mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 20:00:19 +02:00
616 lines
17 KiB
C
616 lines
17 KiB
C
/* Copyright (C) 1999,2000,2001 Free Software Foundation, Inc.
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2, or (at your option)
|
||
* any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this software; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||
* Boston, MA 02111-1307 USA
|
||
*
|
||
* As a special exception, the Free Software Foundation gives permission
|
||
* for additional uses of the text contained in its release of GUILE.
|
||
*
|
||
* The exception is that, if you link the GUILE library with other files
|
||
* to produce an executable, this does not by itself cause the
|
||
* resulting executable to be covered by the GNU General Public License.
|
||
* Your use of that executable is in no way restricted on account of
|
||
* linking the GUILE library code into it.
|
||
*
|
||
* This exception does not however invalidate any other reasons why
|
||
* the executable file might be covered by the GNU General Public License.
|
||
*
|
||
* This exception applies only to the code released by the
|
||
* Free Software Foundation under the name GUILE. If you copy
|
||
* code from other Free Software Foundation releases into a copy of
|
||
* GUILE, as the General Public License permits, the exception does
|
||
* not apply to the code that you add in this way. To avoid misleading
|
||
* anyone as to the status of such modified files, you must delete
|
||
* this exception notice from them.
|
||
*
|
||
* If you write modifications of your own for GUILE, it is your choice
|
||
* whether to permit this exception to apply to your modifications.
|
||
* If you do not wish that, delete this exception notice. */
|
||
|
||
|
||
|
||
/* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
|
||
|
||
#include "libguile/_scm.h"
|
||
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include <string.h>
|
||
#include "libguile/smob.h"
|
||
#include "libguile/numbers.h"
|
||
#include "libguile/feature.h"
|
||
#include "libguile/strings.h"
|
||
#include "libguile/unif.h"
|
||
#include "libguile/vectors.h"
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/random.h"
|
||
|
||
|
||
/*
|
||
* A plugin interface for RNGs
|
||
*
|
||
* Using this interface, it is possible for the application to tell
|
||
* libguile to use a different RNG. This is desirable if it is
|
||
* necessary to use the same RNG everywhere in the application in
|
||
* order to prevent interference, if the application uses RNG
|
||
* hardware, or if the application has special demands on the RNG.
|
||
*
|
||
* Look in random.h and how the default generator is "plugged in" in
|
||
* scm_init_random().
|
||
*/
|
||
|
||
scm_t_rng scm_the_rng;
|
||
|
||
|
||
/*
|
||
* The prepackaged RNG
|
||
*
|
||
* This is the MWC (Multiply With Carry) random number generator
|
||
* described by George Marsaglia at the Department of Statistics and
|
||
* Supercomputer Computations Research Institute, The Florida State
|
||
* University (http://stat.fsu.edu/~geo).
|
||
*
|
||
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
|
||
* passes all tests in the DIEHARD test suite
|
||
* (http://stat.fsu.edu/~geo/diehard.html)
|
||
*/
|
||
|
||
#define A 2131995753UL
|
||
|
||
#ifndef M_PI
|
||
#define M_PI 3.14159265359
|
||
#endif
|
||
|
||
#if SIZEOF_LONG > 4
|
||
#if SIZEOF_INT > 4
|
||
#define LONG32 unsigned short
|
||
#else
|
||
#define LONG32 unsigned int
|
||
#endif
|
||
#define LONG64 unsigned long
|
||
#else
|
||
#define LONG32 unsigned long
|
||
#ifdef __MINGW32__
|
||
#define LONG64 unsigned __int64
|
||
#else
|
||
#define LONG64 unsigned long long
|
||
#endif
|
||
#endif
|
||
|
||
#if SIZEOF_LONG > 4 || defined (HAVE_LONG_LONGS)
|
||
|
||
unsigned long
|
||
scm_i_uniform32 (scm_t_i_rstate *state)
|
||
{
|
||
LONG64 x = (LONG64) A * state->w + state->c;
|
||
LONG32 w = x & 0xffffffffUL;
|
||
state->w = w;
|
||
state->c = x >> 32L;
|
||
return w;
|
||
}
|
||
|
||
#else
|
||
|
||
/* ww This is a portable version of the same RNG without 64 bit
|
||
* * aa arithmetic.
