^abs(cnt). However, to guarantee the floor
|
||
rounding, negative values require some special treatment.
|
||
*/
|
||
SCM div = scm_integer_expt (SCM_MAKINUM (2),
|
||
SCM_MAKINUM (-bits_to_shift));
|
||
if (SCM_FALSEP (scm_negative_p (n)))
|
||
return scm_quotient (n, div);
|
||
else
|
||
return scm_sum (SCM_MAKINUM (-1L),
|
||
scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div));
|
||
}
|
||
else
|
||
/* Shift left is done by multiplication with 2^CNT */
|
||
return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
|
||
(SCM n, SCM start, SCM end),
|
||
"Return the integer composed of the @var{start} (inclusive)\n"
|
||
"through @var{end} (exclusive) bits of @var{n}. The\n"
|
||
"@var{start}th bit becomes the 0-th bit in the result.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(number->string (bit-extract #b1101101010 0 4) 2)\n"
|
||
" @result{} \"1010\"\n"
|
||
"(number->string (bit-extract #b1101101010 4 9) 2)\n"
|
||
" @result{} \"10110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_bit_extract
|
||
{
|
||
unsigned long int istart, iend;
|
||
SCM_VALIDATE_INUM_MIN_COPY (2, start,0, istart);
|
||
SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend);
|
||
SCM_ASSERT_RANGE (3, end, (iend >= istart));
|
||
|
||
if (SCM_INUMP (n)) {
|
||
long int in = SCM_INUM (n);
|
||
unsigned long int bits = iend - istart;
|
||
|
||
if (in < 0 && bits >= SCM_I_FIXNUM_BIT)
|
||
{
|
||
/* Since we emulate two's complement encoded numbers, this special
|
||
* case requires us to produce a result that has more bits than can be
|
||
* stored in a fixnum. Thus, we fall back to the more general
|
||
* algorithm that is used for bignums.
|
||
*/
|
||
goto generalcase;
|
||
}
|
||
|
||
if (istart < SCM_I_FIXNUM_BIT)
|
||
{
|
||
in = in >> istart;
|
||
if (bits < SCM_I_FIXNUM_BIT)
|
||
return SCM_MAKINUM (in & ((1L << bits) - 1));
|
||
else /* we know: in >= 0 */
|
||
return SCM_MAKINUM (in);
|
||
}
|
||
else if (in < 0)
|
||
{
|
||
return SCM_MAKINUM (-1L & ((1L << bits) - 1));
|
||
}
|
||
else
|
||
{
|
||
return SCM_MAKINUM (0);
|
||
}
|
||
} else if (SCM_BIGP (n)) {
|
||
generalcase:
|
||
{
|
||
SCM num1 = SCM_MAKINUM (1L);
|
||
SCM num2 = SCM_MAKINUM (2L);
|
||
SCM bits = SCM_MAKINUM (iend - istart);
|
||
SCM mask = scm_difference (scm_integer_expt (num2, bits), num1);
|
||
return scm_logand (mask, scm_ash (n, SCM_MAKINUM (-istart)));
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
static const char scm_logtab[] = {
|
||
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
|
||
};
|
||
|
||
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits in integer @var{n}. If integer is\n"
|
||
"positive, the 1-bits in its binary representation are counted.\n"
|
||
"If negative, the 0-bits in its two's-complement binary\n"
|
||
"representation are counted. If 0, 0 is returned.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(logcount #b10101010)\n"
|
||
" @result{} 4\n"
|
||
"(logcount 0)\n"
|
||
" @result{} 0\n"
|
||
"(logcount -2)\n"
|
||
" @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logcount
|
||
{
|
||
if (SCM_INUMP (n))
|
||
{
|
||
unsigned long int c = 0;
|
||
long int nn = SCM_INUM (n);
|
||
if (nn < 0)
|
||
nn = -1 - nn;
|
||
while (nn)
|
||
{
|
||
c += scm_logtab[15 & nn];
|
||
nn >>= 4;
|
||
}
|
||
return SCM_MAKINUM (c);
|
||
}
|
||
else if (SCM_BIGP (n))
|
||
{
|
||
unsigned long count;
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (n)) >= 0)
|
||
count = mpz_popcount (SCM_I_BIG_MPZ (n));
|
||
else
|
||
count = mpz_hamdist (SCM_I_BIG_MPZ (n), z_negative_one);
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_MAKINUM (count);
|
||
}
|
||
else
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static const char scm_ilentab[] = {
|
||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
|
||
};
|
||
|
||
|
||
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
|
||
(SCM n),
|
||
"Return the number of bits necessary to represent @var{n}.\n"
|
||
"\n"
|
||
"@lisp\n"
|
||
"(integer-length #b10101010)\n"
|
||
" @result{} 8\n"
|
||
"(integer-length 0)\n"
|
||
" @result{} 0\n"
|
||
"(integer-length #b1111)\n"
|
||
" @result{} 4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_length
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
unsigned long int c = 0;
|
||
unsigned int l = 4;
|
||
long int nn = SCM_INUM (n);
|
||
if (nn < 0) {
|
||
nn = -1 - nn;
|
||
};
|
||
while (nn) {
|
||
c += 4;
|
||
l = scm_ilentab [15 & nn];
|
||
nn >>= 4;
|
||
};
|
||
return SCM_MAKINUM (c - 4 + l);
|
||
} else if (SCM_BIGP (n)) {
|
||
/* mpz_sizeinbase looks at the absolute value of negatives, whereas we
|
||
want a ones-complement. If n is ...111100..00 then mpz_sizeinbase is
|
||
1 too big, so check for that and adjust. */
|
||
size_t size = mpz_sizeinbase (SCM_I_BIG_MPZ (n), 2);
|
||
if (mpz_sgn (SCM_I_BIG_MPZ (n)) < 0
|
||
&& mpz_scan0 (SCM_I_BIG_MPZ (n), /* no 0 bits above the lowest 1 */
|
||
mpz_scan1 (SCM_I_BIG_MPZ (n), 0)) == ULONG_MAX)
|
||
size--;
|
||
scm_remember_upto_here_1 (n);
|
||
return SCM_MAKINUM (size);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/*** NUMBERS -> STRINGS ***/
|
||
int scm_dblprec;
|
||
static const double fx[] =
|
||
{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
|
||
5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
|
||
5e-11, 5e-12, 5e-13, 5e-14, 5e-15,
|
||
5e-16, 5e-17, 5e-18, 5e-19, 5e-20};
|
||
|
||
static size_t
|
||
idbl2str (double f, char *a)
|
||
{
|
||
int efmt, dpt, d, i, wp = scm_dblprec;
|
||
size_t ch = 0;
|
||
int exp = 0;
|
||
|
||
if (f == 0.0)
|
||
{
|
||
#ifdef HAVE_COPYSIGN
|
||
double sgn = copysign (1.0, f);
|
||
|
||
if (sgn < 0.0)
|
||
a[ch++] = '-';
|
||
#endif
|
||
|
||
goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
|
||
}
|
||
|
||
if (xisinf (f))
|
||
{
|
||
if (f < 0)
|
||
strcpy (a, "-inf.0");
|
||
else
|
||
strcpy (a, "+inf.0");
|
||
return ch+6;
|
||
}
|
||
else if (xisnan (f))
|
||
{
|
||
strcpy (a, "+nan.0");
|
||
return ch+6;
|
||
}
|
||
|
||
if (f < 0.0)
|
||
{
|
||
f = -f;
|
||
a[ch++] = '-';
|
||
}
|
||
|
||
#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
|
||
make-uniform-vector, from causing infinite loops. */
|
||
while (f < 1.0)
|
||
{
|
||
f *= 10.0;
|
||
if (exp-- < DBL_MIN_10_EXP)
|
||
{
|
||
a[ch++] = '#';
|
||
a[ch++] = '.';
|
||
a[ch++] = '#';
|
||
return ch;
|
||
}
|
||
}
|
||
while (f > 10.0)
|
||
{
|
||
f *= 0.10;
|
||
if (exp++ > DBL_MAX_10_EXP)
|
||
{
|
||
a[ch++] = '#';
|
||
a[ch++] = '.';
|
||
a[ch++] = '#';
|
||
return ch;
|
||
}
|
||
}
|
||
#else
|
||
while (f < 1.0)
|
||
{
|
||
f *= 10.0;
|
||
exp--;
|
||
}
|
||
while (f > 10.0)
|
||
{
|
||
f /= 10.0;
|
||
exp++;
|
||
}
|
||
#endif
|
||
if (f + fx[wp] >= 10.0)
|
||
{
|
||
f = 1.0;
|
||
exp++;
|
||
}
|
||
zero:
|
||
#ifdef ENGNOT
|
||
dpt = (exp + 9999) % 3;
|
||
exp -= dpt++;
|
||
efmt = 1;
|
||
#else
|
||
efmt = (exp < -3) || (exp > wp + 2);
|
||
if (!efmt)
|
||
{
|
||
if (exp < 0)
|
||
{
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
dpt = exp;
|
||
while (++dpt)
|
||
a[ch++] = '0';
|
||
}
|
||
else
|
||
dpt = exp + 1;
|
||
}
|
||
else
|
||
dpt = 1;
|
||
#endif
|
||
|
||
do
|
||
{
|
||
d = f;
|
||
f -= d;
|
||
a[ch++] = d + '0';
|
||
if (f < fx[wp])
|
||
break;
|
||
if (f + fx[wp] >= 1.0)
|
||
{
|
||
a[ch - 1]++;
|
||
break;
|
||
}
|
||
f *= 10.0;
|
||
if (!(--dpt))
|
||
a[ch++] = '.';
|
||
}
|
||
while (wp--);
|
||
|
||
if (dpt > 0)
|
||
{
|
||
#ifndef ENGNOT
|
||
if ((dpt > 4) && (exp > 6))
|
||
{
|
||
d = (a[0] == '-' ? 2 : 1);
|
||
for (i = ch++; i > d; i--)
|
||
a[i] = a[i - 1];
|
||
a[d] = '.';
|
||
efmt = 1;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
while (--dpt)
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
}
|
||
}
|
||
if (a[ch - 1] == '.')
