mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-22 20:40:29 +02:00
* libguile/dynstack.h: * libguile/dynstack.c: New files, implementing the dynamic stack as a true stack instead of a linked list. This lowers the cost of dynwinds: frames, winders, prompts, with-fluids, and dynamic-wind. For the most part, we allocate these items directly on the stack. * libguile/dynwinds.h: * libguile/dynwinds.c: Adapt all manipulators of the wind stack to use interfaces from dynstack.c. Remove heap-allocated winder and frame object types. (scm_dowinds, scm_i_dowinds): Remove these. The first was exported, but it was not a public interface. * libguile/continuations.c: * libguile/continuations.h (scm_t_contregs): Continuation objects reference scm_t_dynstack* values now. Adapt to the new interfaces. * libguile/control.c: * libguile/control.h: There is no longer a scm_tc7_prompt kind of object that can be allocated on the heap. Instead, the prompt flags, key, and registers are pushed on the dynwind stack. (The registers are still on the heap.) Also, since the vm_cont will reference the dynwinds, make the partial continuation stub take just one extra arg, instead of storing the intwinds separately in the object table. * libguile/fluids.c: * libguile/fluids.h: No more with-fluids objects; instead, the fluids go on the dynstack. The values still have to be on the heap, though. (scm_prepare_fluids, scm_swap_fluids): New internal functions, replacing scm_i_make_with_fluids and scm_i_swap_with_fluids. * libguile/print.c: Remove prompt and with-fluids printers. * libguile/tags.h: Revert prompt and with-fluids tc7 values to what they were before they were allocated. * libguile/vm-i-system.c (partial_cont_call): Just pop the vmcont, the intwinds will not be passed as a second arg. Rewind the dynamic stack from within the VM, so that any rewinder sees valid prompt entries. (call_cc, tail_call_cc): Adapt to pass the dynstack to scm_i_vm_capture_stack. (prompt, wind, unwind, wind_fluids, unwind_fluids): Adapt to the new interfaces. * libguile/vm.h (scm_i_capture_current_stack): Rename from scm_i_vm_capture_continuation. (scm_i_vm_capture_stack): Take a dynstack as an argument. * libguile/vm.c (vm_reinstate_partial_continuation): Don't wind here, as that could result in winders seeing invalid prompts. * libguile/eval.c: * libguile/root.c: * libguile/stacks.c: * libguile/threads.c: * libguile/threads.h: * libguile/throw.c: Adapt other users of dynwinds to use the dynstack.
559 lines
17 KiB
C
559 lines
17 KiB
C
/* Copyright (C) 1995,1996,1997,1998,2000,2001, 2003, 2004, 2006, 2008, 2009, 2010, 2011, 2012 Free Software Foundation, Inc.
|
||
*
|
||
* This library is free software; you can redistribute it and/or
|
||
* modify it under the terms of the GNU Lesser General Public License
|
||
* as published by the Free Software Foundation; either version 3 of
|
||
* the License, or (at your option) any later version.
|
||
*
|
||
* This library is distributed in the hope that it will be useful, but
|
||
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
* Lesser General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU Lesser General Public
|
||
* License along with this library; if not, write to the Free Software
|
||
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
|
||
* 02110-1301 USA
|
||
*/
|
||
|
||
|
||
|
||
#ifdef HAVE_CONFIG_H
|
||
# include <config.h>
|
||
#endif
|
||
|
||
#include <stdio.h>
|
||
#include <unistdio.h>
|
||
#include "libguile/_scm.h"
|
||
#include "libguile/smob.h"
|
||
#include "libguile/eval.h"
|
||
#include "libguile/eq.h"
|
||
#include "libguile/control.h"
|
||
#include "libguile/deprecation.h"
|
||
#include "libguile/backtrace.h"
|
||
#include "libguile/debug.h"
|
||
#include "libguile/stackchk.h"
|
||
#include "libguile/stacks.h"
|
||
#include "libguile/fluids.h"
|
||
#include "libguile/ports.h"
|
||
#include "libguile/validate.h"
|
||
#include "libguile/vm.h"
|
||
#include "libguile/throw.h"
|
||
#include "libguile/init.h"
|
||
#include "libguile/strings.h"
|
||
|
||
#include "libguile/private-options.h"
|
||
|
||
|
||
/* Pleasantly enough, the guts of catch are defined in Scheme, in terms of
|
||
prompt, abort, and the %exception-handler fluid. This file just provides
|
||
shims so that it's easy to have catch functionality from C.
