1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/whippet/benchmarks/mt-gcbench.c
2025-04-11 14:10:41 +02:00

402 lines
13 KiB
C

// This is adapted from a benchmark written by John Ellis and Pete Kovac
// of Post Communications.
// It was modified by Hans Boehm of Silicon Graphics.
// Translated to C++ 30 May 1997 by William D Clinger of Northeastern Univ.
// Translated to C 15 March 2000 by Hans Boehm, now at HP Labs.
//
// This is no substitute for real applications. No actual application
// is likely to behave in exactly this way. However, this benchmark was
// designed to be more representative of real applications than other
// Java GC benchmarks of which we are aware.
// It attempts to model those properties of allocation requests that
// are important to current GC techniques.
// It is designed to be used either to obtain a single overall performance
// number, or to give a more detailed estimate of how collector
// performance varies with object lifetimes. It prints the time
// required to allocate and collect balanced binary trees of various
// sizes. Smaller trees result in shorter object lifetimes. Each cycle
// allocates roughly the same amount of memory.
// Two data structures are kept around during the entire process, so
// that the measured performance is representative of applications
// that maintain some live in-memory data. One of these is a tree
// containing many pointers. The other is a large array containing
// double precision floating point numbers. Both should be of comparable
// size.
//
// The results are only really meaningful together with a specification
// of how much memory was used. It is possible to trade memory for
// better time performance. This benchmark should be run in a 32 MB
// heap, though we don't currently know how to enforce that uniformly.
//
// Unlike the original Ellis and Kovac benchmark, we do not attempt
// measure pause times. This facility should eventually be added back
// in. There are several reasons for omitting it for now. The original
// implementation depended on assumptions about the thread scheduler
// that don't hold uniformly. The results really measure both the
// scheduler and GC. Pause time measurements tend to not fit well with
// current benchmark suites. As far as we know, none of the current
// commercial Java implementations seriously attempt to minimize GC pause
// times.
#include <errno.h>
#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "assert.h"
#include "gc-api.h"
#include "gc-basic-stats.h"
#include "mt-gcbench-types.h"
#include "simple-roots-api.h"
#include "simple-allocator.h"
#define MAX_THREAD_COUNT 256
static const int long_lived_tree_depth = 16; // about 4Mb
static const int array_size = 500000; // about 4Mb
static const int min_tree_depth = 4;
static const int max_tree_depth = 16;
typedef HANDLE_TO(Node) NodeHandle;
typedef HANDLE_TO(DoubleArray) DoubleArrayHandle;
static Node* allocate_node(struct gc_mutator *mut) {
// memset to 0 by the collector.
return gc_allocate_with_kind(mut, ALLOC_KIND_NODE, sizeof (Node));
}
static DoubleArray* allocate_double_array(struct gc_mutator *mut,
size_t size) {
// May be uninitialized.
size_t bytes = sizeof(DoubleArray) + sizeof (double) * size;
DoubleArray *ret =
gc_allocate_pointerless_with_kind(mut, ALLOC_KIND_DOUBLE_ARRAY, bytes);
ret->length = size;
return ret;
}
static Hole* allocate_hole(struct gc_mutator *mut, size_t size) {
size_t bytes = sizeof(Hole) + sizeof (uintptr_t) * size;
Hole *ret = gc_allocate_with_kind(mut, ALLOC_KIND_HOLE, bytes);
ret->length = size;
return ret;
}
static unsigned long current_time(void) {
struct timeval t = { 0 };
gettimeofday(&t, NULL);
return t.tv_sec * 1000 * 1000 + t.tv_usec;
}
static double elapsed_millis(unsigned long start) {
return (current_time() - start) * 1e-3;
}
// Nodes used by a tree of a given size
static int tree_size(int i) {
return ((1 << (i + 1)) - 1);
}
// Number of iterations to use for a given tree depth
static int compute_num_iters(int i) {
return 2 * tree_size(max_tree_depth + 2) / tree_size(i);
}
// A power-law distribution. Each integer was selected by starting at 0, taking
// a random number in [0,1), and then accepting the integer if the random number
// was less than 0.15, or trying again with the next integer otherwise. Useful
// for modelling allocation sizes or number of garbage objects to allocate
// between live allocations.