|
||
a[ch++] = '0'; /* trailing zero */
|
||
if (efmt && exp)
|
||
{
|
||
a[ch++] = 'e';
|
||
if (exp < 0)
|
||
{
|
||
exp = -exp;
|
||
a[ch++] = '-';
|
||
}
|
||
for (i = 10; i <= exp; i *= 10);
|
||
for (i /= 10; i; i /= 10)
|
||
{
|
||
a[ch++] = exp / i + '0';
|
||
exp %= i;
|
||
}
|
||
}
|
||
return ch;
|
||
}
|
||
|
||
|
||
static size_t
|
||
iflo2str (SCM flt, char *str)
|
||
{
|
||
size_t i;
|
||
if (SCM_REALP (flt))
|
||
i = idbl2str (SCM_REAL_VALUE (flt), str);
|
||
else
|
||
{
|
||
i = idbl2str (SCM_COMPLEX_REAL (flt), str);
|
||
if (SCM_COMPLEX_IMAG (flt) != 0.0)
|
||
{
|
||
double imag = SCM_COMPLEX_IMAG (flt);
|
||
/* Don't output a '+' for negative numbers or for Inf and
|
||
NaN. They will provide their own sign. */
|
||
if (0 <= imag && !xisinf (imag) && !xisnan (imag))
|
||
str[i++] = '+';
|
||
i += idbl2str (imag, &str[i]);
|
||
str[i++] = 'i';
|
||
}
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/* convert a long to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
size_t
|
||
scm_iint2str (long num, int rad, char *p)
|
||
{
|
||
size_t j = 1;
|
||
size_t i;
|
||
unsigned long n = (num < 0) ? -num : num;
|
||
|
||
for (n /= rad; n > 0; n /= rad)
|
||
j++;
|
||
|
||
i = j;
|
||
if (num < 0)
|
||
{
|
||
*p++ = '-';
|
||
j++;
|
||
n = -num;
|
||
}
|
||
else
|
||
n = num;
|
||
while (i--)
|
||
{
|
||
int d = n % rad;
|
||
|
||
n /= rad;
|
||
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
|
||
}
|
||
return j;
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
|
||
(SCM n, SCM radix),
|
||
"Return a string holding the external representation of the\n"
|
||
"number @var{n} in the given @var{radix}. If @var{n} is\n"
|
||
"inexact, a radix of 10 will be used.")
|
||
#define FUNC_NAME s_scm_number_to_string
|
||
{
|
||
int base;
|
||
|
||
if (SCM_UNBNDP (radix)) {
|
||
base = 10;
|
||
} else {
|
||
SCM_VALIDATE_INUM (2, radix);
|
||
base = SCM_INUM (radix);
|
||
/* FIXME: ask if range limit was OK, and if so, document */
|
||
SCM_ASSERT_RANGE (2, radix, (base >= 2) && (base <= 36));
|
||
}
|
||
|
||
if (SCM_INUMP (n)) {
|
||
char num_buf [SCM_INTBUFLEN];
|
||
size_t length = scm_iint2str (SCM_INUM (n), base, num_buf);
|
||
return scm_mem2string (num_buf, length);
|
||
} else if (SCM_BIGP (n)) {
|
||
char *str = mpz_get_str (NULL, base, SCM_I_BIG_MPZ (n));
|
||
scm_remember_upto_here_1 (n);
|
||
return scm_take0str (str);
|
||
} else if (SCM_INEXACTP (n)) {
|
||
char num_buf [FLOBUFLEN];
|
||
return scm_mem2string (num_buf, iflo2str (n, num_buf));
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* These print routines used to be stubbed here so that scm_repl.c
|
||
wouldn't need SCM_BIGDIG conditionals (pre GMP) */
|
||
|
||
int
|
||
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char num_buf[FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate SCM_UNUSED)
|
||
{
|
||
char *str = mpz_get_str (NULL, 10, SCM_I_BIG_MPZ (exp));
|
||
scm_remember_upto_here_1 (exp);
|
||
scm_lfwrite (str, (size_t) strlen (str), port);
|
||
free (str);
|
||
return !0;
|
||
}
|
||
/*** END nums->strs ***/
|
||
|
||
|
||
/*** STRINGS -> NUMBERS ***/
|
||
|
||
/* The following functions implement the conversion from strings to numbers.
|
||
* The implementation somehow follows the grammar for numbers as it is given
|
||
* in R5RS. Thus, the functions resemble syntactic units (<ureal R>,
|
||
* <uinteger R>, ...) that are used to build up numbers in the grammar. Some
|
||
* points should be noted about the implementation:
|
||
* * Each function keeps a local index variable 'idx' that points at the
|
||
* current position within the parsed string. The global index is only
|
||
* updated if the function could parse the corresponding syntactic unit
|
||
* successfully.
|
||
* * Similarly, the functions keep track of indicators of inexactness ('#',
|
||
* '.' or exponents) using local variables ('hash_seen', 'x'). Again, the
|
||
* global exactness information is only updated after each part has been
|
||
* successfully parsed.
|
||
* * Sequences of digits are parsed into temporary variables holding fixnums.
|
||
* Only if these fixnums would overflow, the result variables are updated
|
||
* using the standard functions scm_add, scm_product, scm_divide etc. Then,
|
||
* the temporary variables holding the fixnums are cleared, and the process
|
||
* starts over again. If for example fixnums were able to store five decimal
|
||
* digits, a number 1234567890 would be parsed in two parts 12345 and 67890,
|
||
* and the result was computed as 12345 * 100000 + 67890. In other words,
|
||
* only every five digits two bignum operations were performed.
|
||
*/
|
||
|
||
enum t_exactness {NO_EXACTNESS, INEXACT, EXACT};
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <uinteger R>. */
|
||
|
||
/* In non ASCII-style encodings the following macro might not work. */
|
||
#define XDIGIT2UINT(d) (isdigit (d) ? (d) - '0' : tolower (d) - 'a' + 10)
|
||
|
||
static SCM
|
||
mem2uinteger (const char* mem, size_t len, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
unsigned int hash_seen = 0;
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM result;
|
||
char c;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = mem[idx];
|
||
if (!isxdigit (c))
|
||
return SCM_BOOL_F;
|
||
digit_value = XDIGIT2UINT (c);
|
||
if (digit_value >= radix)
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
result = SCM_MAKINUM (digit_value);
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isxdigit (c))
|
||
{
|
||
if (hash_seen)
|
||
break;
|
||
digit_value = XDIGIT2UINT (c);
|
||
if (digit_value >= radix)
|
||
break;
|
||
}
|
||
else if (c == '#')
|
||
{
|
||
hash_seen = 1;
|
||
digit_value = 0;
|
||
}
|
||
else
|
||
break;
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / radix < shift)
|
||
{
|
||
result = scm_product (result, SCM_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_MAKINUM (add));
|
||
|
||
shift = radix;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * radix;
|
||
add = add * radix + digit_value;
|
||
}
|
||
};
|
||
|
||
if (shift > 1)
|
||
result = scm_product (result, SCM_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_MAKINUM (add));
|
||
|
||
*p_idx = idx;
|
||
if (hash_seen)
|
||
*p_exactness = INEXACT;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <decimal 10>. Only
|
||
* covers the parts of the rules that start at a potential point. The value
|
||
* of the digits up to the point have been parsed by the caller and are given
|
||
* in variable result. The content of *p_exactness indicates, whether a hash
|
||
* has already been seen in the digits before the point.
|
||
*/
|
||
|
||
/* In non ASCII-style encodings the following macro might not work. */
|
||
#define DIGIT2UINT(d) ((d) - '0')
|
||
|
||
static SCM
|
||
mem2decimal_from_point (SCM result, const char* mem, size_t len,
|
||
unsigned int *p_idx, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
enum t_exactness x = *p_exactness;
|
||
|
||
if (idx == len)
|
||
return result;
|
||
|
||
if (mem[idx] == '.')
