1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-29 19:30:36 +02:00
guile/module/language/tree-il/peval.scm
Andy Wingo d08cc4f6e2 Allow string->utf8 to constant-fold
* module/language/tree-il/primitives.scm (*interesting-primitive-names*):
(*primitive-accessors*): Add string->utf8, utf8->string, and
string-utf8-length.
(primitive-module): New public function, moved here from (language
tree-il compile-bytecode).

* module/language/tree-il/compile-bytecode.scm: Use primitive-module
from (language tree-il primitives).

* module/language/tree-il/peval.scm (peval): A bugfix: load primitives
from their proper module.  Allows bytevector primitives to fold.

* module/language/cps/guile-vm/reify-primitives.scm:
* module/language/cps/effects-analysis.scm:
* module/language/cps/types.scm
* module/language/tree-il/primitives.scm:
* module/language/tree-il/cps-primitives.scm:
* module/language/tree-il/effects.scm (make-effects-analyzer):
Add string->utf8, utf8->string, and string-utf8-length.

* module/language/tree-il/compile-cps.scm (string->utf8)
(string-utf8-length, utf8->string): New custom lowerers, including type
checks and an unboxed result for string-utf8-length.

* module/system/vm/assembler.scm:
* libguile/intrinsics.h:
* libguile/intrinsics.c: Because string-utf8-length returns an unboxed
value, we need an intrinsic for it; go ahead and add an intrinsic for
string->utf8 and utf8->string too, as we will likely be able to use
these in the future.
2023-11-15 10:44:21 +01:00

1817 lines
74 KiB
Scheme
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

;;; Tree-IL partial evaluator
;; Copyright (C) 2011-2014,2017,2019-2023 Free Software Foundation, Inc.
;;;; This library is free software; you can redistribute it and/or
;;;; modify it under the terms of the GNU Lesser General Public
;;;; License as published by the Free Software Foundation; either
;;;; version 3 of the License, or (at your option) any later version.
;;;;
;;;; This library is distributed in the hope that it will be useful,
;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;;; Lesser General Public License for more details.
;;;;
;;;; You should have received a copy of the GNU Lesser General Public
;;;; License along with this library; if not, write to the Free Software
;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
(define-module (language tree-il peval)
#:use-module (language tree-il)
#:use-module (language tree-il primitives)
#:use-module (language tree-il effects)
#:use-module (ice-9 vlist)
#:use-module (ice-9 match)
#:use-module (srfi srfi-1)
#:use-module (srfi srfi-9)
#:use-module (srfi srfi-11)
#:use-module (srfi srfi-26)
#:use-module (system base target)
#:use-module (ice-9 control)
#:export (peval))
;;;
;;; Partial evaluation is Guile's most important source-to-source
;;; optimization pass. It performs copy propagation, dead code
;;; elimination, inlining, and constant folding, all while preserving
;;; the order of effects in the residual program.
;;;
;;; For more on partial evaluation, see William Cooks excellent
;;; tutorial on partial evaluation at DSL 2011, called “Build your own
;;; partial evaluator in 90 minutes”[0].
;;;
;;; Our implementation of this algorithm was heavily influenced by
;;; Waddell and Dybvig's paper, "Fast and Effective Procedure Inlining",
;;; IU CS Dept. TR 484.
;;;
;;; [0] http://www.cs.utexas.edu/~wcook/tutorial/.
;;;
;; First, some helpers.
;;
(define-syntax *logging* (identifier-syntax #f))
;; For efficiency we define *logging* to inline to #f, so that the call
;; to log* gets optimized out. If you want to log, uncomment these
;; lines:
;;
;; (define %logging #f)
;; (define-syntax *logging* (identifier-syntax %logging))
;;
;; Then you can change %logging at runtime.
(define-syntax log
(syntax-rules (quote)
((log 'event arg ...)
(if (and *logging*
(or (eq? *logging* #t)
(memq 'event *logging*)))
(log* 'event arg ...)))))
(define (log* event . args)
(let ((pp (module-ref (resolve-interface '(ice-9 pretty-print))
'pretty-print)))
(pp `(log ,event . ,args))
(newline)
(values)))
(define (tree-il-any proc exp)
(let/ec k
(tree-il-fold (lambda (exp res)
(let ((res (proc exp)))
(if res (k res) #f)))
(lambda (exp res) #f)
#f exp)))
(define (vlist-any proc vlist)
(let ((len (vlist-length vlist)))
(let lp ((i 0))
(and (< i len)
(or (proc (vlist-ref vlist i))
(lp (1+ i)))))))
(define (singly-valued-expression? exp)
(match exp
(($ <const>) #t)
(($ <void>) #t)
(($ <lexical-ref>) #t)
(($ <primitive-ref>) #t)
(($ <module-ref>) #t)
(($ <toplevel-ref>) #t)
(($ <primcall> _ (? singly-valued-primitive?)) #t)
(($ <primcall> _ 'values (val)) #t)
(($ <lambda>) #t)
(($ <conditional> _ test consequent alternate)
(and (singly-valued-expression? consequent)
(singly-valued-expression? alternate)))
(else #f)))
(define (truncate-values x)
"Discard all but the first value of X."
(if (singly-valued-expression? x)
x
(make-primcall (tree-il-srcv x) 'values (list x))))
;; Peval will do a one-pass analysis on the source program to determine
;; the set of assigned lexicals, and to identify unreferenced and
;; singly-referenced lexicals.
;;
(define-record-type <var>
(make-var name gensym refcount set?)
var?
(name var-name)
(gensym var-gensym)
(refcount var-refcount set-var-refcount!)
(set? var-set? set-var-set?!))
(define* (build-var-table exp #:optional (table vlist-null))
(tree-il-fold
(lambda (exp res)
(match exp
(($ <lexical-ref> src name gensym)
(let ((var (cdr (vhash-assq gensym res))))
(set-var-refcount! var (1+ (var-refcount var)))
res))
(($ <lambda-case> src req opt rest kw init gensyms body alt)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res
(append req (or opt '()) (if rest (list rest) '())
(match kw
((aok? (kw name sym) ...) name)
(_ '())))
gensyms))
(($ <let> src names gensyms vals body)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res names gensyms))
(($ <letrec>)
(error "unexpected letrec"))
(($ <fix> src names gensyms vals body)
(fold (lambda (name sym res)
(vhash-consq sym (make-var name sym 0 #f) res))
res names gensyms))
(($ <lexical-set> src name gensym exp)
(set-var-set?! (cdr (vhash-assq gensym res)) #t)
res)
(_ res)))
(lambda (exp res) res)
table exp))
(define (augment-var-table-with-externally-introduced-lexicals exp table)
"Take the previously computed var table TABLE and the term EXP and
return a table augmented with the lexicals bound in EXP which are not
present in TABLE. This is used for the result of `expand-primcalls`,
which may introduce new lexicals if a subexpression needs to be
referenced multiple times."
(define (maybe-add-var name sym table)
;; Use a refcount of 2 to prevent the copy-single optimization.
