1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-30 00:40:20 +02:00
guile/module/language/cps/intset.scm
Andy Wingo 793ca4c433 Result of intsect-intersect will share structure with A if it can
* module/language/cps/intset.scm (intset-intersect): Ensure that the
  result shares structure with A if possible, as intmaps do.
2014-06-29 19:47:38 +02:00

437 lines
15 KiB
Scheme

;;; Functional name maps
;;; Copyright (C) 2014 Free Software Foundation, Inc.
;;;
;;; This library is free software: you can redistribute it and/or modify
;;; it under the terms of the GNU Lesser General Public License as
;;; published by the Free Software Foundation, either version 3 of the
;;; License, or (at your option) any later version.
;;;
;;; This library is distributed in the hope that it will be useful, but
;;; WITHOUT ANY WARRANTY; without even the implied warranty of
;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
;;; Lesser General Public License for more details.
;;;
;;; You should have received a copy of the GNU Lesser General Public
;;; License along with this program. If not, see
;;; <http://www.gnu.org/licenses/>.
;;; Commentary:
;;;
;;; A persistent, functional data structure representing a set of
;;; integers as a tree whose branches are vectors and whose leaves are
;;; fixnums. Intsets are careful to preserve sub-structure, in the
;;; sense of eq?, whereever possible.
;;;
;;; Code:
(define-module (language cps intset)
#:use-module (rnrs bytevectors)
#:use-module (srfi srfi-9)
#:use-module (ice-9 match)
#:export (empty-intset
intset?
intset-add
intset-remove
intset-ref
intset-next
intset-union
intset-intersect))
(define-syntax-rule (define-inline name val)
(define-syntax name (identifier-syntax val)))
(define-inline *leaf-bits* 5)
(define-inline *leaf-size* (ash 1 *leaf-bits*))
(define-inline *leaf-mask* (1- *leaf-size*))
(define-inline *branch-bits* 3)
(define-inline *branch-size* (ash 1 *branch-bits*))
(define-inline *branch-mask* (1- *branch-size*))
(define-record-type <intset>
(make-intset min shift root)
intset?
(min intset-min)
(shift intset-shift)
(root intset-root))
(define (new-leaf) 0)
(define-inlinable (clone-leaf-and-set leaf i val)
(if val
(if leaf
(logior leaf (ash 1 i))
(ash 1 i))
(if leaf
(logand leaf (lognot (ash 1 i)))
#f)))
(define (leaf-empty? leaf)
(zero? leaf))
(define (new-branch)
(make-vector *branch-size* #f))
(define (clone-branch-and-set branch i elt)
(let ((new (new-branch)))
(when branch (vector-move-left! branch 0 *branch-size* new 0))
(vector-set! new i elt)
new))
(define (branch-empty? branch)
(let lp ((i 0))
(or (= i *branch-size*)
(and (not (vector-ref branch i))
(lp (1+ i))))))
(define (round-down min shift)
(logand min (lognot (1- (ash 1 shift)))))
(define empty-intset (make-intset 0 *leaf-bits* #f))
(define (add-level min shift root)
(let* ((shift* (+ shift *branch-bits*))
(min* (round-down min shift*))
(idx (logand (ash (- min min*) (- shift)) *branch-mask*)))
(make-intset min* shift* (clone-branch-and-set #f idx root))))
(define (make-intset/prune min shift root)
(cond
((not root)
empty-intset)
((= shift *leaf-bits*)
(make-intset min shift root))
(else
(let lp ((i 0) (elt #f))
(cond
((< i *branch-size*)
(if (vector-ref root i)
(if elt
(make-intset min shift root)
(lp (1+ i) i))
(lp (1+ i) elt)))
(elt
(let ((shift (- shift *branch-bits*)))
(make-intset/prune (+ min (ash elt shift))
shift
(vector-ref root elt))))
;; Shouldn't be reached...
(else empty-intset))))))
(define (intset-add bs i)
(define (adjoin i shift root)
(cond
((= shift *leaf-bits*)
(let ((idx (logand i *leaf-mask*)))
(if (and root (logbit? idx root))
root
(clone-leaf-and-set root idx #t))))
(else
(let* ((shift (- shift *branch-bits*))
(idx (logand (ash i (- shift)) *branch-mask*))
(node (and root (vector-ref root idx)))
(new-node (adjoin i shift node)))
(if (eq? node new-node)
root
(clone-branch-and-set root idx new-node))))))
(match bs
(($ <intset> min shift root)
(cond
((not root)
;; Add first element.
(let ((min (round-down i shift)))
(make-intset min *leaf-bits*
(adjoin (- i min) *leaf-bits* root))))
((and (<= min i) (< i (+ min (ash 1 shift))))
;; Add element to set; level will not change.