|
||
|
||
All of these function names and prototypes carry a fair bit of historical
|
||
baggage. */
|
||
|
||
|
||
#define CACHE_VAR(var,name) \
|
||
static SCM var = SCM_BOOL_F; \
|
||
if (scm_is_false (var)) \
|
||
{ \
|
||
var = scm_module_variable (scm_the_root_module (), \
|
||
scm_from_latin1_symbol (name)); \
|
||
if (scm_is_false (var)) \
|
||
abort (); \
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_catch (SCM key, SCM thunk, SCM handler)
|
||
{
|
||
CACHE_VAR (var, "catch");
|
||
|
||
return scm_call_3 (scm_variable_ref (var), key, thunk, handler);
|
||
}
|
||
|
||
SCM
|
||
scm_catch_with_pre_unwind_handler (SCM key, SCM thunk, SCM handler,
|
||
SCM pre_unwind_handler)
|
||
{
|
||
if (SCM_UNBNDP (pre_unwind_handler))
|
||
return scm_catch (key, thunk, handler);
|
||
else
|
||
{
|
||
CACHE_VAR (var, "catch");
|
||
|
||
return scm_call_4 (scm_variable_ref (var), key, thunk, handler,
|
||
pre_unwind_handler);
|
||
}
|
||
}
|
||
|
||
SCM
|
||
scm_with_throw_handler (SCM key, SCM thunk, SCM handler)
|
||
{
|
||
CACHE_VAR (var, "with-throw-handler");
|
||
|
||
return scm_call_3 (scm_variable_ref (var), key, thunk, handler);
|
||
}
|
||
|
||
SCM
|
||
scm_throw (SCM key, SCM args)
|
||
{
|
||
CACHE_VAR (var, "throw");
|
||
|
||
return scm_apply_1 (scm_variable_ref (var), key, args);
|
||
}
|
||
|
||
|
||
|
||
/* Now some support for C bodies and catch handlers */
|
||
|
||
static scm_t_bits tc16_catch_closure;
|
||
|
||
enum {
|
||
CATCH_CLOSURE_BODY,
|
||
CATCH_CLOSURE_HANDLER
|
||
};
|
||
|
||
static SCM
|
||
make_catch_body_closure (scm_t_catch_body body, void *body_data)
|
||
{
|
||
SCM ret;
|
||
SCM_NEWSMOB2 (ret, tc16_catch_closure, body, body_data);
|
||
SCM_SET_SMOB_FLAGS (ret, CATCH_CLOSURE_BODY);
|
||
return ret;
|
||
}
|
||
|
||
static SCM
|
||
make_catch_handler_closure (scm_t_catch_handler handler, void *handler_data)
|
||
{
|
||
SCM ret;
|
||
SCM_NEWSMOB2 (ret, tc16_catch_closure, handler, handler_data);
|
||
SCM_SET_SMOB_FLAGS (ret, CATCH_CLOSURE_HANDLER);
|
||
return ret;
|
||
}
|
||
|
||
static SCM
|
||
apply_catch_closure (SCM clo, SCM args)
|
||
{
|
||
void *data = (void*)SCM_SMOB_DATA_2 (clo);
|
||
|
||
switch (SCM_SMOB_FLAGS (clo))
|
||
{
|
||
case CATCH_CLOSURE_BODY:
|
||
{
|
||
scm_t_catch_body body = (void*)SCM_SMOB_DATA (clo);
|
||
return body (data);
|
||
}
|
||
case CATCH_CLOSURE_HANDLER:
|
||
{
|
||
scm_t_catch_handler handler = (void*)SCM_SMOB_DATA (clo);
|
||
return handler (data, scm_car (args), scm_cdr (args));
|
||
}
|
||
default:
|
||
abort ();
|
||
}
|
||
}
|
||
|
||
/* TAG is the catch tag. Typically, this is a symbol, but this
|
||
function doesn't actually care about that.