(define refcount 2)
(define assigned? #f)
(if (vhash-assq sym table)
table
(vhash-consq sym (make-var name sym refcount assigned?) table)))
(tree-il-fold
(lambda (exp table)
(match exp
(($ <lambda-case> src req opt rest kw init gensyms body alt)
(fold maybe-add-var table
(append req (or opt '()) (if rest (list rest) '())
(match kw
((aok? (kw name sym) ...) name)
(_ '())))
gensyms))
(($ <let> src names gensyms vals body)
(fold maybe-add-var table names gensyms))
(($ <letrec>)
(error "unexpected letrec"))
(($ <fix> src names gensyms vals body)
(fold maybe-add-var table names gensyms))
(_ table)))
(lambda (exp table) table)
table exp))
;; Counters are data structures used to limit the effort that peval
;; spends on particular inlining attempts. Each call site in the source
;; program is allocated some amount of effort. If peval exceeds the
;; effort counter while attempting to inline a call site, it aborts the
;; inlining attempt and residualizes a call instead.
;;
;; As there is a fixed number of call sites, that makes `peval' O(N) in
;; the number of call sites in the source program.
;;
;; Counters should limit the size of the residual program as well, but
;; currently this is not implemented.
;;
;; At the top level, before seeing any peval call, there is no counter,
;; because inlining will terminate as there is no recursion. When peval
;; sees a call at the top level, it will make a new counter, allocating
;; it some amount of effort and size.
;;
;; This top-level effort counter effectively "prints money". Within a
;; toplevel counter, no more effort is printed ex nihilo; for a nested
;; inlining attempt to proceed, effort must be transferred from the
;; toplevel counter to the nested counter.
;;
;; Via `data' and `prev', counters form a linked list, terminating in a
;; toplevel counter. In practice `data' will be the a pointer to the
;; source expression of the procedure being inlined.
;;
;; In this way peval can detect a recursive inlining attempt, by walking
;; back on the `prev' links looking for matching `data'. Recursive
;; counters receive a more limited effort allocation, as we don't want
;; to spend all of the effort for a toplevel inlining site on loops.
;; Also, recursive counters don't need a prompt at each inlining site:
;; either the call chain folds entirely, or it will be residualized at
;; its original call.
;;
(define-record-type <counter>
(%make-counter effort size continuation recursive? data prev)
counter?
(effort effort-counter)
(size size-counter)
(continuation counter-continuation)
(recursive? counter-recursive? set-counter-recursive?!)
(data counter-data)
(prev counter-prev))
(define (abort-counter c)
((counter-continuation c)))
(define (record-effort! c)
(let ((e (effort-counter c)))
(if (zero? (variable-ref e))
(abort-counter c)
(variable-set! e (1- (variable-ref e))))))
(define (record-size! c)
(let ((s (size-counter c)))
(if (zero? (variable-ref s))
(abort-counter c)
(variable-set! s (1- (variable-ref s))))))
(define (find-counter data counter)
(and counter
(if (eq? data (counter-data counter))
counter
(find-counter data (counter-prev counter)))))
(define* (transfer! from to #:optional
(effort (variable-ref (effort-counter from)))
(size (variable-ref (size-counter from))))
(define (transfer-counter! from-v to-v amount)
(let* ((from-balance (variable-ref from-v))
(to-balance (variable-ref to-v))
(amount (min amount from-balance)))
(variable-set! from-v (- from-balance amount))
(variable-set! to-v (+ to-balance amount))))
(transfer-counter! (effort-counter from) (effort-counter to) effort)
(transfer-counter! (size-counter from) (size-counter to) size))
(define (make-top-counter effort-limit size-limit continuation data)
(%make-counter (make-variable effort-limit)
(make-variable size-limit)
continuation
#t
data
#f))
(define (make-nested-counter continuation data current)
(let ((c (%make-counter (make-variable 0)
(make-variable 0)
continuation
#f
data
current)))
(transfer! current c)
c))
(define (make-recursive-counter effort-limit size-limit orig current)
(let ((c (%make-counter (make-variable 0)
(make-variable 0)
(counter-continuation orig)
#t
(counter-data orig)
current)))
(transfer! current c effort-limit size-limit)
c))
;; Operand structures allow bindings to be processed lazily instead of
;; eagerly. By doing so, hopefully we can get process them in a way
;; appropriate to their use contexts. Operands also prevent values from
;; being visited multiple times, wasting effort.
;;
;; TODO: Record value size in operand structure?
;;
(define-record-type <operand>
(%make-operand var sym visit source visit-count use-count
copyable? residual-value constant-value alias)
operand?
(var operand-var)
(sym operand-sym)
(visit %operand-visit)
(source operand-source)
(visit-count operand-visit-count set-operand-visit-count!)
(use-count operand-use-count set-operand-use-count!)
(copyable? operand-copyable? set-operand-copyable?!)
(residual-value operand-residual-value %set-operand-residual-value!)
(constant-value operand-constant-value set-operand-constant-value!)
(alias operand-alias set-operand-alias!))
(define* (make-operand var sym #:optional source visit alias)
;; Bind SYM to VAR, with value SOURCE. Unassigned bound operands are
;; considered copyable until we prove otherwise. If we have a source
;; expression, truncate it to one value. Copy propagation does not
;; work on multiply-valued expressions.
(let ((source (and=> source truncate-values)))
(%make-operand var sym visit source 0 0
(and source (not (var-set? var))) #f #f
(and (not (var-set? var)) alias))))
(define* (make-bound-operands vars syms sources visit #:optional aliases)
(if aliases
(map (lambda (name sym source alias)
(make-operand name sym source visit alias))
vars syms sources aliases)
(map (lambda (name sym source)
(make-operand name sym source visit #f))
vars syms sources)))
(define (make-unbound-operands vars syms)
(map make-operand vars syms))
(define (set-operand-residual-value! op val)
(%set-operand-residual-value!
op
(match val
(($ <primcall> src 'values (first))
;; The continuation of a residualized binding does not need the
;; introduced `values' node, so undo the effects of truncation.
first)
(else
val))))
(define* (visit-operand op counter ctx #:optional effort-limit size-limit)
;; Peval is O(N) in call sites of the source program. However,
;; visiting an operand can introduce new call sites. If we visit an
;; operand outside a counter -- i.e., outside an inlining attempt --
;; this can lead to divergence. So, if we are visiting an operand to
;; try to copy it, and there is no counter, make a new one.
;;
;; This will only happen at most as many times as there are lexical
;; references in the source program.
(and (zero? (operand-visit-count op))
(dynamic-wind
(lambda ()
(set-operand-visit-count! op (1+ (operand-visit-count op))))
(lambda ()
(and (operand-source op)
(if (or counter (and (not effort-limit) (not size-limit)))
((%operand-visit op) (operand-source op) counter ctx)
(let/ec k
(define (abort)
;; If we abort when visiting the value in a
;; fresh context, we won't succeed in any future
;; attempt, so don't try to copy it again.
(set-operand-copyable?! op #f)
(k #f))
((%operand-visit op)
(operand-source op)
(make-top-counter effort-limit size-limit abort op)
ctx)))))
(lambda ()
(set-operand-visit-count! op (1- (operand-visit-count op)))))))
;; A helper for constant folding.
;;
(define (types-check? primitive-name args)
(case primitive-name
((values) #t)
((not pair? null? list? symbol? vector? struct?)
(= (length args) 1))
((eq? eqv? equal?)
(= (length args) 2))
;; FIXME: add more cases?
(else #f)))
(define* (peval exp #:optional (cenv (current-module)) (env vlist-null)
#:key
(operator-size-limit 40)
(operand-size-limit 20)
(value-size-limit 10)
(effort-limit 500)
(recursive-effort-limit 100)
(cross-module-inlining? #f))
"Partially evaluate EXP in compilation environment CENV, with
top-level bindings from ENV and return the resulting expression."