static const uint8_t power_law_distribution[256] = {
1, 15, 3, 12, 2, 8, 4, 0, 18, 7, 9, 8, 15, 2, 36, 5,
1, 9, 6, 11, 9, 19, 2, 0, 0, 3, 9, 6, 3, 2, 1, 1,
6, 1, 8, 4, 2, 0, 5, 3, 7, 0, 0, 3, 0, 4, 1, 7,
1, 8, 2, 2, 2, 14, 0, 7, 8, 0, 2, 1, 4, 12, 7, 5,
0, 3, 4, 13, 10, 2, 3, 7, 0, 8, 0, 23, 0, 16, 1, 1,
6, 28, 1, 18, 0, 3, 6, 5, 8, 6, 14, 5, 2, 5, 0, 11,
0, 18, 4, 16, 1, 4, 3, 13, 3, 23, 7, 4, 10, 5, 3, 13,
0, 14, 5, 5, 2, 5, 0, 16, 2, 0, 1, 1, 0, 0, 4, 2,
7, 7, 0, 5, 7, 2, 1, 24, 27, 3, 7, 1, 0, 8, 1, 4,
0, 3, 0, 7, 7, 3, 9, 2, 9, 2, 5, 10, 1, 1, 12, 6,
2, 9, 5, 0, 4, 6, 0, 7, 2, 1, 5, 4, 1, 0, 1, 15,
4, 0, 15, 4, 0, 0, 32, 18, 2, 2, 1, 7, 8, 3, 11, 1,
2, 7, 11, 1, 9, 1, 2, 6, 11, 17, 1, 2, 5, 1, 14, 3,
6, 1, 1, 15, 3, 1, 0, 6, 10, 8, 1, 3, 2, 7, 0, 1,
0, 11, 3, 3, 5, 8, 2, 0, 0, 7, 12, 2, 5, 20, 3, 7,
4, 4, 5, 22, 1, 5, 2, 7, 15, 2, 4, 6, 11, 8, 12, 1
};
static size_t power_law(size_t *counter) {
return power_law_distribution[(*counter)++ & 0xff];
}
struct thread {
struct gc_mutator *mut;
struct gc_mutator_roots roots;
size_t counter;
};
static void allocate_garbage(struct thread *t) {
size_t hole = power_law(&t->counter);
if (hole) {
allocate_hole(t->mut, hole);
}
}
static inline void set_field(struct gc_mutator *mut, Node *obj,
Node **field, Node *val) {
gc_write_barrier(mut, gc_ref_from_heap_object(obj), sizeof(Node),
gc_edge(field),
gc_ref_from_heap_object(val));
*field = val;
}
// Build tree top down, assigning to older objects.
static void populate(struct thread *t, int depth, Node *node) {
struct gc_mutator *mut = t->mut;
if (depth <= 0)
return;
NodeHandle self = { node };
PUSH_HANDLE(t, self);
allocate_garbage(t);
NodeHandle l = { allocate_node(mut) };
PUSH_HANDLE(t, l);
allocate_garbage(t);
NodeHandle r = { allocate_node(mut) };
PUSH_HANDLE(t, r);
set_field(mut, HANDLE_REF(self), &HANDLE_REF(self)->left, HANDLE_REF(l));
set_field(mut, HANDLE_REF(self), &HANDLE_REF(self)->right, HANDLE_REF(r));
// i is 0 because the memory is zeroed.
HANDLE_REF(self)->j = depth;
populate(t, depth-1, HANDLE_REF(self)->left);
populate(t, depth-1, HANDLE_REF(self)->right);
POP_HANDLE(t);
POP_HANDLE(t);
POP_HANDLE(t);
}
// Build tree bottom-up
static Node* make_tree(struct thread *t, int depth) {
struct gc_mutator *mut = t->mut;
if (depth <= 0)
return allocate_node(mut);
NodeHandle left = { make_tree(t, depth-1) };
PUSH_HANDLE(t, left);
NodeHandle right = { make_tree(t, depth-1) };
PUSH_HANDLE(t, right);
allocate_garbage(t);
Node *result = allocate_node(mut);
result->left = HANDLE_REF(left);
result->right = HANDLE_REF(right);
// i is 0 because the memory is zeroed.
result->j = depth;
POP_HANDLE(t);
POP_HANDLE(t);
return result;
}
static void validate_tree(Node *tree, int depth) {
#ifndef NDEBUG
GC_ASSERT_EQ(tree->i, 0);
GC_ASSERT_EQ(tree->j, depth);
if (depth == 0) {
GC_ASSERT(!tree->left);
GC_ASSERT(!tree->right);
} else {
GC_ASSERT(tree->left);
GC_ASSERT(tree->right);
validate_tree(tree->left, depth - 1);
validate_tree(tree->right, depth - 1);
}
#endif
}
static void time_construction(struct thread *t, int depth) {
struct gc_mutator *mut = t->mut;
int num_iters = compute_num_iters(depth);
NodeHandle temp_tree = { NULL };
PUSH_HANDLE(t, temp_tree);
printf("Creating %d trees of depth %d\n", num_iters, depth);
{
unsigned long start = current_time();
for (int i = 0; i < num_iters; ++i) {
HANDLE_SET(temp_tree, allocate_node(mut));
populate(t, depth, HANDLE_REF(temp_tree));
validate_tree(HANDLE_REF(temp_tree), depth);
HANDLE_SET(temp_tree, NULL);
}
printf("\tTop down construction took %.3f msec\n",
elapsed_millis(start));
}
{
long start = current_time();
for (int i = 0; i < num_iters; ++i) {
HANDLE_SET(temp_tree, make_tree(t, depth));
validate_tree(HANDLE_REF(temp_tree), depth);
HANDLE_SET(temp_tree, NULL);
}
printf("\tBottom up construction took %.3f msec\n",
elapsed_millis(start));
}
POP_HANDLE(t);
}
struct call_with_gc_data {
void* (*f)(struct thread *);
struct gc_heap *heap;
};
static void* call_with_gc_inner(struct gc_stack_addr *addr, void *arg) {