|
||
|
||
BODY is a pointer to a C function which runs the body of the catch;
|
||
this is the code you can throw from. We call it like this:
|
||
BODY (BODY_DATA)
|
||
where:
|
||
BODY_DATA is just the BODY_DATA argument we received; we pass it
|
||
through to BODY as its first argument. The caller can make
|
||
BODY_DATA point to anything useful that BODY might need.
|
||
|
||
HANDLER is a pointer to a C function to deal with a throw to TAG,
|
||
should one occur. We call it like this:
|
||
HANDLER (HANDLER_DATA, THROWN_TAG, THROW_ARGS)
|
||
where
|
||
HANDLER_DATA is the HANDLER_DATA argument we recevied; it's the
|
||
same idea as BODY_DATA above.
|
||
THROWN_TAG is the tag that the user threw to; usually this is
|
||
TAG, but it could be something else if TAG was #t (i.e., a
|
||
catch-all), or the user threw to a jmpbuf.
|
||
THROW_ARGS is the list of arguments the user passed to the THROW
|
||
function, after the tag.
|
||
|
||
BODY_DATA is just a pointer we pass through to BODY. HANDLER_DATA
|
||
is just a pointer we pass through to HANDLER. We don't actually
|
||
use either of those pointers otherwise ourselves. The idea is
|
||
that, if our caller wants to communicate something to BODY or
|
||
HANDLER, it can pass a pointer to it as MUMBLE_DATA, which BODY and
|
||
HANDLER can then use. Think of it as a way to make BODY and
|
||
HANDLER closures, not just functions; MUMBLE_DATA points to the
|
||
enclosed variables.
|
||
|
||
Of course, it's up to the caller to make sure that any data a
|
||
MUMBLE_DATA needs is protected from GC. A common way to do this is
|
||
to make MUMBLE_DATA a pointer to data stored in an automatic
|
||
structure variable; since the collector must scan the stack for
|
||
references anyway, this assures that any references in MUMBLE_DATA
|
||
will be found. */
|
||
|
||
SCM
|
||
scm_c_catch (SCM tag,
|
||
scm_t_catch_body body, void *body_data,
|
||
scm_t_catch_handler handler, void *handler_data,
|
||
scm_t_catch_handler pre_unwind_handler, void *pre_unwind_handler_data)
|
||
{
|
||
SCM sbody, shandler, spre_unwind_handler;
|
||
|
||
sbody = make_catch_body_closure (body, body_data);
|
||
shandler = make_catch_handler_closure (handler, handler_data);
|
||
if (pre_unwind_handler)
|
||
spre_unwind_handler = make_catch_handler_closure (pre_unwind_handler,
|
||
pre_unwind_handler_data);
|
||
else
|
||
spre_unwind_handler = SCM_UNDEFINED;
|
||
|
||
return scm_catch_with_pre_unwind_handler (tag, sbody, shandler,
|
||
spre_unwind_handler);
|
||
}
|
||
|
||
SCM
|
||
scm_internal_catch (SCM tag,
|
||
scm_t_catch_body body, void *body_data,
|
||
scm_t_catch_handler handler, void *handler_data)
|
||
{
|
||
return scm_c_catch (tag,
|
||
body, body_data,
|
||
handler, handler_data,
|
||
NULL, NULL);
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_c_with_throw_handler (SCM tag,
|
||
scm_t_catch_body body,
|
||
void *body_data,
|
||
scm_t_catch_handler handler,
|
||
void *handler_data,
|
||
int lazy_catch_p)
|
||
{
|
||
SCM sbody, shandler;
|
||
|
||
if (lazy_catch_p)
|
||
scm_c_issue_deprecation_warning
|
||
("The LAZY_CATCH_P argument to `scm_c_with_throw_handler' is no longer.\n"
|
||
"supported. Instead the handler will be invoked from within the dynamic\n"
|
||
"context of the corresponding `throw'.\n"
|
||
"\nTHIS COULD CHANGE YOUR PROGRAM'S BEHAVIOR.\n\n"
|
||
"Please modify your program to pass 0 as the LAZY_CATCH_P argument,\n"
|
||
"and adapt it (if necessary) to expect to be within the dynamic context\n"
|
||
"of the throw.");
|
||
|
||
sbody = make_catch_body_closure (body, body_data);
|
||
shandler = make_catch_handler_closure (handler, handler_data);
|
||
|
||
return scm_with_throw_handler (tag, sbody, shandler);
|
||
}
|
||
|
||
|
||
/* body and handler functions for use with any of the above catch variants */
|
||
|
||
/* This is a body function you can pass to scm_internal_catch if you
|
||
want the body to be like Scheme's `catch' --- a thunk.