;; This is a simple partial evaluator. It effectively performs
;; constant folding, copy propagation, dead code elimination, and
;; inlining.
;; TODO:
;;
;; Propagate copies across toplevel bindings, if we can prove the
;; bindings to be immutable.
;;
;; Specialize lambda expressions with invariant arguments.
(define local-toplevel-env
;; The top-level environment of the module being compiled.
(let ()
(define (env-folder x env)
(match x
(($ <toplevel-define> _ _ name)
(vhash-consq name #t env))
(($ <seq> _ head tail)
(env-folder tail (env-folder head env)))
(_ env)))
(env-folder exp vlist-null)))
(define (local-toplevel? name)
(vhash-assq name local-toplevel-env))
;; gensym -> <var>
;; renamed-term -> original-term
;;
(define store (build-var-table exp))
(define (record-new-temporary! name sym refcount)
(set! store (vhash-consq sym (make-var name sym refcount #f) store)))
(define (lookup-var sym)
(let ((v (vhash-assq sym store)))
(if v (cdr v) (error "unbound var" sym (vlist->list store)))))
(define (fresh-gensyms vars)
(map (lambda (var)
(let ((new (gensym (string-append (symbol->string (var-name var))
" "))))
(set! store (vhash-consq new var store))
new))
vars))
(define (fresh-temporaries ls)
(map (lambda (elt)
(let ((new (gensym "tmp ")))
(record-new-temporary! 'tmp new 1)
new))
ls))
(define (assigned-lexical? sym)
(var-set? (lookup-var sym)))
(define (lexical-refcount sym)
(var-refcount (lookup-var sym)))
(define (splice-expression exp)
(define vars (make-hash-table))
(define (rename! old*)
(match old*
(() '())
((old . old*)
(cons (let ((new (gensym "t")))
(hashq-set! vars old new)
new)
(rename! old*)))))
(define (new-name old) (hashq-ref vars old))
(define renamed
(pre-order
(match-lambda
(($ <lexical-ref> src name gensym)
(make-lexical-ref src name (new-name gensym)))
(($ <lexical-set> src name gensym exp)
(make-lexical-set src name (new-name gensym) exp))
(($ <lambda-case> src req opt rest kw init gensyms body alt)
(let ((gensyms (rename! gensyms)))
(make-lambda-case src req opt rest
(match kw
((aok? (kw name sym) ...)
(cons aok?
(map (lambda (kw name sym)
(list kw name (new-name sym)))
kw name sym)))
(#f #f))
init gensyms body alt)))
(($ <let> src names gensyms vals body)
(make-let src names (rename! gensyms) vals body))
(($ <letrec>)
(error "unexpected letrec"))
(($ <fix> src names gensyms vals body)
(make-fix src names (rename! gensyms) vals body))
(exp exp))
exp))
(set! store (build-var-table renamed store))
renamed)
(define (with-temporaries src exps refcount can-copy? k)
(let* ((pairs (map (match-lambda
((and exp (? can-copy?))
(cons #f exp))
(exp
(let ((sym (gensym "tmp ")))
(record-new-temporary! 'tmp sym refcount)
(cons sym exp))))
exps))
(tmps (filter car pairs)))
(match tmps
(() (k exps))
(tmps
(make-let src
(make-list (length tmps) 'tmp)
(map car tmps)
(map cdr tmps)
(k (map (match-lambda
((#f . val) val)
((sym . _)
(make-lexical-ref #f 'tmp sym)))
pairs)))))))
(define (make-begin0 src first second)
(make-let-values
src
first
(let ((vals (gensym "vals ")))
(record-new-temporary! 'vals vals 1)
(make-lambda-case
#f
'() #f 'vals #f '() (list vals)
(make-seq
src
second
(make-primcall #f 'apply
(list
(make-primitive-ref #f 'values)
(make-lexical-ref #f 'vals vals))))
#f))))
;; ORIG has been alpha-renamed to NEW. Analyze NEW and record a link
;; from it to ORIG.
;;
(define (record-source-expression! orig new)
(set! store (vhash-consq new (source-expression orig) store))
new)
;; Find the source expression corresponding to NEW. Used to detect
;; recursive inlining attempts.
;;
(define (source-expression new)
(let ((x (vhash-assq new store)))
(if x (cdr x) new)))
(define (record-operand-use op)
(set-operand-use-count! op (1+ (operand-use-count op))))
(define (unrecord-operand-uses op n)
(let ((count (- (operand-use-count op) n)))
(when (zero? count)
(set-operand-residual-value! op #f))
(set-operand-use-count! op count)))
(define* (residualize-lexical op #:optional ctx val)
(log 'residualize op)
(record-operand-use op)
(if (memq ctx '(value values))
(set-operand-residual-value! op val))
(make-lexical-ref #f (var-name (operand-var op)) (operand-sym op)))
(define (fold-constants src name args ctx)
(define (apply-primitive name args)
;; todo: further optimize commutative primitives
(catch #t
(lambda ()
(define mod (resolve-interface (primitive-module name)))
(call-with-values
(lambda ()
(apply (module-ref mod name) args))
(lambda results
(values #t results))))
(lambda _
(values #f '()))))
(define (make-values src values)
(match values
((single) single) ; 1 value
((_ ...) ; 0, or 2 or more values
(make-primcall src 'values values))))
(define (residualize-call)
(make-primcall src name args))
(cond
((every const? args)
(let-values (((success? values)
(apply-primitive name (map const-exp args))))
(log 'fold success? values name args)
(if success?
(case ctx
((effect) (make-void src))
((test)
;; Values truncation: only take the first
;; value.
(if (pair? values)
(make-const src (car values))
(make-values src '())))
(else
(make-values src (map (cut make-const src <>) values))))
(residualize-call))))
((and (eq? ctx 'effect) (types-check? name args))
(make-void #f))
(else
(residualize-call))))
(define (inline-values src exp nmin nmax consumer)
(let loop ((exp exp))
(match exp
;; Some expression types are always singly-valued.
((or ($ <const>)
($ <void>)
($ <lambda>)
($ <lexical-ref>)
($ <toplevel-ref>)
($ <module-ref>)
($ <primitive-ref>)
($ <lexical-set>) ; FIXME: these set! expressions
($ <toplevel-set>) ; could return zero values in
($ <toplevel-define>) ; the future
($ <module-set>) ;
($ <primcall> src (? singly-valued-primitive?)))
(and (<= nmin 1) (or (not nmax) (>= nmax 1))
(make-call src (make-lambda #f '() consumer) (list exp))))
;; Statically-known number of values.
(($ <primcall> src 'values vals)
(and (<= nmin (length vals)) (or (not nmax) (>= nmax (length vals)))
(make-call src (make-lambda #f '() consumer) vals)))
;; Not going to copy code into both branches.
(($ <conditional>) #f)
;; Bail on other applications.
(($ <call>) #f)
(($ <primcall>) #f)
;; Bail on prompt and abort.
(($ <prompt>) #f)
(($ <abort>) #f)
;; Propagate to tail positions.
(($ <let> src names gensyms vals body)
(let ((body (loop body)))
(and body
(make-let src names gensyms vals body))))
(($ <fix> src names gensyms vals body)
(let ((body (loop body)))
(and body
(make-fix src names gensyms vals body))))
(($ <let-values> src exp
($ <lambda-case> src2 req opt rest kw inits gensyms body #f))
(let ((body (loop body)))
(and body
(make-let-values src exp
(make-lambda-case src2 req opt rest kw
inits gensyms body #f)))))
(($ <seq> src head tail)
(let ((tail (loop tail)))
(and tail (make-seq src head tail)))))))
(define compute-effects
(make-effects-analyzer assigned-lexical?))