|
||
{
|
||
scm_t_bits shift = 1;
|
||
scm_t_bits add = 0;
|
||
unsigned int digit_value;
|
||
SCM big_shift = SCM_MAKINUM (1);
|
||
|
||
idx++;
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isdigit (c))
|
||
{
|
||
if (x == INEXACT)
|
||
return SCM_BOOL_F;
|
||
else
|
||
digit_value = DIGIT2UINT (c);
|
||
}
|
||
else if (c == '#')
|
||
{
|
||
x = INEXACT;
|
||
digit_value = 0;
|
||
}
|
||
else
|
||
break;
|
||
|
||
idx++;
|
||
if (SCM_MOST_POSITIVE_FIXNUM / 10 < shift)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
|
||
result = scm_product (result, SCM_MAKINUM (shift));
|
||
if (add > 0)
|
||
result = scm_sum (result, SCM_MAKINUM (add));
|
||
|
||
shift = 10;
|
||
add = digit_value;
|
||
}
|
||
else
|
||
{
|
||
shift = shift * 10;
|
||
add = add * 10 + digit_value;
|
||
}
|
||
};
|
||
|
||
if (add > 0)
|
||
{
|
||
big_shift = scm_product (big_shift, SCM_MAKINUM (shift));
|
||
result = scm_product (result, SCM_MAKINUM (shift));
|
||
result = scm_sum (result, SCM_MAKINUM (add));
|
||
}
|
||
|
||
result = scm_divide (result, big_shift);
|
||
|
||
/* We've seen a decimal point, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
}
|
||
|
||
if (idx != len)
|
||
{
|
||
int sign = 1;
|
||
unsigned int start;
|
||
char c;
|
||
int exponent;
|
||
SCM e;
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <suffix> */
|
||
|
||
switch (mem[idx])
|
||
{
|
||
case 'd': case 'D':
|
||
case 'e': case 'E':
|
||
case 'f': case 'F':
|
||
case 'l': case 'L':
|
||
case 's': case 'S':
|
||
idx++;
|
||
start = idx;
|
||
c = mem[idx];
|
||
if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
c = mem[idx];
|
||
}
|
||
else if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
c = mem[idx];
|
||
}
|
||
else
|
||
sign = 1;
|
||
|
||
if (!isdigit (c))
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
exponent = DIGIT2UINT (c);
|
||
while (idx != len)
|
||
{
|
||
char c = mem[idx];
|
||
if (isdigit (c))
|
||
{
|
||
idx++;
|
||
if (exponent <= SCM_MAXEXP)
|
||
exponent = exponent * 10 + DIGIT2UINT (c);
|
||
}
|
||
else
|
||
break;
|
||
}
|
||
|
||
if (exponent > SCM_MAXEXP)
|
||
{
|
||
size_t exp_len = idx - start;
|
||
SCM exp_string = scm_mem2string (&mem[start], exp_len);
|
||
SCM exp_num = scm_string_to_number (exp_string, SCM_UNDEFINED);
|
||
scm_out_of_range ("string->number", exp_num);
|
||
}
|
||
|
||
e = scm_integer_expt (SCM_MAKINUM (10), SCM_MAKINUM (exponent));
|
||
if (sign == 1)
|
||
result = scm_product (result, e);
|
||
else
|
||
result = scm_divide (result, e);
|
||
|
||
/* We've seen an exponent, thus the value is implicitly inexact. */
|
||
x = INEXACT;
|
||
|
||
break;
|
||
|
||
default:
|
||
break;
|
||
}
|
||
}
|
||
|
||
*p_idx = idx;
|
||
if (x == INEXACT)
|
||
*p_exactness = x;
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <ureal R> */
|
||
|
||
static SCM
|
||
mem2ureal (const char* mem, size_t len, unsigned int *p_idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
unsigned int idx = *p_idx;
|
||
SCM result;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (idx+5 <= len && !strncmp (mem+idx, "inf.0", 5))
|
||
{
|
||
*p_idx = idx+5;
|
||
return scm_inf ();
|
||
}
|
||
|
||
if (idx+4 < len && !strncmp (mem+idx, "nan.", 4))
|
||
{
|
||
enum t_exactness x = EXACT;
|
||
|
||
/* Cobble up the fraction. We might want to set the NaN's
|
||
mantissa from it. */
|
||
idx += 4;
|
||
mem2uinteger (mem, len, &idx, 10, &x);
|
||
*p_idx = idx;
|
||
return scm_nan ();
|
||
}
|
||
|
||
if (mem[idx] == '.')
|
||
{
|
||
if (radix != 10)
|
||
return SCM_BOOL_F;
|
||
else if (idx + 1 == len)
|
||
return SCM_BOOL_F;
|
||
else if (!isdigit (mem[idx + 1]))
|
||
return SCM_BOOL_F;
|
||
else
|
||
result = mem2decimal_from_point (SCM_MAKINUM (0), mem, len,
|
||
p_idx, p_exactness);
|
||
}
|
||
else
|
||
{
|
||
enum t_exactness x = EXACT;
|
||
SCM uinteger;
|
||
|
||
uinteger = mem2uinteger (mem, len, &idx, radix, &x);
|
||
if (SCM_FALSEP (uinteger))
|
||
return SCM_BOOL_F;
|
||
|
||
if (idx == len)
|
||
result = uinteger;
|
||
else if (mem[idx] == '/')
|
||
{
|
||
SCM divisor;
|
||
|
||
idx++;
|
||
|
||
divisor = mem2uinteger (mem, len, &idx, radix, &x);
|
||
if (SCM_FALSEP (divisor))
|
||
return SCM_BOOL_F;
|
||
|
||
result = scm_divide (uinteger, divisor);
|
||
}
|
||
else if (radix == 10)
|
||
{
|
||
result = mem2decimal_from_point (uinteger, mem, len, &idx, &x);
|
||
if (SCM_FALSEP (result))
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
result = uinteger;
|
||
|
||
*p_idx = idx;
|
||
if (x == INEXACT)
|
||
*p_exactness = x;
|
||
}
|
||
|
||
/* When returning an inexact zero, make sure it is represented as a
|
||
floating point value so that we can change its sign.
|
||
*/
|
||
if (SCM_EQ_P (result, SCM_MAKINUM(0)) && *p_exactness == INEXACT)
|
||
result = scm_make_real (0.0);
|
||
|
||
return result;
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
|
||
static SCM
|
||
mem2complex (const char* mem, size_t len, unsigned int idx,
|
||
unsigned int radix, enum t_exactness *p_exactness)
|
||
{
|
||
char c;
|
||
int sign = 0;
|
||
SCM ureal;
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
c = mem[idx];
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
}
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
|
||
ureal = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
if (SCM_FALSEP (ureal))
|
||
{
|
||
/* input must be either +i or -i */
|
||
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
|
||
if (mem[idx] == 'i' || mem[idx] == 'I')
|
||
{
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (SCM_MAKINUM (0), SCM_MAKINUM (sign));
|
||
}
|
||
else
|
||
return SCM_BOOL_F;
|
||
}
|
||
else
|
||
{
|
||
if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
|
||
ureal = scm_difference (ureal, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return ureal;
|
||
|
||
c = mem[idx];
|
||
switch (c)
|
||
{
|
||
case 'i': case 'I':
|
||
/* either +<ureal>i or -<ureal>i */
|
||
|
||
idx++;
|
||
if (sign == 0)
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
return scm_make_rectangular (SCM_MAKINUM (0), ureal);
|
||
|
||
case '@':
|
||
/* polar input: <real>@<real>. */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign;
|
||
SCM angle;
|
||
SCM result;
|
||
|
||
c = mem[idx];
|
||
if (c == '+')
|
||
{
|
||
idx++;
|
||
sign = 1;
|
||
}
|
||
else if (c == '-')
|
||
{
|
||
idx++;
|
||
sign = -1;
|
||
}
|
||
else
|
||
sign = 1;
|
||
|
||
angle = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
if (SCM_FALSEP (angle))
|
||
return SCM_BOOL_F;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
|
||
angle = scm_difference (angle, SCM_UNDEFINED);
|
||
|
||
result = scm_make_polar (ureal, angle);
|
||
return result;
|
||
}
|
||
case '+':
|
||
case '-':
|
||
/* expecting input matching <real>[+-]<ureal>?i */
|
||
|
||
idx++;
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
else
|
||
{
|
||
int sign = (c == '+') ? 1 : -1;
|
||
SCM imag = mem2ureal (mem, len, &idx, radix, p_exactness);
|
||
|
||
if (SCM_FALSEP (imag))
|
||
imag = SCM_MAKINUM (sign);
|
||
else if (sign == -1 && SCM_FALSEP (scm_nan_p (ureal)))
|
||
imag = scm_difference (imag, SCM_UNDEFINED);
|
||
|
||
if (idx == len)
|
||
return SCM_BOOL_F;
|
||
if (mem[idx] != 'i' && mem[idx] != 'I')
|
||
return SCM_BOOL_F;
|
||
|
||
idx++;
|
||
if (idx != len)
|
||
return SCM_BOOL_F;
|
||
|
||
return scm_make_rectangular (ureal, imag);
|
||
}
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <number> */
|
||
|
||
enum t_radix {NO_RADIX=0, DUAL=2, OCT=8, DEC=10, HEX=16};
|
||
|
||
SCM
|
||
scm_i_mem2number (const char* mem, size_t len, unsigned int default_radix)
|
||
{
|
||
unsigned int idx = 0;
|
||
unsigned int radix = NO_RADIX;
|
||
enum t_exactness forced_x = NO_EXACTNESS;
|
||
enum t_exactness implicit_x = EXACT;
|
||
SCM result;
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <prefix R> */
|
||
while (idx + 2 < len && mem[idx] == '#')
|
||
{
|
||
switch (mem[idx + 1])
|
||
{
|
||
case 'b': case 'B':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DUAL;
|
||
break;
|
||
case 'd': case 'D':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = DEC;
|
||
break;
|
||
case 'i': case 'I':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = INEXACT;
|
||
break;
|
||
case 'e': case 'E':
|
||
if (forced_x != NO_EXACTNESS)
|
||
return SCM_BOOL_F;
|
||
forced_x = EXACT;
|
||
break;
|
||
case 'o': case 'O':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = OCT;
|
||
break;
|
||
case 'x': case 'X':
|
||
if (radix != NO_RADIX)
|
||
return SCM_BOOL_F;
|
||
radix = HEX;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
idx += 2;
|
||
}
|
||
|
||
/* R5RS, section 7.1.1, lexical structure of numbers: <complex R> */
|
||
if (radix == NO_RADIX)
|
||
result = mem2complex (mem, len, idx, default_radix, &implicit_x);
|
||
else
|
||
result = mem2complex (mem, len, idx, (unsigned int) radix, &implicit_x);
|
||
|
||
if (SCM_FALSEP (result))
|
||
return SCM_BOOL_F;
|
||
|
||
switch (forced_x)
|
||
{
|
||
case EXACT:
|
||
if (SCM_INEXACTP (result))
|
||
/* FIXME: This may change the value. */
|
||
return scm_inexact_to_exact (result);
|
||
else
|
||
return result;
|
||
case INEXACT:
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
case NO_EXACTNESS:
|
||
default:
|
||
if (implicit_x == INEXACT)
|
||
{
|
||
if (SCM_INEXACTP (result))
|
||
return result;
|
||
else
|
||
return scm_exact_to_inexact (result);
|
||
}
|
||
else
|
||
return result;
|
||
}
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
|
||
(SCM string, SCM radix),
|
||
"Return a number of the maximally precise representation\n"
|
||
"expressed by the given @var{string}. @var{radix} must be an\n"
|
||
"exact integer, either 2, 8, 10, or 16. If supplied, @var{radix}\n"
|
||
"is a default radix that may be overridden by an explicit radix\n"
|
||
"prefix in @var{string} (e.g. \"#o177\"). If @var{radix} is not\n"
|
||
"supplied, then the default radix is 10. If string is not a\n"
|
||
"syntactically valid notation for a number, then\n"
|
||
"@code{string->number} returns @code{#f}.")