|
||
|
||
BODY_DATA is a pointer to a scm_body_thunk_data structure, which
|
||
contains the Scheme procedure to invoke as the body, and the tag
|
||
we're catching. */
|
||
|
||
SCM
|
||
scm_body_thunk (void *body_data)
|
||
{
|
||
struct scm_body_thunk_data *c = (struct scm_body_thunk_data *) body_data;
|
||
|
||
return scm_call_0 (c->body_proc);
|
||
}
|
||
|
||
|
||
/* This is a handler function you can pass to scm_internal_catch if
|
||
you want the handler to act like Scheme's catch: (throw TAG ARGS ...)
|
||
applies a handler procedure to (TAG ARGS ...).
|
||
|
||
If the user does a throw to this catch, this function runs a
|
||
handler procedure written in Scheme. HANDLER_DATA is a pointer to
|
||
an SCM variable holding the Scheme procedure object to invoke. It
|
||
ought to be a pointer to an automatic variable (i.e., one living on
|
||
the stack), or the procedure object should be otherwise protected
|
||
from GC. */
|
||
SCM
|
||
scm_handle_by_proc (void *handler_data, SCM tag, SCM throw_args)
|
||
{
|
||
SCM *handler_proc_p = (SCM *) handler_data;
|
||
|
||
return scm_apply_1 (*handler_proc_p, tag, throw_args);
|
||
}
|
||
|
||
/* SCM_HANDLE_BY_PROC_CATCHING_ALL is like SCM_HANDLE_BY_PROC but
|
||
catches all throws that the handler might emit itself. The handler
|
||
used for these `secondary' throws is SCM_HANDLE_BY_MESSAGE_NO_EXIT. */
|
||
|
||
struct hbpca_data {
|
||
SCM proc;
|
||
SCM args;
|
||
};
|
||
|
||
static SCM
|
||
hbpca_body (void *body_data)
|
||
{
|
||
struct hbpca_data *data = (struct hbpca_data *)body_data;
|
||
return scm_apply_0 (data->proc, data->args);
|
||
}
|
||
|
||
SCM
|
||
scm_handle_by_proc_catching_all (void *handler_data, SCM tag, SCM throw_args)
|
||
{
|
||
SCM *handler_proc_p = (SCM *) handler_data;
|
||
struct hbpca_data data;
|
||
data.proc = *handler_proc_p;
|
||
data.args = scm_cons (tag, throw_args);
|
||
|
||
return scm_internal_catch (SCM_BOOL_T,
|
||
hbpca_body, &data,
|
||
scm_handle_by_message_noexit, NULL);
|
||
}
|
||
|
||
/* Derive the an exit status from the arguments to (quit ...). */
|
||
int
|
||
scm_exit_status (SCM args)
|
||
{
|
||
if (scm_is_pair (args))
|
||
{
|
||
SCM cqa = SCM_CAR (args);
|
||
|
||
if (scm_is_integer (cqa))
|
||
return (scm_to_int (cqa));
|
||
else if (scm_is_false (cqa))
|
||
return EXIT_FAILURE;
|
||
else
|
||
return EXIT_SUCCESS;
|
||
}
|
||
else if (scm_is_null (args))
|
||
return EXIT_SUCCESS;
|
||
else
|
||
/* A type error. Strictly speaking we shouldn't get here. */
|
||
return EXIT_FAILURE;
|
||
}
|
||
|
||
|
||
static int
|
||
should_print_backtrace (SCM tag, SCM stack)
|
||
{
|
||
return SCM_BACKTRACE_P
|
||
&& scm_is_true (stack)
|
||
&& scm_initialized_p
|
||
/* It's generally not useful to print backtraces for errors reading
|
||
or expanding code in these fallback catch statements. */
|
||
&& !scm_is_eq (tag, scm_from_latin1_symbol ("read-error"))
|
||
&& !scm_is_eq (tag, scm_from_latin1_symbol ("syntax-error"));
|
||
}
|
||
|
||
static void
|
||
handler_message (void *handler_data, SCM tag, SCM args)
|
||
{
|
||
SCM p, stack, frame;
|
||
|
||
p = scm_current_error_port ();
|
||
/* Usually we get here via a throw to a catch-all. In that case