(define (constant-expression? x)
;; Return true if X is constant, for the purposes of copying or
;; elision---i.e., if it is known to have no effects, does not
;; allocate storage for a mutable object, and does not access
;; mutable data (like `car' or toplevel references).
(constant? (compute-effects x)))
(define (prune-bindings ops in-order? body counter ctx build-result)
;; This helper handles both `let' and `letrec'/`fix'. In the latter
;; cases we need to make sure that if referenced binding A needs
;; as-yet-unreferenced binding B, that B is processed for value.
;; Likewise if C, when processed for effect, needs otherwise
;; unreferenced D, then D needs to be processed for value too.
;;
(define (referenced? op)
;; When we visit lambdas in operator context, we just copy them,
;; as we will process their body later. However this does have
;; the problem that any free var referenced by the lambda is not
;; marked as needing residualization. Here we hack around this
;; and treat all bindings as referenced if we are in operator
;; context.
(or (eq? ctx 'operator)
(not (zero? (operand-use-count op)))))
;; values := (op ...)
;; effects := (op ...)
(define (residualize values effects)
;; Note, values and effects are reversed.
(cond
(in-order?
(let ((values (filter operand-residual-value ops)))
(if (null? values)
body
(build-result (map (compose var-name operand-var) values)
(map operand-sym values)
(map operand-residual-value values)
body))))
(else
(let ((body
(if (null? effects)
body
(let ((effect-vals (map operand-residual-value effects)))
(list->seq #f (reverse (cons body effect-vals)))))))
(if (null? values)
body
(let ((values (reverse values)))
(build-result (map (compose var-name operand-var) values)
(map operand-sym values)
(map operand-residual-value values)
body)))))))
;; old := (bool ...)
;; values := (op ...)
;; effects := ((op . value) ...)
(let prune ((old (map referenced? ops)) (values '()) (effects '()))
(let lp ((ops* ops) (values values) (effects effects))
(cond
((null? ops*)
(let ((new (map referenced? ops)))
(if (not (equal? new old))
(prune new values '())
(residualize values
(map (lambda (op val)
(set-operand-residual-value! op val)
op)
(map car effects) (map cdr effects))))))
(else
(let ((op (car ops*)))
(cond
((memq op values)
(lp (cdr ops*) values effects))
((operand-residual-value op)
(lp (cdr ops*) (cons op values) effects))
((referenced? op)
(set-operand-residual-value! op (visit-operand op counter 'value))
(lp (cdr ops*) (cons op values) effects))
(else
(lp (cdr ops*)
values
(let ((effect (visit-operand op counter 'effect)))
(if (void? effect)
effects
(acons op effect effects))))))))))))
(define (small-expression? x limit)
(let/ec k
(tree-il-fold
(lambda (x res) ; down
(1+ res))
(lambda (x res) ; up
(if (< res limit)
res
(k #f)))
0 x)
#t))
(define (extend-env sym op env)
(vhash-consq (operand-sym op) op (vhash-consq sym op env)))
(let loop ((exp exp)
(env vlist-null) ; vhash of gensym -> <operand>
(counter #f) ; inlined call stack
(ctx 'values)) ; effect, value, values, test, operator, or call
(define (lookup var)
(cond
((vhash-assq var env) => cdr)
(else (error "unbound var" var))))
;; Find a value referenced a specific number of times. This is a hack
;; that's used for propagating fresh data structures like rest lists and
;; prompt tags. Usually we wouldn't copy consed data, but we can do so in
;; some special cases like `apply' or prompts if we can account
;; for all of its uses.
;;
;; You don't want to use this in general because it introduces a slight
;; nonlinearity by running peval again (though with a small effort and size
;; counter).
;;
(define (find-definition x n-aliases)
(cond
((lexical-ref? x)
(cond
((lookup (lexical-ref-gensym x))
=> (lambda (op)
(if (var-set? (operand-var op))
(values #f #f)
(let ((y (or (operand-residual-value op)
(visit-operand op counter 'value 10 10)
(operand-source op))))
(cond
((and (lexical-ref? y)
(= (lexical-refcount (lexical-ref-gensym x)) 1))
;; X is a simple alias for Y. Recurse, regardless of
;; the number of aliases we were expecting.
(find-definition y n-aliases))
((= (lexical-refcount (lexical-ref-gensym x)) n-aliases)
;; We found a definition that is aliased the right
;; number of times. We still recurse in case it is a
;; lexical.
(values (find-definition y 1)
op))
(else
;; We can't account for our aliases.
(values #f #f)))))))
(else
;; A formal parameter. Can't say anything about that.
(values #f #f))))
((= n-aliases 1)
;; Not a lexical: success, but only if we are looking for an
;; unaliased value.
(values x #f))
(else (values #f #f))))
(define (visit exp ctx)
(loop exp env counter ctx))
(define (for-value exp) (visit exp 'value))
(define (for-values exp) (visit exp 'values))
(define (for-test exp) (visit exp 'test))
(define (for-effect exp) (visit exp 'effect))
(define (for-call exp) (visit exp 'call))
(define (for-tail exp) (visit exp ctx))
(if counter
(record-effort! counter))
(log 'visit ctx (and=> counter effort-counter)
(unparse-tree-il exp))
(match exp
(($ <const>)
(case ctx
((effect) (make-void #f))
(else exp)))
(($ <void>)
(case ctx
((test) (make-const #f #t))
(else exp)))
(($ <lexical-ref> _ _ gensym)
(log 'begin-copy gensym)
(let lp ((op (lookup gensym)))
(cond
((eq? ctx 'effect)
(log 'lexical-for-effect gensym)
(make-void #f))
((operand-alias op)
;; This is an unassigned operand that simply aliases some
;; other operand. Recurse to avoid residualizing the leaf
;; binding.
=> lp)
((eq? ctx 'call)
;; Don't propagate copies if we are residualizing a call.
(log 'residualize-lexical-call gensym op)
(residualize-lexical op))
((var-set? (operand-var op))
;; Assigned lexicals don't copy-propagate.
(log 'assigned-var gensym op)
(residualize-lexical op))
((not (operand-copyable? op))
;; We already know that this operand is not copyable.
(log 'not-copyable gensym op)
(residualize-lexical op))
((and=> (operand-constant-value op)
(lambda (x) (or (const? x) (void? x) (primitive-ref? x))))
;; A cache hit.
(let ((val (operand-constant-value op)))
(log 'memoized-constant gensym val)
(for-tail val)))
((visit-operand op counter (if (eq? ctx 'values) 'value ctx)
recursive-effort-limit operand-size-limit)
=>
;; If we end up deciding to residualize this value instead of
;; copying it, save that residualized value.
(lambda (val)
(cond
((not (constant-expression? val))
(log 'not-constant gensym op)
;; At this point, ctx is operator, test, or value. A
;; value that is non-constant in one context will be
;; non-constant in the others, so it's safe to record
;; that here, and avoid future visits.
(set-operand-copyable?! op #f)
(residualize-lexical op ctx val))
((or (const? val)
(void? val)
(primitive-ref? val))
;; Always propagate simple values that cannot lead to
;; code bloat.
(log 'copy-simple gensym val)
;; It could be this constant is the result of folding.
;; If that is the case, cache it. This helps loop
;; unrolling get farther.