|
||
* ----
|
||
* xx It is only intended to provide identical behaviour on
|
||
* xx platforms without 8 byte longs or long longs until
|
||
* xx someone has implemented the routine in assembler code.
|
||
* xxcc
|
||
* ----
|
||
* ccww
|
||
*/
|
||
|
||
#define L(x) ((x) & 0xffff)
|
||
#define H(x) ((x) >> 16)
|
||
|
||
unsigned long
|
||
scm_i_uniform32 (scm_t_i_rstate *state)
|
||
{
|
||
LONG32 x1 = L (A) * L (state->w);
|
||
LONG32 x2 = L (A) * H (state->w);
|
||
LONG32 x3 = H (A) * L (state->w);
|
||
LONG32 w = L (x1) + L (state->c);
|
||
LONG32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
|
||
LONG32 x4 = H (A) * H (state->w);
|
||
state->w = w = (L (m) << 16) + L (w);
|
||
state->c = H (x2) + H (x3) + x4 + H (m);
|
||
return w;
|
||
}
|
||
|
||
#endif
|
||
|
||
void
|
||
scm_i_init_rstate (scm_t_i_rstate *state, char *seed, int n)
|
||
{
|
||
LONG32 w = 0L;
|
||
LONG32 c = 0L;
|
||
int i, m;
|
||
for (i = 0; i < n; ++i)
|
||
{
|
||
m = i % 8;
|
||
if (m < 4)
|
||
w += seed[i] << (8 * m);
|
||
else
|
||
c += seed[i] << (8 * (m - 4));
|
||
}
|
||
if ((w == 0 && c == 0) || (w == 0xffffffffUL && c == A - 1))
|
||
++c;
|
||
state->w = w;
|
||
state->c = c;
|
||
}
|
||
|
||
scm_t_i_rstate *
|
||
scm_i_copy_rstate (scm_t_i_rstate *state)
|
||
{
|
||
scm_t_rstate *new_state = malloc (scm_the_rng.rstate_size);
|
||
if (new_state == 0)
|
||
scm_memory_error ("rstate");
|
||
return memcpy (new_state, state, scm_the_rng.rstate_size);
|
||
}
|
||
|
||
|
||
/*
|
||
* Random number library functions
|
||
*/
|
||
|
||
scm_t_rstate *
|
||
scm_c_make_rstate (char *seed, int n)
|
||
{
|
||
scm_t_rstate *state = malloc (scm_the_rng.rstate_size);
|
||
if (state == 0)
|
||
scm_memory_error ("rstate");
|
||
state->reserved0 = 0;
|
||
scm_the_rng.init_rstate (state, seed, n);
|
||
return state;
|
||
}
|
||
|
||
|
||
scm_t_rstate *
|
||
scm_c_default_rstate ()
|
||
#define FUNC_NAME "scm_c_default_rstate"
|
||
{
|
||
SCM state = SCM_CDR (scm_var_random_state);
|
||
if (!SCM_RSTATEP (state))
|
||
SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
|
||
return SCM_RSTATE (state);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
inline double
|
||
scm_c_uniform01 (scm_t_rstate *state)
|
||
{
|
||
double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
|
||
return ((x + (double) scm_the_rng.random_bits (state))
|
||
/ (double) 0xffffffffUL);
|
||
}
|
||
|
||
double
|
||
scm_c_normal01 (scm_t_rstate *state)
|
||
{
|
||
if (state->reserved0)
|
||
{
|
||
state->reserved0 = 0;
|
||
return state->reserved1;
|
||
}
|
||
else
|
||
{
|
||
double r, a, n;
|
||
|
||
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
|
||
a = 2.0 * M_PI * scm_c_uniform01 (state);
|
||
|
||
n = r * sin (a);
|
||
state->reserved1 = r * cos (a);
|
||
state->reserved0 = 1;
|
||
|
||
return n;
|
||
}
|
||
}
|