|
||
there is the throw frame active, and the catch closure, so narrow by
|
||
two frames. It is possible for a user to invoke
|
||
scm_handle_by_message directly, though, so it could be this
|
||
narrows too much. We'll have to see how this works out in
|
||
practice. */
|
||
stack = scm_make_stack (SCM_BOOL_T, scm_list_1 (scm_from_int (2)));
|
||
frame = scm_is_true (stack) ? scm_stack_ref (stack, SCM_INUM0) : SCM_BOOL_F;
|
||
|
||
if (should_print_backtrace (tag, stack))
|
||
{
|
||
scm_puts_unlocked ("Backtrace:\n", p);
|
||
scm_display_backtrace_with_highlights (stack, p,
|
||
SCM_BOOL_F, SCM_BOOL_F,
|
||
SCM_EOL);
|
||
scm_newline (p);
|
||
}
|
||
|
||
scm_print_exception (p, frame, tag, args);
|
||
}
|
||
|
||
|
||
/* This is a handler function to use if you want scheme to print a
|
||
message and die. Useful for dealing with throws to uncaught keys
|
||
at the top level.
|
||
|
||
At boot time, we establish a catch-all that uses this as its handler.
|
||
1) If the user wants something different, they can use (catch #t
|
||
...) to do what they like.
|
||
2) Outside the context of a read-eval-print loop, there isn't
|
||
anything else good to do; libguile should not assume the existence
|
||
of a read-eval-print loop.
|
||
3) Given that we shouldn't do anything complex, it's much more
|
||
robust to do it in C code.
|
||
|
||
HANDLER_DATA, if non-zero, is assumed to be a char * pointing to a
|
||
message header to print; if zero, we use "guile" instead. That
|
||
text is followed by a colon, then the message described by ARGS. */
|
||
|
||
/* Dirk:FIXME:: The name of the function should make clear that the
|
||
* application gets terminated.
|
||
*/
|
||
|
||
SCM
|
||
scm_handle_by_message (void *handler_data, SCM tag, SCM args)
|
||
{
|
||
if (scm_is_true (scm_eq_p (tag, scm_from_latin1_symbol ("quit"))))
|
||
exit (scm_exit_status (args));
|
||
|
||
handler_message (handler_data, tag, args);
|
||
scm_i_pthread_exit (NULL);
|
||
|
||
/* this point not reached, but suppress gcc warning about no return value
|
||
in case scm_i_pthread_exit isn't marked as "noreturn" (which seemed not
|
||
to be the case on cygwin for instance) */
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
/* This is just like scm_handle_by_message, but it doesn't exit; it
|
||
just returns #f. It's useful in cases where you don't really know
|
||
enough about the body to handle things in a better way, but don't
|
||
want to let throws fall off the bottom of the wind list. */
|
||
SCM
|
||
scm_handle_by_message_noexit (void *handler_data, SCM tag, SCM args)
|
||
{
|
||
if (scm_is_true (scm_eq_p (tag, scm_from_latin1_symbol ("quit"))))
|
||
exit (scm_exit_status (args));
|
||
|
||
handler_message (handler_data, tag, args);
|
||
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_handle_by_throw (void *handler_data SCM_UNUSED, SCM tag, SCM args)
|
||
{
|
||
scm_ithrow (tag, args, 1);
|
||
return SCM_UNSPECIFIED; /* never returns */
|
||
}
|
||
|
||
SCM
|
||
scm_ithrow (SCM key, SCM args, int noreturn SCM_UNUSED)
|
||
{
|
||
return scm_throw (key, args);
|
||
}
|
||
|
||