(if (or (eq? ctx 'value) (eq? ctx 'values))
(begin
(log 'memoize-constant gensym val)
(set-operand-constant-value! op val)))
val)
((= 1 (var-refcount (operand-var op)))
;; Always propagate values referenced only once.
(log 'copy-single gensym val)
val)
;; FIXME: do demand-driven size accounting rather than
;; these heuristics.
((eq? ctx 'operator)
;; A pure expression in the operator position. Inline
;; if it's a lambda that's small enough.
(if (and (lambda? val)
(small-expression? val operator-size-limit))
(begin
(log 'copy-operator gensym val)
val)
(begin
(log 'too-big-for-operator gensym val)
(residualize-lexical op ctx val))))
(else
;; A pure expression, processed for call or for value.
;; Don't inline lambdas, because they will probably won't
;; fold because we don't know the operator.
(if (and (small-expression? val value-size-limit)
(not (tree-il-any lambda? val)))
(begin
(log 'copy-value gensym val)
val)
(begin
(log 'too-big-or-has-lambda gensym val)
(residualize-lexical op ctx val)))))))
(else
;; Visit failed. Either the operand isn't bound, as in
;; lambda formal parameters, or the copy was aborted.
(log 'unbound-or-aborted gensym op)
(residualize-lexical op)))))
(($ <lexical-set> src name gensym exp)
(let ((op (lookup gensym)))
(if (zero? (var-refcount (operand-var op)))
(let ((exp (for-effect exp)))
(if (void? exp)
exp
(make-seq src exp (make-void #f))))
(begin
(record-operand-use op)
(make-lexical-set src name (operand-sym op) (for-value exp))))))
(($ <let> src
(names ... rest)
(gensyms ... rest-sym)
(vals ... ($ <primcall> _ 'list rest-args))
($ <primcall> asrc 'apply
(proc args ...
($ <lexical-ref> _
(? (cut eq? <> rest))
(? (lambda (sym)
(and (eq? sym rest-sym)
(= (lexical-refcount sym) 1))))))))
(let* ((tmps (make-list (length rest-args) 'tmp))
(tmp-syms (fresh-temporaries tmps)))
(for-tail
(make-let src
(append names tmps)
(append gensyms tmp-syms)
(append vals rest-args)
(make-call
asrc
proc
(append args
(map (cut make-lexical-ref #f <> <>)
tmps tmp-syms)))))))
(($ <let> src names gensyms vals body)
(define (lookup-alias exp)
;; It's very common for macros to introduce something like:
;;
;; ((lambda (x y) ...) x-exp y-exp)
;;
;; In that case you might end up trying to inline something like:
;;
;; (let ((x x-exp) (y y-exp)) ...)
;;
;; But if x-exp is itself a lexical-ref that aliases some much
;; larger expression, perhaps it will fail to inline due to
;; size. However we don't want to introduce a useless alias
;; (in this case, x). So if the RHS of a let expression is a
;; lexical-ref, we record that expression. If we end up having
;; to residualize X, then instead we residualize X-EXP, as long
;; as it isn't assigned.
;;
(match exp
(($ <lexical-ref> _ _ sym)
(let ((op (lookup sym)))
(and (not (var-set? (operand-var op))) op)))
(_ #f)))
(let* ((vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(ops (make-bound-operands vars new vals
(lambda (exp counter ctx)
(loop exp env counter ctx))
(map lookup-alias vals)))
(env (fold extend-env env gensyms ops))
(body (loop body env counter ctx)))
(match body
(($ <const>)
(for-tail (list->seq src (append vals (list body)))))
(($ <lexical-ref> _ _ (? (lambda (sym) (memq sym new)) sym))
(let ((pairs (map cons new vals)))
;; (let ((x foo) (y bar) ...) x) => (begin bar ... foo)
(for-tail
(list->seq
src
(append (map cdr (alist-delete sym pairs eq?))
(list (assq-ref pairs sym)))))))
((and ($ <conditional> src*
($ <lexical-ref> _ _ sym) ($ <lexical-ref> _ _ sym) alt)
(? (lambda (_)
(case ctx
((test effect)
(and (equal? (list sym) new)
(= (lexical-refcount sym) 2)))
(else #f)))))
;; (let ((x EXP)) (if x x ALT)) -> (if EXP #t ALT) in test context
(make-conditional src* (visit-operand (car ops) counter 'test)
(make-const src* #t) alt))
(_
;; Only include bindings for which lexical references
;; have been residualized.
(prune-bindings ops #f body counter ctx
(lambda (names gensyms vals body)
(if (null? names) (error "what!" names))
(make-let src names gensyms vals body)))))))
(($ <fix> src names gensyms vals body)
;; Note the difference from the `let' case: here we use letrec*
;; so that the `visit' procedure for the new operands closes over
;; an environment that includes the operands. Also we don't try
;; to elide aliases, because we can't sensibly reduce something
;; like (letrec ((a b) (b a)) a).
(letrec* ((visit (lambda (exp counter ctx)
(loop exp env* counter ctx)))
(vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(ops (make-bound-operands vars new vals visit))
(env* (fold extend-env env gensyms ops))
(body* (visit body counter ctx)))
(if (const? body*)
body*
(prune-bindings ops #f body* counter ctx
(lambda (names gensyms vals body)
(make-fix src names gensyms vals body))))))
(($ <let-values> lv-src producer consumer)
;; Peval the producer, then try to inline the consumer into
;; the producer. If that succeeds, peval again. Otherwise
;; reconstruct the let-values, pevaling the consumer.
(let ((producer (for-values producer)))
(or (match consumer
((and ($ <lambda-case> src () #f rest #f () (rest-sym) body #f)
(? (lambda _ (singly-valued-expression? producer))))
(let ((tmp (gensym "tmp ")))
(record-new-temporary! 'tmp tmp 1)
(for-tail
(make-let
src (list 'tmp) (list tmp) (list producer)
(make-let
src (list rest) (list rest-sym)
(list
(make-primcall #f 'list
(list (make-lexical-ref #f 'tmp tmp))))
body)))))
(($ <lambda-case> src req opt rest #f inits gensyms body #f)
(let* ((nmin (length req))
(nmax (and (not rest) (+ nmin (if opt (length opt) 0)))))
(cond
((inline-values lv-src producer nmin nmax consumer)
=> for-tail)
(else #f))))
(_ #f))
(make-let-values lv-src producer (for-tail consumer)))))
(($ <toplevel-ref> src mod (? effect-free-primitive? name))
exp)
(($ <toplevel-ref>)
;; todo: open private local bindings.
exp)
(($ <module-ref> src module (? effect-free-primitive? name) #f)
(let ((module (false-if-exception
(resolve-module module #:ensure #f))))
(if (module? module)
(let ((var (module-variable module name)))
(if (eq? var (module-variable the-scm-module name))
(make-primitive-ref src name)
exp))
exp)))
(($ <module-ref> src module name public?)
(cond
((and cross-module-inlining?
public?
(and=> (resolve-module module #:ensure #f)
(lambda (module)
(and=> (module-public-interface module)
(lambda (iface)
(and=> (module-inlinable-exports iface)
(lambda (proc) (proc name))))))))
=> (lambda (inlined)
;; Similar logic to lexical-ref, but we can't enumerate
;; uses, and don't know about aliases.
(log 'begin-xm-copy exp inlined)
(cond
((eq? ctx 'effect)
(log 'xm-effect)
(make-void #f))
((eq? ctx 'call)
;; Don't propagate copies if we are residualizing a call.
