1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/async.c
1996-10-10 00:52:21 +00:00

753 lines
16 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1995,1996 Free Software Foundation, Inc.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this software; see the file COPYING. If not, write to
* the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
*
* As a special exception, the Free Software Foundation gives permission
* for additional uses of the text contained in its release of GUILE.
*
* The exception is that, if you link the GUILE library with other files
* to produce an executable, this does not by itself cause the
* resulting executable to be covered by the GNU General Public License.
* Your use of that executable is in no way restricted on account of
* linking the GUILE library code into it.
*
* This exception does not however invalidate any other reasons why
* the executable file might be covered by the GNU General Public License.
*
* This exception applies only to the code released by the
* Free Software Foundation under the name GUILE. If you copy
* code from other Free Software Foundation releases into a copy of
* GUILE, as the General Public License permits, the exception does
* not apply to the code that you add in this way. To avoid misleading
* anyone as to the status of such modified files, you must delete
* this exception notice from them.
*
* If you write modifications of your own for GUILE, it is your choice
* whether to permit this exception to apply to your modifications.
* If you do not wish that, delete this exception notice.
*/
#include <stdio.h>
#include <signal.h>
#include "_scm.h"
#include "eval.h"
#include "throw.h"
#include "smob.h"
#include "async.h"
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
/* {Asynchronous Events}
*
*
* Async == thunk + mark.
*
* Setting the mark guarantees future execution of the thunk. More
* than one set may be satisfied by a single execution.
*
* scm_tick_clock decremented once per SCM_ALLOW_INTS.
* Async execution triggered by SCM_ALLOW_INTS when scm_tick_clock drops to 0.
* Async execution prevented by scm_mask_ints != 0.
*
* If the clock reaches 0 when scm_mask_ints != 0, then reset the clock
* to 1.
*
* If the clock reaches 0 any other time, run marked asyncs.
*
* From a unix signal handler, mark a corresponding async and set the clock
* to 1. Do SCM_REDEFER_INTS;/SCM_REALLOW_INTS so that if the signal handler is not
* called in the dynamic scope of a critical section, it is excecuted immediately.
*
* Overall, closely timed signals of a particular sort may be combined. Pending signals
* are delivered in a fixed priority order, regardless of arrival order.
*
*/
#define min(A,B) ((A) < (B) ? (A) : (B))
unsigned int scm_async_clock = 20;
static unsigned int scm_async_rate = 20;
unsigned int scm_mask_ints = 1;
static unsigned int scm_tick_clock = 0;
static unsigned int scm_tick_rate = 0;
static unsigned int scm_desired_tick_rate = 0;
static unsigned int scm_switch_clock = 0;
static unsigned int scm_switch_rate = 0;
static unsigned int scm_desired_switch_rate = 0;
static SCM system_signal_asyncs[SCM_NUM_SIGS];
static SCM handler_var;
static SCM symbol_signal;
struct scm_async
{
int got_it; /* needs to be delivered? */
SCM thunk; /* the handler. */
};
static long scm_tc16_async;
#define SCM_ASYNCP(X) (scm_tc16_async == SCM_GCTYP16 (X))
#define SCM_ASYNC(X) ((struct scm_async *)SCM_CDR (X))
#ifdef __STDC__
static int
asyncs_pending (void)
#else
static int
asyncs_pending ()
#endif
{
SCM pos;
pos = scm_asyncs;
while (pos != SCM_EOL)
{
SCM a;
struct scm_async * it;
a = SCM_CAR (pos);
it = SCM_ASYNC (a);
if (it->got_it)
return 1;
pos = SCM_CDR (pos);
}
return 0;
}
#ifdef __STDC__
void
scm_async_click (void)
#else
void
scm_async_click ()
#endif
{
int owe_switch;
int owe_tick;
if (!scm_switch_rate)
{
owe_switch = 0;
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
{
owe_switch = (scm_async_rate >= scm_switch_clock);
if (owe_switch)
{
if (scm_desired_switch_rate)
{
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
scm_switch_clock = scm_switch_rate;
}
else
{
if (scm_desired_switch_rate)
{
scm_switch_clock = scm_switch_rate = scm_desired_switch_rate;
scm_desired_switch_rate = 0;
}
else
scm_switch_clock -= scm_async_rate;
}
}
if (scm_mask_ints)