||
|
||
double
|
||
scm_c_exp1 (scm_t_rstate *state)
|
||
{
|
||
return - log (scm_c_uniform01 (state));
|
||
}
|
||
|
||
unsigned char scm_masktab[256];
|
||
|
||
unsigned long
|
||
scm_c_random (scm_t_rstate *state, unsigned long m)
|
||
{
|
||
unsigned int r, mask;
|
||
mask = (m < 0x100
|
||
? scm_masktab[m]
|
||
: (m < 0x10000
|
||
? scm_masktab[m >> 8] << 8 | 0xff
|
||
: (m < 0x1000000
|
||
? scm_masktab[m >> 16] << 16 | 0xffff
|
||
: scm_masktab[m >> 24] << 24 | 0xffffff)));
|
||
while ((r = scm_the_rng.random_bits (state) & mask) >= m);
|
||
return r;
|
||
}
|
||
|
||
SCM
|
||
scm_c_random_bignum (scm_t_rstate *state, SCM m)
|
||
{
|
||
SCM b;
|
||
int i, nd;
|
||
LONG32 *bits, mask, w;
|
||
nd = SCM_NUMDIGS (m);
|
||
/* calculate mask for most significant digit */
|
||
#if SIZEOF_INT == 4
|
||
/* 16 bit digits */
|
||
if (nd & 1)
|
||
{
|
||
/* fix most significant 16 bits */
|
||
unsigned short s = SCM_BDIGITS (m)[nd - 1];
|
||
mask = s < 0x100 ? scm_masktab[s] : scm_masktab[s >> 8] << 8 | 0xff;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* fix most significant 32 bits */
|
||
#if SIZEOF_INT == 4
|
||
w = SCM_BDIGITS (m)[nd - 1] << 16 | SCM_BDIGITS (m)[nd - 2];
|
||
#else
|
||
w = SCM_BDIGITS (m)[nd - 1];
|
||
#endif
|
||
mask = (w < 0x10000
|
||
? (w < 0x100
|
||
? scm_masktab[w]
|
||
: scm_masktab[w >> 8] << 8 | 0xff)
|
||
: (w < 0x1000000
|
||
? scm_masktab[w >> 16] << 16 | 0xffff
|
||
: scm_masktab[w >> 24] << 24 | 0xffffff));
|
||
}
|
||
b = scm_i_mkbig (nd, 0);
|
||
bits = (LONG32 *) SCM_BDIGITS (b);
|
||
do
|
||
{
|
||
i = nd;
|
||
/* treat most significant digit specially */
|
||
#if SIZEOF_INT == 4
|
||
/* 16 bit digits */
|
||
if (i & 1)
|
||
{
|
||
((SCM_BIGDIG*) bits)[i - 1] = scm_the_rng.random_bits (state) & mask;
|
||
i /= 2;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
/* fix most significant 32 bits */
|
||
#if SIZEOF_INT == 4
|
||
w = scm_the_rng.random_bits (state) & mask;
|
||
((SCM_BIGDIG*) bits)[i - 2] = w & 0xffff;
|
||
((SCM_BIGDIG*) bits)[i - 1] = w >> 16;
|
||
i = i / 2 - 1;
|
||
#else
|
||
i /= 2;
|
||
bits[--i] = scm_the_rng.random_bits (state) & mask;
|
||
#endif
|
||
}
|
||
/* now fill up the rest of the bignum */
|
||
while (i)
|
||
bits[--i] = scm_the_rng.random_bits (state);
|
||
b = scm_i_normbig (b);
|
||
if (SCM_INUMP (b))
|
||
return b;
|
||
} while (scm_bigcomp (b, m) <= 0);
|
||
return b;
|
||
}
|
||
|
||
/*
|
||
* Scheme level representation of random states.
|
||
*/
|
||
|
||
scm_t_bits scm_tc16_rstate;
|
||
|
||
static SCM
|
||
make_rstate (scm_t_rstate *state)
|
||
{
|
||
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
|
||
}
|
||
|
||
static size_t
|
||
rstate_free (SCM rstate)
|
||
{
|
||
free (SCM_RSTATE (rstate));
|
||
return scm_the_rng.rstate_size;
|
||
}
|
||
|
||
/*
|
||
* Scheme level interface.