(log 'residualize-xm-call exp)
exp)
((or (const? inlined) (void? inlined) (primitive-ref? inlined))
;; Always propagate simple values that cannot lead to
;; code bloat.
(log 'copy-xm-const)
(for-tail inlined))
;; Inline in operator position if it's a lambda that's
;; small enough. Normally the inlinable-exports pass
;; will only make small lambdas available for inlining,
;; but you never know.
((and (eq? ctx 'operator) (lambda? inlined)
(small-expression? inlined operator-size-limit))
(log 'copy-xm-operator exp inlined)
(splice-expression inlined))
(else
(log 'xm-copy-failed)
;; Could copy small lambdas in value context. Something
;; to revisit.
exp))))
(else exp)))
(($ <module-set> src mod name public? exp)
(make-module-set src mod name public? (for-value exp)))
(($ <toplevel-define> src mod name exp)
(make-toplevel-define src mod name (for-value exp)))
(($ <toplevel-set> src mod name exp)
(make-toplevel-set src mod name (for-value exp)))
(($ <primitive-ref>)
(case ctx
((effect) (make-void #f))
((test) (make-const #f #t))
(else exp)))
(($ <conditional> src condition subsequent alternate)
(define (call-with-failure-thunk exp proc)
(match exp
(($ <call> _ _ ()) (proc exp))
(($ <primcall> _ _ ()) (proc exp))
(($ <const>) (proc exp))
(($ <void>) (proc exp))
(($ <lexical-ref>) (proc exp))
(_
(let ((t (gensym "failure-")))
(record-new-temporary! 'failure t 2)
(make-let
src (list 'failure) (list t)
(list
(make-lambda
#f '()
(make-lambda-case #f '() #f #f #f '() '() exp #f)))
(proc (make-call #f (make-lexical-ref #f 'failure t)
'())))))))
(define (simplify-conditional c)
(match c
;; Swap the arms of (if (not FOO) A B), to simplify.
(($ <conditional> src ($ <primcall> _ 'not (pred))
subsequent alternate)
(simplify-conditional
(make-conditional src pred alternate subsequent)))
;; In the following four cases, we try to expose the test to
;; the conditional. This will let the CPS conversion avoid
;; reifying boolean literals in some cases.
(($ <conditional> src ($ <let> src* names vars vals body)
subsequent alternate)
(make-let src* names vars vals
(simplify-conditional
(make-conditional src body subsequent alternate))))
(($ <conditional> src ($ <fix> src* names vars vals body)
subsequent alternate)
(make-fix src* names vars vals
(simplify-conditional
(make-conditional src body subsequent alternate))))
(($ <conditional> src ($ <seq> src* head tail)
subsequent alternate)
(make-seq src* head
(simplify-conditional
(make-conditional src tail subsequent alternate))))
;; Special cases for common tests in the predicates of chains
;; of if expressions.
(($ <conditional> src
($ <conditional> src* outer-test inner-test ($ <const> _ #f))
inner-subsequent
alternate)
(let lp ((alternate alternate))
(match alternate
;; Lift a common repeated test out of a chain of if
;; expressions.
(($ <conditional> _ (? (cut tree-il=? outer-test <>))
other-subsequent alternate)
(make-conditional
src outer-test
(simplify-conditional
(make-conditional src* inner-test inner-subsequent
other-subsequent))
alternate))
;; Likewise, but punching through any surrounding
;; failure continuations.
(($ <let> let-src (name) (sym) ((and thunk ($ <lambda>))) body)
(make-let
let-src (list name) (list sym) (list thunk)
(lp body)))
;; Otherwise, rotate AND tests to expose a simple
;; condition in the front. Although this may result in
;; lexically binding failure thunks, the thunks will be
;; compiled to labels allocation, so there's no actual
;; code growth.
(_
(call-with-failure-thunk
alternate
(lambda (failure)
(make-conditional
src outer-test
(simplify-conditional
(make-conditional src* inner-test inner-subsequent failure))
failure)))))))
(_ c)))
(match (for-test condition)
(($ <const> _ val)
(if val
(for-tail subsequent)
(for-tail alternate)))
(c
(simplify-conditional
(make-conditional src c (for-tail subsequent)
(for-tail alternate))))))
(($ <primcall> src 'call-with-values
(producer
($ <lambda> _ _
(and consumer
;; No optional or kwargs.
($ <lambda-case>
_ req #f rest #f () gensyms body #f)))))
(for-tail (make-let-values src (make-call src producer '())
consumer)))
(($ <primcall> src 'dynamic-wind (w thunk u))
(for-tail
(with-temporaries
src (list w u) 2 constant-expression?
(match-lambda
((w u)
(make-seq
src
(make-seq
src
(make-conditional
src
;; fixme: introduce logic to fold thunk?
(make-primcall src 'thunk? (list u))
(make-call src w '())
(make-primcall
src 'throw
(list
(make-const #f 'wrong-type-arg)
(make-const #f "dynamic-wind")
(make-const #f "Wrong type (expecting thunk): ~S")
(make-primcall #f 'list (list u))
(make-primcall #f 'list (list u)))))
(make-primcall src 'wind (list w u)))
(make-begin0 src
(make-call src thunk '())
(make-seq src
(make-primcall src 'unwind '())
(make-call src u '())))))))))
(($ <primcall> src 'with-fluid* (f v thunk))
(for-tail
(with-temporaries
src (list f v thunk) 1 constant-expression?
(match-lambda
((f v thunk)
(make-seq src
(make-primcall src 'push-fluid (list f v))
(make-begin0 src
(make-call src thunk '())
(make-primcall src 'pop-fluid '()))))))))
(($ <primcall> src 'with-dynamic-state (state thunk))
(for-tail
(with-temporaries
src (list state thunk) 1 constant-expression?
(match-lambda
((state thunk)
(make-seq src
(make-primcall src 'push-dynamic-state (list state))
(make-begin0 src
(make-call src thunk '())
(make-primcall src 'pop-dynamic-state
'()))))))))
(($ <primcall> src 'values exps)
(cond
((null? exps)
(if (eq? ctx 'effect)
(make-void #f)
exp))
(else
(let ((vals (map for-value exps)))
(if (and (case ctx
((value test effect) #t)
(else (null? (cdr vals))))
(every singly-valued-expression? vals))
(for-tail (list->seq src (append (cdr vals) (list (car vals)))))
(make-primcall src 'values vals))))))
(($ <primcall> src 'apply (proc args ... tail))
(let lp ((tail* (find-definition tail 1)) (speculative? #t))
(define (copyable? x)
;; Inlining a result from find-definition effectively copies it,
;; relying on the let-pruning to remove its original binding. We
;; shouldn't copy non-constant expressions.
(or (not speculative?) (constant-expression? x)))
(match tail*
(($ <const> _ (args* ...))
(let ((args* (map (cut make-const #f <>) args*)))
(for-tail (make-call src proc (append args args*)))))
(($ <primcall> _ 'cons
((and head (? copyable?)) (and tail (? copyable?))))
(for-tail (make-primcall src 'apply
(cons proc
(append args (list head tail))))))
(($ <primcall> _ 'list
(and args* ((? copyable?) ...)))
(for-tail (make-call src proc (append args args*))))
(tail*
(if speculative?