|
||
#define FUNC_NAME s_scm_string_to_number
|
||
{
|
||
SCM answer;
|
||
int base;
|
||
SCM_VALIDATE_STRING (1, string);
|
||
SCM_VALIDATE_INUM_MIN_DEF_COPY (2, radix,2,10, base);
|
||
answer = scm_i_mem2number (SCM_STRING_CHARS (string),
|
||
SCM_STRING_LENGTH (string),
|
||
base);
|
||
return scm_return_first (answer, string);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/*** END strs->nums ***/
|
||
|
||
|
||
SCM
|
||
scm_make_real (double x)
|
||
{
|
||
SCM z = scm_double_cell (scm_tc16_real, 0, 0, 0);
|
||
|
||
SCM_REAL_VALUE (z) = x;
|
||
return z;
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_make_complex (double x, double y)
|
||
{
|
||
if (y == 0.0) {
|
||
return scm_make_real (x);
|
||
} else {
|
||
SCM z;
|
||
SCM_NEWSMOB (z, scm_tc16_complex, scm_gc_malloc (2*sizeof (double),
|
||
"complex"));
|
||
SCM_COMPLEX_REAL (z) = x;
|
||
SCM_COMPLEX_IMAG (z) = y;
|
||
return z;
|
||
}
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_bigequal (SCM x, SCM y)
|
||
{
|
||
int result = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return SCM_BOOL (0 == result);
|
||
}
|
||
|
||
SCM
|
||
scm_real_equalp (SCM x, SCM y)
|
||
{
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
}
|
||
|
||
SCM
|
||
scm_complex_equalp (SCM x, SCM y)
|
||
{
|
||
return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
|
||
&& SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
|
||
}
|
||
|
||
|
||
|
||
SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
|
||
/* "Return @code{#t} if @var{x} is a number, @code{#f}\n"
|
||
* "else. Note that the sets of complex, real, rational and\n"
|
||
* "integer values form subsets of the set of numbers, i. e. the\n"
|
||
* "predicate will be fulfilled for any number."
|
||
*/
|
||
SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a complex number, @code{#f}\n"
|
||
"otherwise. Note that the sets of real, rational and integer\n"
|
||
"values form subsets of the set of complex numbers, i. e. the\n"
|
||
"predicate will also be fulfilled if @var{x} is a real,\n"
|
||
"rational or integer number.")
|
||
#define FUNC_NAME s_scm_number_p
|
||
{
|
||
return SCM_BOOL (SCM_NUMBERP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_REGISTER_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p);
|
||
/* "Return @code{#t} if @var{x} is a real number, @code{#f} else.\n"
|
||
* "Note that the sets of integer and rational values form a subset\n"
|
||
* "of the set of real numbers, i. e. the predicate will also\n"
|
||
* "be fulfilled if @var{x} is an integer or a rational number."
|
||
*/
|
||
SCM_DEFINE (scm_real_p, "rational?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is a rational number, @code{#f}\n"
|
||
"otherwise. Note that the set of integer values forms a subset of\n"
|
||
"the set of rational numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if @var{x} is an integer number. Real numbers\n"
|
||
"will also satisfy this predicate, because of their limited\n"
|
||
"precision.")
|
||
#define FUNC_NAME s_scm_real_p
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else if (SCM_IMP (x)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_REALP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else if (SCM_BIGP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else {
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an integer number, @code{#f}\n"
|
||
"else.")
|
||
#define FUNC_NAME s_scm_integer_p
|
||
{
|
||
double r;
|
||
if (SCM_INUMP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_IMP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_BIGP (x))
|
||
return SCM_BOOL_T;
|
||
if (!SCM_INEXACTP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_COMPLEXP (x))
|
||
return SCM_BOOL_F;
|
||
r = SCM_REAL_VALUE (x);
|
||
if (r == floor (r))
|
||
return SCM_BOOL_T;
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return @code{#t} if @var{x} is an inexact number, @code{#f}\n"
|
||
"else.")
|
||
#define FUNC_NAME s_scm_inexact_p
|
||
{
|
||
return SCM_BOOL (SCM_INEXACTP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
|
||
/* "Return @code{#t} if all parameters are numerically equal." */
|
||
SCM
|
||
scm_num_eq_p (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return SCM_BOOL (xx == yy);
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return SCM_BOOL (0 == cmp);
|
||
} else if (SCM_REALP (y)) {
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (y))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (0 == cmp);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
int cmp;
|
||
if (0.0 != SCM_COMPLEX_IMAG (y)) return SCM_BOOL_F;
|
||
if (xisnan (SCM_COMPLEX_REAL (y))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_COMPLEX_REAL (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (0 == cmp);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (x))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_BOOL (0 == cmp);
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp;
|
||
if (0.0 != SCM_COMPLEX_IMAG (x)) return SCM_BOOL_F;
|
||
if (xisnan (SCM_COMPLEX_REAL (x))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_COMPLEX_REAL (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_BOOL (0 == cmp);
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "increasing."
|
||
*/
|
||
SCM
|
||
scm_less_p (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return SCM_BOOL (xx < yy);
|
||
} else if (SCM_BIGP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_BOOL (sgn > 0);
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (sgn < 0);
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return SCM_BOOL (cmp < 0);
|
||
} else if (SCM_REALP (y)) {
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (y))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), SCM_REAL_VALUE (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (cmp < 0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp;
|
||
if (xisnan (SCM_REAL_VALUE (x))) return SCM_BOOL_F;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), SCM_REAL_VALUE (x));
|
||
scm_remember_upto_here_1 (y);
|
||
return SCM_BOOL (cmp > 0);
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "decreasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_gr_p
|
||
SCM
|
||
scm_gr_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else
|
||
return scm_less_p (y, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "non-decreasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_leq_p
|
||
SCM
|
||
scm_leq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return SCM_BOOL_NOT (scm_less_p (y, x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
|
||
/* "Return @code{#t} if the list of parameters is monotonically\n"
|
||
* "non-increasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_geq_p
|
||
SCM
|
||
scm_geq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else if (SCM_NFALSEP (scm_nan_p (x)) || SCM_NFALSEP (scm_nan_p (y)))
|
||
return SCM_BOOL_F;
|
||
else
|
||
return SCM_BOOL_NOT (scm_less_p (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
|
||
/* "Return @code{#t} if @var{z} is an exact or inexact number equal to\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_zero_p (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0));
|
||
} else if (SCM_BIGP (z)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_REALP (z)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0);
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0
|
||
&& SCM_COMPLEX_IMAG (z) == 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
|
||
/* "Return @code{#t} if @var{x} is an exact or inexact number greater than\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_positive_p (SCM x)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL (SCM_INUM (x) > 0);
|
||
} else if (SCM_BIGP (x)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (sgn > 0);
|
||
} else if (SCM_REALP (x)) {
|
||
return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
|
||
/* "Return @code{#t} if @var{x} is an exact or inexact number less than\n"
|
||
* "zero."
|
||
*/
|
||
SCM
|
||
scm_negative_p (SCM x)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL (SCM_INUM (x) < 0);
|
||
} else if (SCM_BIGP (x)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return SCM_BOOL (sgn < 0);
|
||
} else if (SCM_REALP (x)) {
|
||
return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
|
||
/* "Return the maximum of all parameter values."
|
||
*/
|
||
SCM
|
||
scm_max (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_max, s_max);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return (xx < yy) ? y : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return (sgn < 0) ? x : y;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = xx;
|
||
/* if y==NaN then ">" is false and we return NaN */
|
||
return (z > SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn < 0) ? y : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return (cmp > 0) ? x : y;
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
int cmp;
|
||
if (xisnan (yy))
|
||
return y;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return (cmp > 0) ? x : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
double z = SCM_INUM (y);
|
||
/* if x==NaN then "<" is false and we return NaN */
|
||
return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
double xx = SCM_REAL_VALUE (x);
|
||
int cmp;
|
||
if (xisnan (xx))
|
||
return x;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
|
||
scm_remember_upto_here_1 (y);
|
||
return (cmp < 0) ? x : y;
|
||
} else if (SCM_REALP (y)) {
|
||
/* if x==NaN then our explicit check means we return NaN
|
||
if y==NaN then ">" is false and we return NaN
|
||
calling isnan is unavoidable, since it's the only way to know
|
||
which of x or y causes any compares to be false */
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (xisnan (xx) || xx > SCM_REAL_VALUE (y)) ? x : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
|
||
/* "Return the minium of all parameter values."