/* Unfortunately we have to support catch and throw before boot-9 has, um,
|
||
booted. So here are lame versions, which will get replaced with their scheme
|
||
equivalents. */
|
||
|
||
SCM_SYMBOL (sym_pre_init_catch_tag, "%pre-init-catch-tag");
|
||
|
||
static SCM
|
||
pre_init_catch (SCM tag, SCM thunk, SCM handler, SCM pre_unwind_handler)
|
||
{
|
||
volatile SCM vm, v_handler;
|
||
SCM res;
|
||
scm_t_prompt_registers *regs;
|
||
scm_t_dynstack *dynstack = &SCM_I_CURRENT_THREAD->dynstack;
|
||
scm_t_dynstack_prompt_flags flags;
|
||
|
||
/* Only handle catch-alls without pre-unwind handlers */
|
||
if (!SCM_UNBNDP (pre_unwind_handler))
|
||
abort ();
|
||
if (scm_is_false (scm_eqv_p (tag, SCM_BOOL_T)))
|
||
abort ();
|
||
|
||
/* These two are volatile, so we know we can access them after a
|
||
nonlocal return to the setjmp. */
|
||
vm = scm_the_vm ();
|
||
v_handler = handler;
|
||
|
||
/* Push the prompt onto the dynamic stack. */
|
||
regs = scm_c_make_prompt_registers (SCM_VM_DATA (vm)->fp,
|
||
SCM_VM_DATA (vm)->sp,
|
||
SCM_VM_DATA (vm)->ip,
|
||
-1);
|
||
flags = SCM_F_DYNSTACK_PROMPT_ESCAPE_ONLY;
|
||
scm_dynstack_push_prompt (dynstack, flags, sym_pre_init_catch_tag, regs);
|
||
|
||
if (SCM_I_SETJMP (regs->regs))
|
||
{
|
||
/* nonlocal exit */
|
||
SCM args = scm_i_prompt_pop_abort_args_x (vm);
|
||
/* cdr past the continuation */
|
||
return scm_apply_0 (v_handler, scm_cdr (args));
|
||
}
|
||
|
||
res = scm_call_0 (thunk);
|
||
scm_dynstack_pop (dynstack);
|
||
|
||
return res;
|
||
}
|
||
|
||
static int
|
||
find_pre_init_catch (void)
|
||
{
|
||
if (scm_dynstack_find_prompt (&SCM_I_CURRENT_THREAD->dynstack,
|
||
sym_pre_init_catch_tag, NULL, NULL))
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
static SCM
|
||
pre_init_throw (SCM k, SCM args)
|
||
{
|
||
if (find_pre_init_catch ())
|
||
return scm_at_abort (sym_pre_init_catch_tag, scm_cons (k, args));
|
||
else
|
||
{
|
||
static int error_printing_error = 0;
|
||
static int error_printing_fallback = 0;
|
||
|
||
if (error_printing_fallback)
|
||
fprintf (stderr, "\nFailed to print exception.\n");
|
||
else if (error_printing_error)
|
||
{
|
||
fprintf (stderr, "\nError while printing exception:\n");
|
||
error_printing_fallback = 1;
|
||
fprintf (stderr, "Key: ");
|
||
scm_write (k, scm_current_error_port ());
|
||
fprintf (stderr, ", args: ");
|
||
scm_write (args, scm_current_error_port ());
|
||
scm_newline (scm_current_error_port ());
|
||
}
|
||
else
|
||
{
|
||
fprintf (stderr, "Throw without catch before boot:\n");
|
||
error_printing_error = 1;
|
||
scm_handle_by_message_noexit (NULL, k, args);
|
||
}
|
||
|
||
fprintf (stderr, "Aborting.\n");
|
||
abort ();
|
||
return SCM_BOOL_F; /* not reached */
|
||
}
|
||
}
|
||
|
||
void
|
||
scm_init_throw ()
|
||
{
|
||
tc16_catch_closure = scm_make_smob_type ("catch-closure", 0);
|
||
scm_set_smob_apply (tc16_catch_closure, apply_catch_closure, 0, 0, 1);
|
||
|
||
scm_c_define ("catch", scm_c_make_gsubr ("catch", 3, 1, 0, pre_init_catch));
|
||
scm_c_define ("throw", scm_c_make_gsubr ("throw", 1, 0, 1, pre_init_throw));
|
||
|
||
#include "libguile/throw.x"
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|