|
||
*/
|
||
|
||
SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_makfrom0str ("URL:http://stat.fsu.edu/~geo/diehard.html")));
|
||
|
||
SCM_DEFINE (scm_random, "random", 1, 1, 0,
|
||
(SCM n, SCM state),
|
||
"Return a number in [0,N).\n"
|
||
"\n"
|
||
"Accepts a positive integer or real n and returns a \n"
|
||
"number of the same type between zero (inclusive) and \n"
|
||
"N (exclusive). The values returned have a uniform \n"
|
||
"distribution.\n"
|
||
"\n"
|
||
"The optional argument @var{state} must be of the type produced\n"
|
||
"by @code{seed->random-state}. It defaults to the value of the\n"
|
||
"variable @var{*random-state*}. This object is used to maintain\n"
|
||
"the state of the pseudo-random-number generator and is altered\n"
|
||
"as a side effect of the random operation.")
|
||
#define FUNC_NAME s_scm_random
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2,state);
|
||
if (SCM_INUMP (n))
|
||
{
|
||
unsigned long m = SCM_INUM (n);
|
||
SCM_ASSERT_RANGE (1,n,m > 0);
|
||
return SCM_MAKINUM (scm_c_random (SCM_RSTATE (state), m));
|
||
}
|
||
SCM_VALIDATE_NIM (1,n);
|
||
if (SCM_REALP (n))
|
||
return scm_make_real (SCM_REAL_VALUE (n)
|
||
* scm_c_uniform01 (SCM_RSTATE (state)));
|
||
SCM_VALIDATE_SMOB (1, n, big);
|
||
return scm_c_random_bignum (SCM_RSTATE (state), n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a copy of the random state @var{state}.")
|
||
#define FUNC_NAME s_scm_copy_random_state
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1,state);
|
||
return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
|
||
(SCM seed),
|
||
"Return a new random state using @var{seed}.")
|
||
#define FUNC_NAME s_scm_seed_to_random_state
|
||
{
|
||
if (SCM_NUMBERP (seed))
|
||
seed = scm_number_to_string (seed, SCM_UNDEFINED);
|
||
SCM_VALIDATE_STRING (1,seed);
|
||
return make_rstate (scm_c_make_rstate (SCM_STRING_CHARS (seed),
|
||
SCM_STRING_LENGTH (seed)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
|
||
(SCM state),
|
||
"Return a uniformly distributed inexact real random number in\n"
|
||
"[0,1).")
|
||
#define FUNC_NAME s_scm_random_uniform
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1,state);
|
||
return scm_make_real (scm_c_uniform01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in a normal distribution. The\n"
|
||
"distribution used has mean 0 and standard deviation 1. For a\n"
|
||
"normal distribution with mean m and standard deviation d use\n"
|
||
"@code{(+ m (* d (random:normal)))}.")
|
||
#define FUNC_NAME s_scm_random_normal
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1,state);
|
||
return scm_make_real (scm_c_normal01 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#ifdef HAVE_ARRAYS
|
||
|
||
static void
|
||
vector_scale (SCM v, double c)
|
||
{
|
||
int n = SCM_INUM (scm_uniform_vector_length (v));
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
SCM_REAL_VALUE (SCM_VELTS (v)[n]) *= c;
|
||
else
|
||
while (--n >= 0)
|
||
((double *) SCM_VELTS (v))[n] *= c;
|
||
}
|
||
|
||
static double
|
||
vector_sum_squares (SCM v)
|
||
{
|
||
double x, sum = 0.0;
|
||
int n = SCM_INUM (scm_uniform_vector_length (v));
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
{
|
||
x = SCM_REAL_VALUE (SCM_VELTS (v)[n]);
|
||
sum += x * x;
|
||
}
|
||
else
|
||
while (--n >= 0)
|
||
{
|
||
x = ((double *) SCM_VELTS (v))[n];
|
||
sum += x * x;
|
||
}
|
||
return sum;
|
||
}
|
||
|
||
/* For the uniform distribution on the solid sphere, note that in
|
||
* this distribution the length r of the vector has cumulative
|
||
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
|
||
* generated as r=u^(1/n).