(let ((old-root root)
(root (adjoin (- i min) shift root)))
(if (eq? root old-root)
bs
(make-intset min shift root))))
((< i min)
;; Rebuild the tree by unioning two intsets.
(intset-union (intset-add empty-intset i) bs))
(else
;; Add a new level and try again.
(intset-add (add-level min shift root) i))))))
(define (intset-remove bs i)
(define (remove i shift root)
(cond
((= shift *leaf-bits*)
(let ((idx (logand i *leaf-mask*)))
(if (logbit? idx root)
(let ((root (clone-leaf-and-set root idx #f)))
(and (not (leaf-empty? root)) root))
root)))
(else
(let* ((shift (- shift *branch-bits*))
(idx (logand (ash i (- shift)) *branch-mask*)))
(cond
((vector-ref root idx)
=> (lambda (node)
(let ((new-node (remove i shift node)))
(if (eq? node new-node)
root
(let ((root (clone-branch-and-set root idx new-node)))
(and (or new-node (not (branch-empty? root)))
root))))))
(else root))))))
(match bs
(($ <intset> min shift root)
(cond
((not root) bs)
((and (<= min i) (< i (+ min (ash 1 shift))))
;; Add element to set; level will not change.
(let ((old-root root)
(root (remove (- i min) shift root)))
(if (eq? root old-root)
bs
(make-intset/prune min shift root))))
(else bs)))))
(define (intset-ref bs i)
(match bs
(($ <intset> min shift root)
(and (<= min i) (< i (+ min (ash 1 shift)))
(let ((i (- i min)))
(let lp ((node root) (shift shift))
(and node
(if (= shift *leaf-bits*)
(logbit? (logand i *leaf-mask*) node)
(let* ((shift (- shift *branch-bits*))
(idx (logand (ash i (- shift)) *branch-mask*)))
(lp (vector-ref node idx) shift))))))))))
(define (intset-next bs i)
(define (visit-leaf node i)
(let lp ((idx (logand i *leaf-mask*)))
(if (logbit? idx node)
(logior (logand i (lognot *leaf-mask*)) idx)
(let ((idx (1+ idx)))
(and (< idx *leaf-size*)
(lp idx))))))
(define (visit-branch node shift i)
(let lp ((i i) (idx (logand (ash i (- shift)) *branch-mask*)))
(and (< idx *branch-size*)
(or (visit-node (vector-ref node idx) shift i)
(let ((inc (ash 1 shift)))
(lp (+ (round-down i shift) inc) (1+ idx)))))))
(define (visit-node node shift i)
(and node
(if (= shift *leaf-bits*)
(visit-leaf node i)
(visit-branch node (- shift *branch-bits*) i))))
(match bs
(($ <intset> min shift root)
(let ((i (if (and i (< min i))
(- i min)
0)))
(and (< i (ash 1 shift))
(let ((i (visit-node root shift i)))
(and i (+ min i))))))))
(define (intset-size shift root)
(cond
((not root) 0)
((= *leaf-bits* shift) *leaf-size*)
(else
(let lp ((i (1- *branch-size*)))
(let ((node (vector-ref root i)))
(if node
(let ((shift (- shift *branch-bits*)))
(+ (intset-size shift node)
(* i (ash 1 shift))))
(lp (1- i))))))))
(define (intset-union a b)
;; Union leaves.
(define (union-leaves a b)
(logior (or a 0) (or b 0)))
;; Union A and B from index I; the result will be fresh.
(define (union-branches/fresh shift a b i fresh)
(let lp ((i 0))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(vector-set! fresh i (union shift a-child b-child))
(lp (1+ i))))
(else fresh))))
;; Union A and B from index I; the result may be eq? to A.
(define (union-branches/a shift a b i)
(let lp ((i i))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(if (eq? a-child b-child)
(lp (1+ i))
(let ((child (union shift a-child b-child)))
(cond
((eq? a-child child)
(lp (1+ i)))
(else
(let ((result (clone-branch-and-set a i child)))
(union-branches/fresh shift a b (1+ i) result))))))))
(else a))))
;; Union A and B; the may could be eq? to either.
(define (union-branches shift a b)
(let lp ((i 0))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(if (eq? a-child b-child)
(lp (1+ i))
(let ((child (union shift a-child b-child)))
(cond
((eq? a-child child)
(union-branches/a shift a b (1+ i)))
((eq? b-child child)
(union-branches/a shift b a (1+ i)))
(else
(let ((result (clone-branch-and-set a i child)))
(union-branches/fresh shift a b (1+ i) result))))))))
;; Seems they are the same but not eq?. Odd.