|
||
*/
|
||
SCM
|
||
scm_min (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_min, s_min);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return (xx < yy) ? x : y;
|
||
} else if (SCM_BIGP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return (sgn < 0) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = xx;
|
||
/* if y==NaN then "<" is false and we return NaN */
|
||
return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn < 0) ? x : y;
|
||
} else if (SCM_BIGP (y)) {
|
||
int cmp = mpz_cmp (SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return (cmp > 0) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
int cmp;
|
||
if (xisnan (yy))
|
||
return y;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
return (cmp > 0) ? y : x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
double z = SCM_INUM (y);
|
||
/* if x==NaN then "<" is false and we return NaN */
|
||
return (z < SCM_REAL_VALUE (x)) ? scm_make_real (z) : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
double xx = SCM_REAL_VALUE (x);
|
||
int cmp;
|
||
if (xisnan (xx))
|
||
return x;
|
||
cmp = xmpz_cmp_d (SCM_I_BIG_MPZ (y), xx);
|
||
scm_remember_upto_here_1 (y);
|
||
return (cmp < 0) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
/* if x==NaN then our explicit check means we return NaN
|
||
if y==NaN then "<" is false and we return NaN
|
||
calling isnan is unavoidable, since it's the only way to know
|
||
which of x or y causes any compares to be false */
|
||
double xx = SCM_REAL_VALUE (x);
|
||
return (xisnan (xx) || xx < SCM_REAL_VALUE (y)) ? x : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
|
||
/* "Return the sum of all parameter values. Return 0 if called without\n"
|
||
* "any parameters."
|
||
*/
|
||
SCM
|
||
scm_sum (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_NUMBERP (x)) return x;
|
||
if (SCM_UNBNDP (x)) return SCM_INUM0;
|
||
SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
|
||
}
|
||
|
||
if (SCM_INUMP (x))
|
||
{
|
||
if (SCM_INUMP (y))
|
||
{
|
||
long xx = SCM_INUM (x);
|
||
long yy = SCM_INUM (y);
|
||
long int z = xx + yy;
|
||
return SCM_FIXABLE (z) ? SCM_MAKINUM (z) : scm_i_long2big (z);
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
SCM_SWAP (x, y);
|
||
goto add_big_inum;
|
||
}
|
||
else if (SCM_REALP (y))
|
||
{
|
||
long int xx = SCM_INUM (x);
|
||
return scm_make_real (xx + SCM_REAL_VALUE (y));
|
||
}
|
||
else if (SCM_COMPLEXP (y))
|
||
{
|
||
long int xx = SCM_INUM (x);
|
||
return scm_make_complex (xx + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long int inum;
|
||
int bigsgn;
|
||
add_big_inum:
|
||
inum = SCM_INUM (y);
|
||
if (inum == 0) return x;
|
||
bigsgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
if (inum < 0) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), - inum);
|
||
scm_remember_upto_here_1 (x);
|
||
/* we know the result will have to be a bignum */
|
||
if (bigsgn == -1) return result;
|
||
return scm_i_normbig (result);
|
||
} else {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), inum);
|
||
scm_remember_upto_here_1 (x);
|
||
/* we know the result will have to be a bignum */
|
||
if (bigsgn == 1) return result;
|
||
return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y)) {
|
||
SCM result = scm_i_mkbig ();
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
mpz_add (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* we know the result will have to be a bignum */
|
||
if (sgn_x == sgn_y) return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
else if (SCM_REALP (y)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_real (result);
|
||
}
|
||
else if (SCM_COMPLEXP (y)) {
|
||
double real_part = mpz_get_d (SCM_I_BIG_MPZ (x)) + SCM_COMPLEX_REAL (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_REAL_VALUE (x);
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_real (result);
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
double real_part = mpz_get_d (SCM_I_BIG_MPZ (y)) + SCM_COMPLEX_REAL (x);
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_complex (real_part, SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
|
||
/* If called with one argument @var{z1}, -@var{z1} returned. Otherwise
|
||
* the sum of all but the first argument are subtracted from the first
|
||
* argument. */
|
||
#define FUNC_NAME s_difference
|
||
SCM
|
||
scm_difference (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y))
|
||
{
|
||
if (SCM_UNBNDP (x))
|
||
SCM_WTA_DISPATCH_0 (g_difference, s_difference);
|
||
else
|
||
if (SCM_INUMP (x))
|
||
{
|
||
long xx = -SCM_INUM (x);
|
||
if (SCM_FIXABLE (xx))
|
||
return SCM_MAKINUM (xx);
|
||
else
|
||
return scm_i_long2big (xx);
|
||
}
|
||
else if (SCM_BIGP (x))
|
||
/* FIXME: do we really need to normalize here? */
|
||
return scm_i_normbig (scm_i_clonebig (x, 0));
|
||
else if (SCM_REALP (x))
|
||
return scm_make_real (-SCM_REAL_VALUE (x));
|
||
else if (SCM_COMPLEXP (x))
|
||
return scm_make_complex (-SCM_COMPLEX_REAL (x),
|
||
-SCM_COMPLEX_IMAG (x));
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long int xx = SCM_INUM (x);
|
||
long int yy = SCM_INUM (y);
|
||
long int z = xx - yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
return scm_i_long2big (z);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
/* inum-x - big-y */
|
||
long xx = SCM_INUM (x);
|
||
|
||
if (xx == 0)
|
||
return scm_i_clonebig (y, 0);
|
||
else
|
||
{
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM result = scm_i_mkbig ();
|
||
|
||
if (xx >= 0)
|
||
mpz_ui_sub (SCM_I_BIG_MPZ (result), xx, SCM_I_BIG_MPZ (y));
|
||
else
|
||
{
|
||
/* x - y == -(y + -x) */
|
||
mpz_add_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), -xx);
|
||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
}
|
||
scm_remember_upto_here_1 (y);
|
||
|
||
if ((xx < 0 && (sgn_y > 0)) || ((xx > 0) && sgn_y < 0))
|
||
/* we know the result will have to be a bignum */
|
||
return result;
|
||
else
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else if (SCM_REALP (y)) {
|
||
long int xx = SCM_INUM (x);
|
||
return scm_make_real (xx - SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
long int xx = SCM_INUM (x);
|
||
return scm_make_complex (xx - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
/* big-x - inum-y */
|
||
long yy = SCM_INUM (y);
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
|
||
scm_remember_upto_here_1 (x);
|
||
if (sgn_x == 0)
|
||
return SCM_FIXABLE (-yy) ? SCM_MAKINUM (-yy) : scm_long2num (-yy);
|
||
else
|
||
{
|
||
SCM result = scm_i_mkbig ();
|
||
|
||
mpz_sub_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), yy);
|
||
scm_remember_upto_here_1 (x);
|
||
|
||
if ((sgn_x < 0 && (yy > 0)) || ((sgn_x > 0) && yy < 0))
|
||
/* we know the result will have to be a bignum */
|
||
return result;
|
||
else
|
||
return scm_i_normbig (result);
|
||
}
|
||
}
|
||
else if (SCM_BIGP (y))
|
||
{
|
||
int sgn_x = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
int sgn_y = mpz_sgn (SCM_I_BIG_MPZ (y));
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_sub (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
/* we know the result will have to be a bignum */
|
||
if ((sgn_x == 1) && (sgn_y == -1)) return result;
|
||
if ((sgn_x == -1) && (sgn_y == 1)) return result;
|
||
return scm_i_normbig (result);
|
||
}
|
||
else if (SCM_REALP (y)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_real (result);
|
||
}
|
||
else if (SCM_COMPLEXP (y)) {
|
||
double real_part = mpz_get_d (SCM_I_BIG_MPZ (x)) - SCM_COMPLEX_REAL (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_complex (real_part, - SCM_COMPLEX_IMAG (y));
|
||
}
|
||
else SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
double result = SCM_REAL_VALUE (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_real (result);
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
double real_part = SCM_COMPLEX_REAL (x) - mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_complex (real_part, SCM_COMPLEX_IMAG (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
|
||
/* "Return the product of all arguments. If called without arguments,\n"
|
||
* "1 is returned."
|
||
*/
|
||
SCM
|
||
scm_product (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
return SCM_MAKINUM (1L);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx;
|
||
|
||
intbig:
|
||
xx = SCM_INUM (x);
|
||
|
||
switch (xx)
|
||
{
|
||
case 0: return x; break;
|
||
case 1: return y; break;
|
||
}
|
||
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
long kk = xx * yy;
|
||
SCM k = SCM_MAKINUM (kk);
|
||
if ((kk == SCM_INUM (k)) && (kk / xx == yy)) {
|
||
return k;
|
||
} else {
|
||
SCM result = scm_i_long2big (xx);
|
||
mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result), yy);
|
||
return scm_i_normbig (result);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mul_si (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (y), xx);
|
||
scm_remember_upto_here_1 (y);
|
||
return result;
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (xx * SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
|
||
xx * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
SCM_SWAP (x, y);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_mul (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return result;
|
||
} else if (SCM_REALP (y)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (x)) * SCM_REAL_VALUE (y);
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_real (result);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
double z = mpz_get_d (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return scm_make_complex (z * SCM_COMPLEX_REAL (y),
|
||
z * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (y)) * SCM_REAL_VALUE (x);
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_real (result);
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
|
||
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_INUM (y) * SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
double z = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_complex (z * SCM_COMPLEX_REAL (y),
|
||
z * SCM_COMPLEX_IMAG (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
|
||
- SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
|
||
SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
|
||
+ SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_num2dbl (SCM a, const char *why)
|
||
#define FUNC_NAME why
|
||
{
|
||
if (SCM_INUMP (a)) {
|
||
return (double) SCM_INUM (a);
|
||
} else if (SCM_BIGP (a)) {
|
||
double result = mpz_get_d (SCM_I_BIG_MPZ (a));
|
||
scm_remember_upto_here_1 (a);
|
||
return result;
|
||
} else if (SCM_REALP (a)) {
|
||
return (SCM_REAL_VALUE (a));
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARGn, a);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#if ((defined (HAVE_ISINF) && defined (HAVE_ISNAN)) \
|
||
|| (defined (HAVE_FINITE) && defined (HAVE_ISNAN)))
|
||
#define ALLOW_DIVIDE_BY_ZERO
|
||
/* #define ALLOW_DIVIDE_BY_EXACT_ZERO */
|
||
#endif
|
||
|
||
/* The code below for complex division is adapted from the GNU
|
||
libstdc++, which adapted it from f2c's libF77, and is subject to
|
||
this copyright: */
|
||
|
||
/****************************************************************
|
||
Copyright 1990, 1991, 1992, 1993 by AT&T Bell Laboratories and Bellcore.