struct call_with_gc_data *data = arg;
struct gc_mutator *mut = gc_init_for_thread(addr, data->heap);
struct thread t = { mut, };
gc_mutator_set_roots(mut, &t.roots);
void *ret = data->f(&t);
gc_finish_for_thread(mut);
return ret;
}
static void* call_with_gc(void* (*f)(struct thread *),
struct gc_heap *heap) {
struct call_with_gc_data data = { f, heap };
return gc_call_with_stack_addr(call_with_gc_inner, &data);
}
static void* run_one_test(struct thread *t) {
NodeHandle long_lived_tree = { NULL };
NodeHandle temp_tree = { NULL };
DoubleArrayHandle array = { NULL };
PUSH_HANDLE(t, long_lived_tree);
PUSH_HANDLE(t, temp_tree);
PUSH_HANDLE(t, array);
// Create a long lived object
printf(" Creating a long-lived binary tree of depth %d\n",
long_lived_tree_depth);
HANDLE_SET(long_lived_tree, allocate_node(t->mut));
populate(t, long_lived_tree_depth, HANDLE_REF(long_lived_tree));
// Create long-lived array, filling half of it
printf(" Creating a long-lived array of %d doubles\n", array_size);
HANDLE_SET(array, allocate_double_array(t->mut, array_size));
for (int i = 0; i < array_size/2; ++i) {
HANDLE_REF(array)->values[i] = 1.0/i;
}
for (int d = min_tree_depth; d <= max_tree_depth; d += 2) {
time_construction(t, d);
}
validate_tree(HANDLE_REF(long_lived_tree), long_lived_tree_depth);
// Fake reference to LongLivedTree and array to keep them from being optimized
// away.
if (HANDLE_REF(long_lived_tree)->i != 0
|| HANDLE_REF(array)->values[1000] != 1.0/1000)
fprintf(stderr, "Failed\n");
POP_HANDLE(t);
POP_HANDLE(t);
POP_HANDLE(t);
return NULL;
}
static void* run_one_test_in_thread(void *arg) {
struct gc_heap *heap = arg;
return call_with_gc(run_one_test, heap);
}
struct join_data { int status; pthread_t thread; };
static void *join_thread(void *data) {
struct join_data *join_data = data;
void *ret;
join_data->status = pthread_join(join_data->thread, &ret);
return ret;
}
int main(int argc, char *argv[]) {
size_t heap_max_live =
tree_size(long_lived_tree_depth) * sizeof(Node) +
tree_size(max_tree_depth) * sizeof(Node) +
sizeof(DoubleArray) + sizeof(double) * array_size;
if (argc < 3 || argc > 4) {
fprintf(stderr, "usage: %s MULTIPLIER NTHREADS [GC-OPTIONS]\n", argv[0]);
return 1;
}
double multiplier = atof(argv[1]);
size_t nthreads = atol(argv[2]);
if (!(0.1 < multiplier && multiplier < 100)) {
fprintf(stderr, "Failed to parse heap multiplier '%s'\n", argv[1]);
return 1;
}
if (nthreads < 1 || nthreads > MAX_THREAD_COUNT) {
fprintf(stderr, "Expected integer between 1 and %d for thread count, got '%s'\n",
(int)MAX_THREAD_COUNT, argv[2]);
return 1;
}
size_t heap_size = heap_max_live * multiplier * nthreads;
struct gc_options *options = gc_allocate_options();
gc_options_set_int(options, GC_OPTION_HEAP_SIZE_POLICY, GC_HEAP_SIZE_FIXED);
gc_options_set_size(options, GC_OPTION_HEAP_SIZE, heap_size);
if (argc == 4) {
if (!gc_options_parse_and_set_many(options, argv[3])) {
fprintf(stderr, "Failed to set GC options: '%s'\n", argv[3]);
return 1;
}
}
struct gc_heap *heap;
struct gc_mutator *mut;
struct gc_basic_stats stats;
if (!gc_init(options, NULL, &heap, &mut, GC_BASIC_STATS, &stats)) {
fprintf(stderr, "Failed to initialize GC with heap size %zu bytes\n",
heap_size);
return 1;
}
struct thread main_thread = { mut, };
gc_mutator_set_roots(mut, &main_thread.roots);
printf("Garbage Collector Test\n");
printf(" Live storage will peak at %zd bytes.\n\n", heap_max_live);
pthread_t threads[MAX_THREAD_COUNT];
// Run one of the threads in the main thread.
for (size_t i = 1; i < nthreads; i++) {
int status = pthread_create(&threads[i], NULL, run_one_test_in_thread, heap);
if (status) {
errno = status;
perror("Failed to create thread");
return 1;
}
}
run_one_test(&main_thread);
for (size_t i = 1; i < nthreads; i++) {
struct join_data data = { 0, threads[i] };
gc_call_without_gc(mut, join_thread, &data);
if (data.status) {
errno = data.status;
perror("Failed to join thread");
return 1;
}
}
gc_basic_stats_finish(&stats);
fputs("\n", stdout);
gc_basic_stats_print(&stats, stdout);
}