(else a))))
(define (union shift a-node b-node)
(cond
((not a-node) b-node)
((not b-node) a-node)
((eq? a-node b-node) a-node)
((= shift *leaf-bits*) (union-leaves a-node b-node))
(else (union-branches (- shift *branch-bits*) a-node b-node))))
(match (cons a b)
((($ <intset> a-min a-shift a-root) . ($ <intset> b-min b-shift b-root))
(cond
((not (= b-shift a-shift))
;; Hoist the set with the lowest shift to meet the one with the
;; higher shift.
(if (< b-shift a-shift)
(intset-union a (add-level b-min b-shift b-root))
(intset-union (add-level a-min a-shift a-root) b)))
((not (= b-min a-min))
;; Nodes at the same shift but different minimums will cover
;; disjoint ranges (due to the round-down call on min). Hoist
;; both until they cover the same range.
(intset-union (add-level a-min a-shift a-root)
(add-level b-min b-shift b-root)))
(else
;; At this point, A and B cover the same range.
(let ((root (union a-shift a-root b-root)))
(cond
((eq? root a-root) a)
((eq? root b-root) b)
(else (make-intset a-min a-shift root)))))))))
(define (intset-intersect a b)
(define tmp (new-leaf))
;; Intersect leaves.
(define (intersect-leaves a b)
(logand a b))
;; Intersect A and B from index I; the result will be fresh.
(define (intersect-branches/fresh shift a b i fresh)
(let lp ((i 0))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(vector-set! fresh i (intersect shift a-child b-child))
(lp (1+ i))))
((branch-empty? fresh) #f)
(else fresh))))
;; Intersect A and B from index I; the result may be eq? to A.
(define (intersect-branches/a shift a b i)
(let lp ((i i))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(if (eq? a-child b-child)
(lp (1+ i))
(let ((child (intersect shift a-child b-child)))
(cond
((eq? a-child child)
(lp (1+ i)))
(else
(let ((result (clone-branch-and-set a i child)))
(intersect-branches/fresh shift a b (1+ i) result))))))))
(else a))))
;; Intersect A and B; the may could be eq? to either.
(define (intersect-branches shift a b)
(let lp ((i 0))
(cond
((< i *branch-size*)
(let* ((a-child (vector-ref a i))
(b-child (vector-ref b i)))
(if (eq? a-child b-child)
(lp (1+ i))
(let ((child (intersect shift a-child b-child)))
(cond
((eq? a-child child)
(intersect-branches/a shift a b (1+ i)))
((eq? b-child child)
(intersect-branches/a shift b a (1+ i)))
(else
(let ((result (clone-branch-and-set a i child)))
(intersect-branches/fresh shift a b (1+ i) result))))))))
;; Seems they are the same but not eq?. Odd.
(else a))))
(define (intersect shift a-node b-node)
(cond
((or (not a-node) (not b-node)) #f)
((eq? a-node b-node) a-node)
((= shift *leaf-bits*) (intersect-leaves a-node b-node))
(else (intersect-branches (- shift *branch-bits*) a-node b-node))))
(define (different-mins lo-min lo-shift lo-root hi-min hi-shift hi lo-is-a?)
(cond
((<= lo-shift hi-shift)
;; If LO has a lower shift and a lower min, it is disjoint. If
;; it has the same shift and a different min, it is also
;; disjoint.
empty-intset)
(else
(let* ((lo-shift (- lo-shift *branch-bits*))
(lo-idx (ash (- hi-min lo-min) (- lo-shift))))
(cond
((>= lo-idx *branch-size*)
;; HI has a lower shift, but it not within LO.
empty-intset)
((vector-ref lo-root lo-idx)
=> (lambda (lo-root)
(let ((lo (make-intset (+ lo-min (ash lo-idx lo-shift))
lo-shift
lo-root)))
(if lo-is-a?
(intset-intersect lo hi)
(intset-intersect hi lo)))))
(else empty-intset))))))
(define (different-shifts-same-min min hi-shift hi-root lo lo-is-a?)
(cond
((vector-ref hi-root 0)
=> (lambda (hi-root)
(let ((hi (make-intset min
(- hi-shift *branch-bits*)
hi-root)))
(if lo-is-a?
(intset-intersect lo hi)
(intset-intersect hi lo)))))
(else empty-intset)))
(match (cons a b)
((($ <intset> a-min a-shift a-root) . ($ <intset> b-min b-shift b-root))
(cond
((< a-min b-min)
(different-mins a-min a-shift a-root b-min b-shift b #t))
((< b-min a-min)
(different-mins b-min b-shift b-root a-min a-shift a #f))
((< a-shift b-shift)
(different-shifts-same-min b-min b-shift b-root a #t))
((< b-shift a-shift)
(different-shifts-same-min a-min a-shift a-root b #f))
(else
;; At this point, A and B cover the same range.
(let ((root (intersect a-shift a-root b-root)))
(cond
((eq? root a-root) a)
((eq? root b-root) b)
(else (make-intset/prune a-min a-shift root)))))))))