|
||
|
||
Permission to use, copy, modify, and distribute this software
|
||
and its documentation for any purpose and without fee is hereby
|
||
granted, provided that the above copyright notice appear in all
|
||
copies and that both that the copyright notice and this
|
||
permission notice and warranty disclaimer appear in supporting
|
||
documentation, and that the names of AT&T Bell Laboratories or
|
||
Bellcore or any of their entities not be used in advertising or
|
||
publicity pertaining to distribution of the software without
|
||
specific, written prior permission.
|
||
|
||
AT&T and Bellcore disclaim all warranties with regard to this
|
||
software, including all implied warranties of merchantability
|
||
and fitness. In no event shall AT&T or Bellcore be liable for
|
||
any special, indirect or consequential damages or any damages
|
||
whatsoever resulting from loss of use, data or profits, whether
|
||
in an action of contract, negligence or other tortious action,
|
||
arising out of or in connection with the use or performance of
|
||
this software.
|
||
****************************************************************/
|
||
|
||
SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
|
||
/* Divide the first argument by the product of the remaining
|
||
arguments. If called with one argument @var{z1}, 1/@var{z1} is
|
||
returned. */
|
||
#define FUNC_NAME s_divide
|
||
SCM
|
||
scm_divide (SCM x, SCM y)
|
||
{
|
||
double a;
|
||
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_divide, s_divide);
|
||
} else if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (xx == 1 || xx == -1) {
|
||
return x;
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
} else if (xx == 0) {
|
||
scm_num_overflow (s_divide);
|
||
#endif
|
||
} else {
|
||
return scm_make_real (1.0 / (double) xx);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
return scm_make_real (1.0 / scm_i_big2dbl (x));
|
||
} else if (SCM_REALP (x)) {
|
||
double xx = SCM_REAL_VALUE (x);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (xx == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_real (1.0 / xx);
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
double r = SCM_COMPLEX_REAL (x);
|
||
double i = SCM_COMPLEX_IMAG (x);
|
||
if (r <= i) {
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_make_complex (t / d, -1.0 / d);
|
||
} else {
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_make_complex (1.0 / d, -t / d);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
return scm_make_real ((double) xx / (double) yy);
|
||
#endif
|
||
} else if (xx % yy != 0) {
|
||
return scm_make_real ((double) xx / (double) yy);
|
||
} else {
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
return scm_i_long2big (z);
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real ((double) xx / scm_i_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_real ((double) xx / yy);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = xx;
|
||
complex_div: /* y _must_ be a complex number */
|
||
{
|
||
double r = SCM_COMPLEX_REAL (y);
|
||
double i = SCM_COMPLEX_IMAG (y);
|
||
if (r <= i) {
|
||
double t = r / i;
|
||
double d = i * (1.0 + t * t);
|
||
return scm_make_complex ((a * t) / d, -a / d);
|
||
} else {
|
||
double t = i / r;
|
||
double d = r * (1.0 + t * t);
|
||
return scm_make_complex (a / d, -(a * t) / d);
|
||
}
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn == 0) ? scm_nan () : scm_inf ();
|
||
#endif
|
||
} else if (yy == 1) {
|
||
return x;
|
||
} else {
|
||
/* FIXME: HMM, what are the relative performance issues here?
|
||
We need to test. Is it faster on average to test
|
||
divisible_p, then perform whichever operation, or is it
|
||
faster to perform the integer div opportunistically and
|
||
switch to real if there's a remainder? For now we take the
|
||
middle ground: test, then if divisible, use the faster div
|
||
func. */
|
||
|
||
long abs_yy = yy < 0 ? -yy : yy;
|
||
int divisible_p = mpz_divisible_ui_p (SCM_I_BIG_MPZ (x), abs_yy);
|
||
|
||
if (divisible_p) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_divexact_ui (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (x), abs_yy);
|
||
scm_remember_upto_here_1 (x);
|
||
if (yy < 0)
|
||
mpz_neg (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (result));
|
||
return scm_i_normbig (result);
|
||
}
|
||
else {
|
||
return scm_make_real (scm_i_big2dbl (x) / (double) yy);
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
int y_is_zero = (mpz_sgn (SCM_I_BIG_MPZ (y)) == 0);
|
||
if (y_is_zero) {
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
scm_num_overflow (s_divide);
|
||
#else
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (x));
|
||
scm_remember_upto_here_1 (x);
|
||
return (sgn == 0) ? scm_nan () : scm_inf ();
|
||
#endif
|
||
} else {
|
||
/* big_x / big_y */
|
||
int divisible_p = mpz_divisible_p (SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
if (divisible_p) {
|
||
SCM result = scm_i_mkbig ();
|
||
mpz_divexact (SCM_I_BIG_MPZ (result),
|
||
SCM_I_BIG_MPZ (x),
|
||
SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_i_normbig (result);
|
||
}
|
||
else {
|
||
double dbx = mpz_get_d (SCM_I_BIG_MPZ (x));
|
||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_2 (x, y);
|
||
return scm_make_real (dbx / dby);
|
||
}
|
||
}
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_real (scm_i_big2dbl (x) / yy);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = scm_i_big2dbl (x);
|
||
goto complex_div;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
double rx = SCM_REAL_VALUE (x);
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
if (yy == 0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_real (rx / (double) yy);
|
||
} else if (SCM_BIGP (y)) {
|
||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_real (rx / dby);
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_real (rx / yy);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = rx;
|
||
goto complex_div;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
double rx = SCM_COMPLEX_REAL (x);
|
||
double ix = SCM_COMPLEX_IMAG (x);
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
#ifndef ALLOW_DIVIDE_BY_EXACT_ZERO
|
||
if (yy == 0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
{
|
||
double d = yy;
|
||
return scm_make_complex (rx / d, ix / d);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
double dby = mpz_get_d (SCM_I_BIG_MPZ (y));
|
||
scm_remember_upto_here_1 (y);
|
||
return scm_make_complex (rx / dby, ix / dby);
|
||
} else if (SCM_REALP (y)) {
|
||
double yy = SCM_REAL_VALUE (y);
|
||
#ifndef ALLOW_DIVIDE_BY_ZERO
|
||
if (yy == 0.0)
|
||
scm_num_overflow (s_divide);
|
||
else
|
||
#endif
|
||
return scm_make_complex (rx / yy, ix / yy);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
double ry = SCM_COMPLEX_REAL (y);
|
||
double iy = SCM_COMPLEX_IMAG (y);
|
||
if (ry <= iy) {
|
||
double t = ry / iy;
|
||
double d = iy * (1.0 + t * t);
|
||
return scm_make_complex ((rx * t + ix) / d, (ix * t - rx) / d);
|
||
} else {
|
||
double t = iy / ry;
|
||
double d = ry * (1.0 + t * t);
|
||
return scm_make_complex ((rx + ix * t) / d, (ix - rx * t) / d);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
double
|
||
scm_asinh (double x)
|
||
{
|
||
#if HAVE_ASINH
|
||
return asinh (x);
|
||
#else
|
||
#define asinh scm_asinh
|
||
return log (x + sqrt (x * x + 1));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_dsubr, (SCM (*)()) asinh, g_asinh);
|
||
/* "Return the inverse hyperbolic sine of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_acosh (double x)
|
||
{
|
||
#if HAVE_ACOSH
|
||
return acosh (x);
|
||
#else
|
||
#define acosh scm_acosh
|
||
return log (x + sqrt (x * x - 1));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_dsubr, (SCM (*)()) acosh, g_acosh);
|
||
/* "Return the inverse hyperbolic cosine of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_atanh (double x)
|
||
{
|
||
#if HAVE_ATANH
|
||
return atanh (x);
|
||
#else
|
||
#define atanh scm_atanh
|
||
return 0.5 * log ((1 + x) / (1 - x));
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_dsubr, (SCM (*)()) atanh, g_atanh);
|
||
/* "Return the inverse hyperbolic tangent of @var{x}."
|
||
*/
|
||
|
||
|
||
double
|
||
scm_truncate (double x)
|
||
{
|
||
#if HAVE_TRUNC
|
||
return trunc (x);
|
||
#else
|
||
#define trunc scm_truncate
|
||
if (x < 0.0)
|
||
return -floor (-x);
|
||
return floor (x);
|
||
#endif
|
||
}
|
||
SCM_GPROC1 (s_truncate, "truncate", scm_tc7_dsubr, (SCM (*)()) trunc, g_truncate);
|
||
/* "Round the inexact number @var{x} towards zero."
|
||
*/
|
||
|
||
|
||
SCM_GPROC1 (s_round, "round", scm_tc7_dsubr, (SCM (*)()) scm_round, g_round);
|
||
/* "Round the inexact number @var{x}. If @var{x} is halfway between two\n"
|
||
* "numbers, round towards even."
|
||
*/
|
||
double
|
||
scm_round (double x)
|
||
{
|
||
double plus_half = x + 0.5;
|
||
double result = floor (plus_half);
|
||
/* Adjust so that the scm_round is towards even. */
|
||
return (plus_half == result && plus_half / 2 != floor (plus_half / 2))
|
||
? result - 1 : result;
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_i_floor, "floor", scm_tc7_dsubr, (SCM (*)()) floor, g_i_floor);
|
||
/* "Round the number @var{x} towards minus infinity."