(lp (for-value tail) #f)
(let ((args (append (map for-value args) (list tail*))))
(make-primcall src 'apply
(cons (for-value proc) args))))))))
(($ <primcall> src (? constructor-primitive? name) args)
(cond
((and (memq ctx '(effect test))
(match (cons name args)
((or ('cons _ _)
('list . _)
('vector . _)
('make-prompt-tag)
('make-prompt-tag ($ <const> _ (? string?))))
#t)
(_ #f)))
;; Some expressions can be folded without visiting the
;; arguments for value.
(let ((res (if (eq? ctx 'effect)
(make-void #f)
(make-const #f #t))))
(for-tail (list->seq src (append args (list res))))))
(else
(match (cons name (map for-value args))
(('cons x ($ <const> _ (? (cut eq? <> '()))))
(make-primcall src 'list (list x)))
(('cons x ($ <primcall> _ 'list elts))
(make-primcall src 'list (cons x elts)))
(('list)
(make-const src '()))
(('vector)
(make-const src '#()))
((name . args)
(make-primcall src name args))))))
(($ <primcall> src 'thunk? (proc))
(case ctx
((effect)
(for-tail (make-seq src proc (make-void src))))
(else
(match (for-value proc)
(($ <lambda> _ _ ($ <lambda-case> _ req))
(for-tail (make-const src (null? req))))
(proc
(match (find-definition proc 2)
(($ <lambda> _ _ ($ <lambda-case> _ req))
(for-tail (make-const src (null? req))))
(_
(make-primcall src 'thunk? (list proc)))))))))
(($ <primcall> src name args)
(match (cons name (map for-value args))
;; FIXME: these for-tail recursions could take place outside
;; an effort counter.
(('car ($ <primcall> src 'cons (head tail)))
(for-tail (make-seq src tail head)))
(('cdr ($ <primcall> src 'cons (head tail)))
(for-tail (make-seq src head tail)))
(('car ($ <primcall> src 'list (head . tail)))
(for-tail (list->seq src (append tail (list head)))))
(('cdr ($ <primcall> src 'list (head . tail)))
(for-tail (make-seq src head (make-primcall #f 'list tail))))
(('car ($ <const> src (head . tail)))
(for-tail (make-const src head)))
(('cdr ($ <const> src (head . tail)))
(for-tail (make-const src tail)))
(((or 'memq 'memv) k ($ <const> _ (elts ...)))
;; FIXME: factor
(case ctx
((effect)
(for-tail
(make-seq src k (make-void #f))))
((test)
(cond
((const? k)
;; A shortcut. The `else' case would handle it, but
;; this way is faster.
(let ((member (case name ((memq) memq) ((memv) memv))))
(make-const #f (and (member (const-exp k) elts) #t))))
((null? elts)
(for-tail
(make-seq src k (make-const #f #f))))
(else
(let ((t (gensym "t "))
(eq (if (eq? name 'memq) 'eq? 'eqv?)))
(record-new-temporary! 't t (length elts))
(for-tail
(make-let
src (list 't) (list t) (list k)
(let lp ((elts elts))
(define test
(make-primcall #f eq
(list (make-lexical-ref #f 't t)
(make-const #f (car elts)))))
(if (null? (cdr elts))
test
(make-conditional src test
(make-const #f #t)
(lp (cdr elts)))))))))))
(else
(cond
((const? k)
(let ((member (case name ((memq) memq) ((memv) memv))))
(make-const #f (member (const-exp k) elts))))
((null? elts)
(for-tail (make-seq src k (make-const #f #f))))
(else
(make-primcall src name (list k (make-const #f elts))))))))
(((? equality-primitive?) a (and b ($ <const> _ v)))
(cond
((const? a)
;; Constants will be deduplicated later, but eq? folding can
;; happen now. Anticipate the deduplication by using equal?
;; instead of eq? or eqv?.
(for-tail (make-const src (equal? (const-exp a) v))))
((eq? name 'eq?)
;; Already in a reduced state.
(make-primcall src 'eq? (list a b)))
((or (memq v '(#f #t () #nil)) (symbol? v) (char? v)
;; Only fold to eq? value is a fixnum on target and
;; host, as constant folding may have us compare on host
;; as well.
(and (exact-integer? v)
(<= (max (target-most-negative-fixnum)
most-negative-fixnum)
v
(min (target-most-positive-fixnum)
most-positive-fixnum))))
;; Reduce to eq?. Note that in Guile, characters are
;; comparable with eq?.
(make-primcall src 'eq? (list a b)))
((number? v)
;; equal? and eqv? on non-fixnum numbers is the same as
;; eqv?, and can't be reduced beyond that.
(make-primcall src 'eqv? (list a b)))
((eq? name 'eqv?)
;; eqv? on anything else is the same as eq?.
(make-primcall src 'eq? (list a b)))
(else
;; FIXME: inline a specialized implementation of equal? for
;; V here.
(make-primcall src name (list a b)))))
(((? equality-primitive?) (and a ($ <const>)) b)
(for-tail (make-primcall src name (list b a))))
(((? equality-primitive?) ($ <lexical-ref> _ _ sym)
($ <lexical-ref> _ _ sym))
(for-tail (make-const src #t)))
(('logbit? ($ <const> src2
(? (lambda (bit)
(and (exact-integer? bit)
(<= 0 bit (logcount most-positive-fixnum))))
bit))
val)
(for-tail
(make-primcall src 'logtest
(list (make-const src2 (ash 1 bit)) val))))
(('logtest a b)
(for-tail
(make-primcall
src
'not
(list
(make-primcall src 'eq?
(list (make-primcall src 'logand (list a b))
(make-const src 0)))))))
(((? effect-free-primitive?) . args)
(fold-constants src name args ctx))
((name . args)
(make-primcall src name args))))
(($ <call> src orig-proc orig-args)
;; todo: augment the global env with specialized functions
(let revisit-proc ((proc (visit orig-proc 'operator)))
(match proc
(($ <primitive-ref> _ name)
(let ((exp (expand-primcall (make-primcall src name orig-args))))
(set! store
(augment-var-table-with-externally-introduced-lexicals
exp store))
(for-tail exp)))
(($ <lambda> _ _
($ <lambda-case> _ req opt rest #f inits gensyms body #f))
;; Simple case: no keyword arguments.
;; todo: handle the more complex cases
(let* ((nargs (length orig-args))
(nreq (length req))
(opt (or opt '()))
(rest (if rest (list rest) '()))
(nopt (length opt))
(key (source-expression proc)))
(define (singly-referenced-lambda? orig-proc)
(match orig-proc
(($ <lambda>) #t)
(($ <lexical-ref> _ _ sym)
(and (not (assigned-lexical? sym))
(= (lexical-refcount sym) 1)
(singly-referenced-lambda?
(operand-source (lookup sym)))))
(_ #f)))
(define (inlined-call)
(let ((req-vals (list-head orig-args nreq))
(opt-vals (let lp ((args (drop orig-args nreq))
(inits inits)
(out '()))
(match inits
(() (reverse out))
((init . inits)
(match args
(()
(lp '() inits (cons init out)))
((arg . args)
(lp args inits (cons arg out))))))))
(rest-vals (cond
((> nargs (+ nreq nopt))
(list (make-primcall
#f 'list
(drop orig-args (+ nreq nopt)))))
((null? rest) '())
(else (list (make-const #f '()))))))
(if (>= nargs (+ nreq nopt))
(make-let src
(append req opt rest)
gensyms
(append req-vals opt-vals rest-vals)
body)
;; The default initializers of optional arguments
;; may refer to earlier arguments, so in the general
;; case we must expand into a series of nested let
;; expressions.