|
||
*/
|
||
SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers\n"
|
||
"the sum of whose squares is less than 1.0.\n"
|
||
"Thinking of vect as coordinates in space of \n"
|
||
"dimension n = (vector-length vect), the coordinates \n"
|
||
"are uniformly distributed within the unit n-shere.\n"
|
||
"The sum of the squares of the numbers is returned.")
|
||
#define FUNC_NAME s_scm_random_solid_sphere_x
|
||
{
|
||
SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2,state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale (v,
|
||
pow (scm_c_uniform01 (SCM_RSTATE (state)),
|
||
1.0 / SCM_INUM (scm_uniform_vector_length (v)))
|
||
/ sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers\n"
|
||
"the sum of whose squares is equal to 1.0.\n"
|
||
"Thinking of vect as coordinates in space of \n"
|
||
"dimension n = (vector-length vect), the coordinates\n"
|
||
"are uniformly distributed over the surface of the \n"
|
||
"unit n-shere.")
|
||
#define FUNC_NAME s_scm_random_hollow_sphere_x
|
||
{
|
||
SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2,state);
|
||
scm_random_normal_vector_x (v, state);
|
||
vector_scale (v, 1 / sqrt (vector_sum_squares (v)));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
|
||
(SCM v, SCM state),
|
||
"Fills vect with inexact real random numbers that are\n"
|
||
"independent and standard normally distributed\n"
|
||
"(i.e., with mean 0 and variance 1).")
|
||
#define FUNC_NAME s_scm_random_normal_vector_x
|
||
{
|
||
int n;
|
||
SCM_VALIDATE_VECTOR_OR_DVECTOR (1,v);
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (2,state);
|
||
n = SCM_INUM (scm_uniform_vector_length (v));
|
||
if (SCM_VECTORP (v))
|
||
while (--n >= 0)
|
||
SCM_VELTS (v)[n] = scm_make_real (scm_c_normal01 (SCM_RSTATE (state)));
|
||
else
|
||
while (--n >= 0)
|
||
((double *) SCM_VELTS (v))[n] = scm_c_normal01 (SCM_RSTATE (state));
|
||
return SCM_UNSPECIFIED;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
#endif /* HAVE_ARRAYS */
|
||
|
||
SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
|
||
(SCM state),
|
||
"Return an inexact real in an exponential distribution with mean\n"
|
||
"1. For an exponential distribution with mean u use (* u\n"
|
||
"(random:exp)).")
|
||
#define FUNC_NAME s_scm_random_exp
|
||
{
|
||
if (SCM_UNBNDP (state))
|
||
state = SCM_VARIABLE_REF (scm_var_random_state);
|
||
SCM_VALIDATE_RSTATE (1,state);
|
||
return scm_make_real (scm_c_exp1 (SCM_RSTATE (state)));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
void
|
||
scm_init_random ()
|
||
{
|
||
int i, m;
|
||
/* plug in default RNG */
|
||
scm_t_rng rng =
|
||
{
|
||
sizeof (scm_t_i_rstate),
|
||
(unsigned long (*)()) scm_i_uniform32,
|
||
(void (*)()) scm_i_init_rstate,
|
||
(scm_t_rstate *(*)()) scm_i_copy_rstate
|
||
};
|
||
scm_the_rng = rng;
|
||
|
||
scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
|
||
scm_set_smob_free (scm_tc16_rstate, rstate_free);
|
||
|
||
for (m = 1; m <= 0x100; m <<= 1)
|
||
for (i = m >> 1; i < m; ++i)
|
||
scm_masktab[i] = m - 1;
|
||
|
||
#ifndef SCM_MAGIC_SNARFER
|
||
#include "libguile/random.x"
|
||
#endif
|
||
|
||
/* Check that the assumptions about bits per bignum digit are correct. */
|
||
#if SIZEOF_INT == 4
|
||
m = 16;
|
||
#else
|
||
m = 32;
|
||
#endif
|
||
if (m != SCM_BITSPERDIG)
|
||
{
|
||
fprintf (stderr, "Internal inconsistency: Confused about bignum digit size in random.c\n");
|
||
exit (1);
|
||
}
|
||
|
||
scm_add_feature ("random");
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|