|
||
*/
|
||
SCM_GPROC1 (s_i_ceil, "ceiling", scm_tc7_dsubr, (SCM (*)()) ceil, g_i_ceil);
|
||
/* "Round the number @var{x} towards infinity."
|
||
*/
|
||
SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_dsubr, (SCM (*)()) sqrt, g_i_sqrt);
|
||
/* "Return the square root of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_dsubr, (SCM (*)()) fabs, g_i_abs);
|
||
/* "Return the absolute value of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_dsubr, (SCM (*)()) exp, g_i_exp);
|
||
/* "Return the @var{x}th power of e."
|
||
*/
|
||
SCM_GPROC1 (s_i_log, "$log", scm_tc7_dsubr, (SCM (*)()) log, g_i_log);
|
||
/* "Return the natural logarithm of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_dsubr, (SCM (*)()) sin, g_i_sin);
|
||
/* "Return the sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_dsubr, (SCM (*)()) cos, g_i_cos);
|
||
/* "Return the cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_dsubr, (SCM (*)()) tan, g_i_tan);
|
||
/* "Return the tangent of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_dsubr, (SCM (*)()) asin, g_i_asin);
|
||
/* "Return the arc sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_dsubr, (SCM (*)()) acos, g_i_acos);
|
||
/* "Return the arc cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_dsubr, (SCM (*)()) atan, g_i_atan);
|
||
/* "Return the arc tangent of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_dsubr, (SCM (*)()) sinh, g_i_sinh);
|
||
/* "Return the hyperbolic sine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_dsubr, (SCM (*)()) cosh, g_i_cosh);
|
||
/* "Return the hyperbolic cosine of the real number @var{x}."
|
||
*/
|
||
SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_dsubr, (SCM (*)()) tanh, g_i_tanh);
|
||
/* "Return the hyperbolic tangent of the real number @var{x}."
|
||
*/
|
||
|
||
struct dpair
|
||
{
|
||
double x, y;
|
||
};
|
||
|
||
static void scm_two_doubles (SCM x,
|
||
SCM y,
|
||
const char *sstring,
|
||
struct dpair * xy);
|
||
|
||
static void
|
||
scm_two_doubles (SCM x, SCM y, const char *sstring, struct dpair *xy)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
xy->x = SCM_INUM (x);
|
||
} else if (SCM_BIGP (x)) {
|
||
xy->x = scm_i_big2dbl (x);
|
||
} else if (SCM_REALP (x)) {
|
||
xy->x = SCM_REAL_VALUE (x);
|
||
} else {
|
||
scm_wrong_type_arg (sstring, SCM_ARG1, x);
|
||
}
|
||
|
||
if (SCM_INUMP (y)) {
|
||
xy->y = SCM_INUM (y);
|
||
} else if (SCM_BIGP (y)) {
|
||
xy->y = scm_i_big2dbl (y);
|
||
} else if (SCM_REALP (y)) {
|
||
xy->y = SCM_REAL_VALUE (y);
|
||
} else {
|
||
scm_wrong_type_arg (sstring, SCM_ARG2, y);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return @var{x} raised to the power of @var{y}. This\n"
|
||
"procedure does not accept complex arguments.")
|
||
#define FUNC_NAME s_scm_sys_expt
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_make_real (pow (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the arc tangent of the two arguments @var{x} and\n"
|
||
"@var{y}. This is similar to calculating the arc tangent of\n"
|
||
"@var{x} / @var{y}, except that the signs of both arguments\n"
|
||
"are used to determine the quadrant of the result. This\n"
|
||
"procedure does not accept complex arguments.")
|
||
#define FUNC_NAME s_scm_sys_atan2
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_make_real (atan2 (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
|
||
(SCM real, SCM imaginary),
|
||
"Return a complex number constructed of the given @var{real} and\n"
|
||
"@var{imaginary} parts.")
|
||
#define FUNC_NAME s_scm_make_rectangular
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
|
||
return scm_make_complex (xy.x, xy.y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
|
||
(SCM x, SCM y),
|
||
"Return the complex number @var{x} * e^(i * @var{y}).")
|
||
#define FUNC_NAME s_scm_make_polar
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (x, y, FUNC_NAME, &xy);
|
||
return scm_make_complex (xy.x * cos (xy.y), xy.x * sin (xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
|
||
/* "Return the real part of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_real_part (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return z;
|
||
} else if (SCM_BIGP (z)) {
|
||
return z;
|
||
} else if (SCM_REALP (z)) {
|
||
return z;
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (SCM_COMPLEX_REAL (z));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
|
||
/* "Return the imaginary part of the number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_imag_part (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_BIGP (z)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_flo0;
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (SCM_COMPLEX_IMAG (z));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
|
||
/* "Return the magnitude of the number @var{z}. This is the same as\n"
|
||
* "@code{abs} for real arguments, but also allows complex numbers."
|
||
*/
|
||
SCM
|
||
scm_magnitude (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
long int zz = SCM_INUM (z);
|
||
if (zz >= 0) {
|
||
return z;
|
||
} else if (SCM_POSFIXABLE (-zz)) {
|
||
return SCM_MAKINUM (-zz);
|
||
} else {
|
||
return scm_i_long2big (-zz);
|
||
}
|
||
} else if (SCM_BIGP (z)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
|
||
scm_remember_upto_here_1 (z);
|
||
if (sgn < 0) {
|
||
return scm_i_clonebig (z, 0);
|
||
} else {
|
||
return z;
|
||
}
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_make_real (fabs (SCM_REAL_VALUE (z)));
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
double r = SCM_COMPLEX_REAL (z);
|
||
double i = SCM_COMPLEX_IMAG (z);
|
||
return scm_make_real (sqrt (i * i + r * r));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
|
||
/* "Return the angle of the complex number @var{z}."
|
||
*/
|
||
SCM
|
||
scm_angle (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
if (SCM_INUM (z) >= 0) {
|
||
return scm_make_real (atan2 (0.0, 1.0));
|
||
} else {
|
||
return scm_make_real (atan2 (0.0, -1.0));
|
||
}
|
||
} else if (SCM_BIGP (z)) {
|
||
int sgn = mpz_sgn (SCM_I_BIG_MPZ (z));
|
||
scm_remember_upto_here_1 (z);
|
||
if (sgn < 0) {
|
||
return scm_make_real (atan2 (0.0, -1.0));
|
||
} else {
|
||
return scm_make_real (atan2 (0.0, 1.0));
|
||
}
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_make_real (atan2 (0.0, SCM_REAL_VALUE (z)));
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_exact_to_inexact, "exact->inexact", 1, 0, 0, scm_exact_to_inexact, g_exact_to_inexact);
|
||
/* Convert the number @var{x} to its inexact representation.\n"
|
||
*/
|
||
SCM
|
||
scm_exact_to_inexact (SCM z)
|
||
{
|
||
if (SCM_INUMP (z))
|
||
return scm_make_real ((double) SCM_INUM (z));
|
||
else if (SCM_BIGP (z))
|
||
return scm_make_real (scm_i_big2dbl (z));
|
||
else if (SCM_INEXACTP (z))
|
||
return z;
|
||
else
|
||
SCM_WTA_DISPATCH_1 (g_exact_to_inexact, z, 1, s_exact_to_inexact);
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
|
||
(SCM z),
|
||
"Return an exact number that is numerically closest to @var{z}.")
|
||
#define FUNC_NAME s_scm_inexact_to_exact
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return z;
|
||
} else if (SCM_BIGP (z)) {
|
||
return z;
|
||
} else if (SCM_REALP (z)) {
|
||
double u = floor (SCM_REAL_VALUE (z) + 0.5);
|
||
long lu = (long) u;
|
||
if (SCM_FIXABLE (lu)) {
|
||
return SCM_MAKINUM (lu);
|
||
} else if (!xisinf (u) && !xisnan (u)) {
|
||
return scm_i_dbl2big (u);
|
||
} else {
|
||
scm_num_overflow (s_scm_inexact_to_exact);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, z);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
/* if you need to change this, change test-num2integral.c as well */
|
||
#if SCM_SIZEOF_LONG_LONG != 0
|
||
# ifndef LLONG_MAX
|
||
# define ULLONG_MAX ((unsigned long long) (-1))
|
||
# define LLONG_MAX ((long long) (ULLONG_MAX >> 1))
|
||
# define LLONG_MIN (~LLONG_MAX)
|
||
# endif
|
||
#endif
|
||
|
||
/* Parameters for creating integer conversion routines.
|
||
|
||
Define the following preprocessor macros before including
|
||
"libguile/num2integral.i.c":
|
||
|
||
NUM2INTEGRAL - the name of the function for converting from a
|
||
Scheme object to the integral type. This function will be
|
||
defined when including "num2integral.i.c".
|
||
|
||
INTEGRAL2NUM - the name of the function for converting from the
|
||
integral type to a Scheme object. This function will be defined.
|
||
|
||
INTEGRAL2BIG - the name of an internal function that createas a
|
||
bignum from the integral type. This function will be defined.
|
||
The name should start with "scm_i_".
|
||
|
||
ITYPE - the name of the integral type.
|
||
|
||
UNSIGNED - Define this to 1 when ITYPE is an unsigned type. Define
|
||
it to 0 otherwise.
|
||
|
||
UNSIGNED_ITYPE - the name of the the unsigned variant of the
|
||
integral type. If you don't define this, it defaults to
|
||
"unsigned ITYPE" for signed types and simply "ITYPE" for unsigned
|
||
ones.
|
||
|
||
SIZEOF_ITYPE - an expression giving the size of the integral type
|
||
in bytes. This expression must be computable by the
|
||
preprocessor. (SIZEOF_FOO values are calculated by configure.in
|
||
for common types).