;;
;; In the generated code, the outermost let
;; expression will bind all required arguments, as
;; well as the empty rest argument, if any. Each
;; optional argument will be bound within an inner
;; let.
(make-let src
(append req rest)
(append (list-head gensyms nreq)
(last-pair gensyms))
(append req-vals rest-vals)
(fold-right (lambda (var gensym val body)
(make-let src
(list var)
(list gensym)
(list val)
body))
body
opt
(list-head (drop gensyms nreq) nopt)
opt-vals)))))
(cond
((or (< nargs nreq) (and (null? rest) (> nargs (+ nreq nopt))))
;; An error, or effecting arguments.
(make-call src (for-call orig-proc) (map for-value orig-args)))
((or (and=> (find-counter key counter) counter-recursive?)
(singly-referenced-lambda? orig-proc))
;; A recursive call, or a lambda in the operator
;; position of the source expression. Process again in
;; tail context.
;;
;; In the recursive case, mark intervening counters as
;; recursive, so we can handle a toplevel counter that
;; recurses mutually with some other procedure.
;; Otherwise, the next time we see the other procedure,
;; the effort limit would be clamped to 100.
;;
(let ((found (find-counter key counter)))
(if (and found (counter-recursive? found))
(let lp ((counter counter))
(if (not (eq? counter found))
(begin
(set-counter-recursive?! counter #t)
(lp (counter-prev counter)))))))
(log 'inline-recurse key)
(loop (inlined-call) env counter ctx))
(else
;; An integration at the top-level, the first
;; recursion of a recursive procedure, or a nested
;; integration of a procedure that hasn't been seen
;; yet.
(log 'inline-begin exp)
(let/ec k
(define (abort)
(log 'inline-abort exp)
(k (make-call src (for-call orig-proc)
(map for-value orig-args))))
(define new-counter
(cond
;; These first two cases will transfer effort
;; from the current counter into the new
;; counter.
((find-counter key counter)
=> (lambda (prev)
(make-recursive-counter recursive-effort-limit
operand-size-limit
prev counter)))
(counter
(make-nested-counter abort key counter))
;; This case opens a new account, effectively
;; printing money. It should only do so once
;; for each call site in the source program.
(else
(make-top-counter effort-limit operand-size-limit
abort key))))
(define result
(loop (inlined-call) env new-counter ctx))
(if counter
;; The nested inlining attempt succeeded.
;; Deposit the unspent effort and size back
;; into the current counter.
(transfer! new-counter counter))
(log 'inline-end result exp)
result)))))
(($ <lambda> src-proc meta orig-body)
;; If there are multiple cases and one matches nargs, omit all the others.
(or (and
orig-body
(lambda-case-alternate orig-body)
(let ((nargs (length orig-args)))
(let loop ((body orig-body))
(match body
(#f #f) ;; No matching case; an error.
(($ <lambda-case> src-case req opt rest kw inits gensyms case-body alt)
(cond (kw
;; FIXME: Not handling keyword cases.
#f)
((let ((nreq (length req)))
(if rest
(<= nreq nargs)
(<= nreq nargs (+ nreq (if opt (length opt) 0)))))
;; Keep only this case.
(revisit-proc
(make-lambda
src-proc meta
(make-lambda-case src-case req opt rest kw inits gensyms case-body #f))))
(else (loop alt))))))))
(make-call src (for-call orig-proc) (map for-value orig-args))))
(($ <let> _ _ _ vals _)
;; Attempt to inline `let' in the operator position.
;;
;; We have to re-visit the proc in value mode, since the
;; `let' bindings might have been introduced or renamed,
;; whereas the lambda (if any) in operator position has not
;; been renamed.
(if (or (and-map constant-expression? vals)
(and-map constant-expression? orig-args))
;; The arguments and the let-bound values commute.
(match (for-value orig-proc)
(($ <let> lsrc names syms vals body)
(log 'inline-let orig-proc)
(for-tail
(make-let lsrc names syms vals
(make-call src body orig-args))))
;; It's possible for a `let' to go away after the
;; visit due to the fact that visiting a procedure in
;; value context will prune unused bindings, whereas
;; visiting in operator mode can't because it doesn't
;; traverse through lambdas. In that case re-visit
;; the procedure.
(proc (revisit-proc proc)))
(make-call src (for-call orig-proc)
(map for-value orig-args))))
(_
(make-call src (for-call orig-proc) (map for-value orig-args))))))
(($ <lambda> src meta body)
(case ctx
((effect) (make-void #f))
((test) (make-const #f #t))
((operator) exp)
(else (record-source-expression!
exp
(make-lambda src meta (and body (for-values body)))))))
(($ <lambda-case> src req opt rest kw inits gensyms body alt)
(define (lift-applied-lambda body gensyms)
(and (not opt) rest (not kw)
(match body
(($ <primcall> _ 'apply
(($ <lambda> _ _ (and lcase ($ <lambda-case> _ req1)))
($ <lexical-ref> _ _ sym)
...))
(and (equal? sym gensyms)
(not (lambda-case-alternate lcase))
(<= (length req) (length req1))
(every (lambda (s)
(= (lexical-refcount s) 1))
sym)
lcase))
(_ #f))))
(let* ((vars (map lookup-var gensyms))
(new (fresh-gensyms vars))
(env (fold extend-env env gensyms
(make-unbound-operands vars new)))
(new-sym (lambda (old)
(operand-sym (cdr (vhash-assq old env)))))
(body (loop body env counter ctx)))
(or
;; (lambda args (apply (lambda ...) args)) => (lambda ...)
(lift-applied-lambda body new)
(make-lambda-case src req opt rest
(match kw
((aok? (kw name old) ...)
(cons aok? (map list kw name (map new-sym old))))
(_ #f))
(map (cut loop <> env counter 'value) inits)
new
body
(and alt (for-tail alt))))))
(($ <seq> src head tail)
(let ((head (for-effect head))
(tail (for-tail tail)))
(if (void? head)
tail
(make-seq src
(if (and (seq? head)
(void? (seq-tail head)))
(seq-head head)
head)
tail))))
(($ <prompt> src escape-only? tag body handler)
(define (make-prompt-tag? x)
(match x
(($ <primcall> _ 'make-prompt-tag (or () ((? constant-expression?))))
#t)
(_ #f)))
(let ((tag (for-value tag))
(body (if escape-only? (for-tail body) (for-value body))))
(cond
((find-definition tag 1)
(lambda (val op)
(make-prompt-tag? val))
=> (lambda (val op)
;; There is no way that an <abort> could know the tag
;; for this <prompt>, so we can elide the <prompt>
;; entirely.
(when op (unrecord-operand-uses op 1))
(for-tail (if escape-only? body (make-call src body '())))))
(else
(let ((handler (for-value handler)))
(define (escape-only-handler? handler)
(match handler
(($ <lambda> _ _
($ <lambda-case> _ (_ . _) _ _ _ _ (k . _) body #f))
(not (tree-il-any
(match-lambda
(($ <lexical-ref> _ _ (? (cut eq? <> k))) #t)
(_ #f))
body)))
(else #f)))
(if (and (not escape-only?) (escape-only-handler? handler))
;; Prompt transitioning to escape-only; transition body
;; to be an expression.
(for-tail
(make-prompt src #t tag (make-call #f body '()) handler))
(make-prompt src escape-only? tag body handler)))))))
(($ <abort> src tag args tail)
(make-abort src (for-value tag) (map for-value args)
(for-value tail))))))