|
||
|
||
*/
|
||
|
||
#define NUM2INTEGRAL scm_num2short
|
||
#define INTEGRAL2NUM scm_short2num
|
||
#define INTEGRAL2BIG scm_i_short2big
|
||
#define UNSIGNED 0
|
||
#define ITYPE short
|
||
#define SIZEOF_ITYPE SIZEOF_SHORT
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2ushort
|
||
#define INTEGRAL2NUM scm_ushort2num
|
||
#define INTEGRAL2BIG scm_i_ushort2big
|
||
#define UNSIGNED 1
|
||
#define ITYPE unsigned short
|
||
#define SIZEOF_ITYPE SIZEOF_UNSIGNED_SHORT
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2int
|
||
#define INTEGRAL2NUM scm_int2num
|
||
#define INTEGRAL2BIG scm_i_int2big
|
||
#define UNSIGNED 0
|
||
#define ITYPE int
|
||
#define SIZEOF_ITYPE SIZEOF_INT
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2uint
|
||
#define INTEGRAL2NUM scm_uint2num
|
||
#define INTEGRAL2BIG scm_i_uint2big
|
||
#define UNSIGNED 1
|
||
#define ITYPE unsigned int
|
||
#define SIZEOF_ITYPE SIZEOF_UNSIGNED_INT
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2long
|
||
#define INTEGRAL2NUM scm_long2num
|
||
#define INTEGRAL2BIG scm_i_long2big
|
||
#define UNSIGNED 0
|
||
#define ITYPE long
|
||
#define SIZEOF_ITYPE SIZEOF_LONG
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2ulong
|
||
#define INTEGRAL2NUM scm_ulong2num
|
||
#define INTEGRAL2BIG scm_i_ulong2big
|
||
#define UNSIGNED 1
|
||
#define ITYPE unsigned long
|
||
#define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2ptrdiff
|
||
#define INTEGRAL2NUM scm_ptrdiff2num
|
||
#define INTEGRAL2BIG scm_i_ptrdiff2big
|
||
#define UNSIGNED 0
|
||
#define ITYPE scm_t_ptrdiff
|
||
#define UNSIGNED_ITYPE size_t
|
||
#define SIZEOF_ITYPE SCM_SIZEOF_SCM_T_PTRDIFF
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2size
|
||
#define INTEGRAL2NUM scm_size2num
|
||
#define INTEGRAL2BIG scm_i_size2big
|
||
#define UNSIGNED 1
|
||
#define ITYPE size_t
|
||
#define SIZEOF_ITYPE SIZEOF_SIZE_T
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#if SCM_SIZEOF_LONG_LONG != 0
|
||
|
||
#ifndef ULONG_LONG_MAX
|
||
#define ULONG_LONG_MAX (~0ULL)
|
||
#endif
|
||
|
||
#define NUM2INTEGRAL scm_num2long_long
|
||
#define INTEGRAL2NUM scm_long_long2num
|
||
#define INTEGRAL2BIG scm_i_long_long2big
|
||
#define UNSIGNED 0
|
||
#define ITYPE long long
|
||
#define SIZEOF_ITYPE SIZEOF_LONG_LONG
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#define NUM2INTEGRAL scm_num2ulong_long
|
||
#define INTEGRAL2NUM scm_ulong_long2num
|
||
#define INTEGRAL2BIG scm_i_ulong_long2big
|
||
#define UNSIGNED 1
|
||
#define ITYPE unsigned long long
|
||
#define SIZEOF_ITYPE SIZEOF_UNSIGNED_LONG_LONG
|
||
#include "libguile/num2integral.i.c"
|
||
|
||
#endif /* SCM_SIZEOF_LONG_LONG != 0 */
|
||
|
||
#define NUM2FLOAT scm_num2float
|
||
#define FLOAT2NUM scm_float2num
|
||
#define FTYPE float
|
||
#include "libguile/num2float.i.c"
|
||
|
||
#define NUM2FLOAT scm_num2double
|
||
#define FLOAT2NUM scm_double2num
|
||
#define FTYPE double
|
||
#include "libguile/num2float.i.c"
|
||
|
||
#ifdef GUILE_DEBUG
|
||
|
||
#ifndef SIZE_MAX
|
||
#define SIZE_MAX ((size_t) (-1))
|
||
#endif
|
||
#ifndef PTRDIFF_MIN
|
||
#define PTRDIFF_MIN \
|
||
((scm_t_ptrdiff) ((scm_t_ptrdiff) 1 \
|
||
<< ((sizeof (scm_t_ptrdiff) * SCM_CHAR_BIT) - 1)))
|
||
#endif
|
||
#ifndef PTRDIFF_MAX
|
||
#define PTRDIFF_MAX (~ PTRDIFF_MIN)
|
||
#endif
|
||
|
||
#define CHECK(type, v) \
|
||
do { \
|
||
if ((v) != scm_num2##type (scm_##type##2num (v), 1, "check_sanity")) \
|
||
abort (); \
|
||
} while (0);
|
||
|
||
static void
|
||
check_sanity ()
|
||
{
|
||
CHECK (short, 0);
|
||
CHECK (ushort, 0U);
|
||
CHECK (int, 0);
|
||
CHECK (uint, 0U);
|
||
CHECK (long, 0L);
|
||
CHECK (ulong, 0UL);
|
||
CHECK (size, 0);
|
||
CHECK (ptrdiff, 0);
|
||
|
||
CHECK (short, -1);
|
||
CHECK (int, -1);
|
||
CHECK (long, -1L);
|
||
CHECK (ptrdiff, -1);
|
||
|
||
CHECK (short, SHRT_MAX);
|
||
CHECK (short, SHRT_MIN);
|
||
CHECK (ushort, USHRT_MAX);
|
||
CHECK (int, INT_MAX);
|
||
CHECK (int, INT_MIN);
|
||
CHECK (uint, UINT_MAX);
|
||
CHECK (long, LONG_MAX);
|
||
CHECK (long, LONG_MIN);
|
||
CHECK (ulong, ULONG_MAX);
|
||
CHECK (size, SIZE_MAX);
|
||
CHECK (ptrdiff, PTRDIFF_MAX);
|
||
CHECK (ptrdiff, PTRDIFF_MIN);
|
||
|
||
#if SCM_SIZEOF_LONG_LONG != 0
|
||
CHECK (long_long, 0LL);
|
||
CHECK (ulong_long, 0ULL);
|
||
CHECK (long_long, -1LL);
|
||
CHECK (long_long, LLONG_MAX);
|
||
CHECK (long_long, LLONG_MIN);
|
||
CHECK (ulong_long, ULLONG_MAX);
|
||
#endif
|
||
}
|
||
|
||
#undef CHECK
|
||
|
||
#define CHECK \
|
||
scm_internal_catch (SCM_BOOL_T, check_body, &data, check_handler, &data); \
|
||
if (!SCM_FALSEP (data)) abort();
|
||
|
||
static SCM
|
||
check_body (void *data)
|
||
{
|
||
SCM num = *(SCM *) data;
|
||
scm_num2ulong (num, 1, NULL);
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
static SCM
|
||
check_handler (void *data, SCM tag, SCM throw_args)
|
||
{
|
||
SCM *num = (SCM *) data;
|
||
*num = SCM_BOOL_F;
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
|
||
SCM_DEFINE (scm_sys_check_number_conversions, "%check-number-conversions", 0, 0, 0,
|
||
(void),
|
||
"Number conversion sanity checking.")
|
||
#define FUNC_NAME s_scm_sys_check_number_conversions
|
||
{
|
||
SCM data = SCM_MAKINUM (-1);
|
||
CHECK;
|
||
data = scm_int2num (INT_MIN);
|
||
CHECK;
|
||
data = scm_ulong2num (ULONG_MAX);
|
||
data = scm_difference (SCM_INUM0, data);
|
||
CHECK;
|
||
data = scm_ulong2num (ULONG_MAX);
|
||
data = scm_sum (SCM_MAKINUM (1), data); data = scm_difference (SCM_INUM0, data);
|
||
CHECK;
|
||
data = scm_int2num (-10000); data = scm_product (data, data); data = scm_product (data, data);
|
||
CHECK;
|
||
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#endif
|
||
|
||
void
|
||
scm_init_numbers ()
|
||
{
|
||
abs_most_negative_fixnum = scm_i_long2big (- SCM_MOST_NEGATIVE_FIXNUM);
|
||
scm_permanent_object (abs_most_negative_fixnum);
|
||
|
||
mpz_init_set_si (z_negative_one, -1);
|
||
|
||
/* It may be possible to tune the performance of some algorithms by using
|
||
* the following constants to avoid the creation of bignums. Please, before
|
||
* using these values, remember the two rules of program optimization:
|
||
* 1st Rule: Don't do it. 2nd Rule (experts only): Don't do it yet. */
|
||
scm_c_define ("most-positive-fixnum",
|
||
SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
|
||
scm_c_define ("most-negative-fixnum",
|
||
SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
|
||
|
||
scm_add_feature ("complex");
|
||
scm_add_feature ("inexact");
|
||
scm_flo0 = scm_make_real (0.0);
|
||
#ifdef DBL_DIG
|
||
scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
|
||
#else
|
||
{ /* determine floating point precision */
|
||
double f = 0.1;
|
||
double fsum = 1.0 + f;
|
||
while (fsum != 1.0) {
|
||
if (++scm_dblprec > 20) {
|
||
fsum = 1.0;
|
||
} else {
|
||
f /= 10.0;
|
||
fsum = f + 1.0;
|
||
}
|
||
}
|
||
scm_dblprec = scm_dblprec - 1;
|
||
}
|
||
#endif /* DBL_DIG */
|
||
|
||
#ifdef GUILE_DEBUG
|
||
check_sanity ();
|
||
#endif
|
||
|
||
#include "libguile/numbers.x"
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|