{
if (owe_switch)
scm_switch ();
scm_async_clock = 1;
return;;
}
if (!scm_tick_rate)
{
unsigned int r;
owe_tick = 0;
r = scm_desired_tick_rate;
if (r)
{
scm_desired_tick_rate = 0;
scm_tick_rate = r;
scm_tick_clock = r;
}
}
else
{
owe_tick = (scm_async_rate >= scm_tick_clock);
if (owe_tick)
{
scm_tick_clock = scm_tick_rate = scm_desired_tick_rate;
scm_desired_tick_rate = 0;
}
else
{
if (scm_desired_tick_rate)
{
scm_tick_clock = scm_tick_rate = scm_desired_tick_rate;
scm_desired_tick_rate = 0;
}
else
scm_tick_clock -= scm_async_rate;
}
}
if (owe_tick)
scm_async_mark (system_signal_asyncs[SCM_SIG_ORD(SCM_TICK_SIGNAL)]);
SCM_DEFER_INTS;
if (scm_tick_rate && scm_switch_rate)
{
scm_async_rate = min (scm_tick_clock, scm_switch_clock);
scm_async_clock = scm_async_rate;
}
else if (scm_tick_rate)
{
scm_async_clock = scm_async_rate = scm_tick_clock;
}
else if (scm_switch_rate)
{
scm_async_clock = scm_async_rate = scm_switch_clock;
}
else
scm_async_clock = scm_async_rate = 1 << 16;
SCM_ALLOW_INTS_ONLY;
tail:
scm_run_asyncs (scm_asyncs);
SCM_DEFER_INTS;
if (asyncs_pending ())
{
SCM_ALLOW_INTS_ONLY;
goto tail;
}
SCM_ALLOW_INTS;
if (owe_switch)
scm_switch ();
}
#ifdef __STDC__
void
scm_switch (void)
#else
void
scm_switch ()
#endif
{}
#ifdef __STDC__
static void
scm_deliver_signal (int num)
#else
static void
scm_deliver_signal (num)
int num;
#endif
{
SCM handler;
handler = SCM_CDR (handler_var);
if (handler != SCM_BOOL_F)
scm_apply (handler, SCM_MAKINUM (num), scm_listofnull);
else
{
scm_mask_ints = 0;
scm_throw (symbol_signal,
scm_listify (SCM_MAKINUM (num), SCM_UNDEFINED));
}
}
#ifdef __STDC__
static int
print_async (SCM exp, SCM port, scm_print_state *pstate)
#else
static int
print_async (exp, port, pstate)
SCM exp;
SCM port;
scm_print_state *pstate;
#endif
{
scm_gen_puts (scm_regular_string, "#<async ", port);
scm_intprint(exp, 16, port);
scm_gen_putc('>', port);
return 1;
}
#ifdef __STDC__
static SCM
mark_async (SCM obj)
#else
static SCM
mark_async (obj)
SCM obj;
#endif
{
struct scm_async * it;
if (SCM_GC8MARKP (obj))
return SCM_BOOL_F;
SCM_SETGC8MARK (obj);
it = SCM_ASYNC (obj);
return it->thunk;
}
#ifdef __STDC__
static scm_sizet
free_async (SCM obj)
#else
static scm_sizet
free_async (SCM obj)
SCM obj;
#endif
{
struct scm_async * it;
it = SCM_ASYNC (obj);
scm_must_free ((char *)it);
return (sizeof (*it));
}
static scm_smobfuns async_smob =
{
mark_async,
free_async,
print_async,
0
};
SCM_PROC(s_async, "async", 1, 0, 0, scm_async);
#ifdef __STDC__
SCM
scm_async (SCM thunk)
#else
SCM
scm_async (thunk)
SCM thunk;
#endif
{
SCM it;
struct scm_async * async;
SCM_NEWCELL (it);
SCM_DEFER_INTS;
SCM_SETCDR (it, SCM_EOL);
async = (struct scm_async *)scm_must_malloc (sizeof (*async), s_async);
async->got_it = 0;
async->thunk = thunk;
SCM_SETCDR (it, (SCM)async);
SCM_SETCAR (it, (SCM)scm_tc16_async);
SCM_ALLOW_INTS;
return it;
}
SCM_PROC(s_system_async, "system-async", 1, 0, 0, scm_system_async);
#ifdef __STDC__
SCM
scm_system_async (SCM thunk)
#else
SCM
scm_system_async (thunk)
SCM thunk;
#endif
{
SCM it;
SCM list;
it = scm_async (thunk);
SCM_NEWCELL (list);
SCM_DEFER_INTS;
SCM_SETCAR (list, it);
SCM_SETCDR (list, scm_asyncs);
scm_asyncs = list;
SCM_ALLOW_INTS;
return it;
}
SCM_PROC(s_async_mark, "async-mark", 1, 0, 0, scm_async_mark);
#ifdef __STDC__
SCM
scm_async_mark (SCM a)
#else
SCM
scm_async_mark (a)
SCM a;
#endif
{
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_async_mark);
it = SCM_ASYNC (a);
it->got_it = 1;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_system_async_mark, "system-async-mark", 1, 0, 0, scm_system_async_mark);
#ifdef __STDC__
SCM
scm_system_async_mark (SCM a)
#else
SCM
scm_system_async_mark (a)
SCM a;
#endif
{
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_async_mark);
it = SCM_ASYNC (a);
SCM_REDEFER_INTS;
it->got_it = 1;
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
SCM_REALLOW_INTS;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_run_asyncs, "run-asyncs", 1, 0, 0, scm_run_asyncs);
#ifdef __STDC__
SCM
scm_run_asyncs (SCM list_of_a)
#else
SCM
scm_run_asyncs (list_of_a)
SCM list_of_a;
#endif
{
SCM pos;
if (scm_mask_ints)
return SCM_BOOL_F;
pos = list_of_a;
while (pos != SCM_EOL)
{
SCM a;
struct scm_async * it;
SCM_ASSERT (SCM_NIMP (pos) && SCM_CONSP (pos), pos, SCM_ARG1, s_run_asyncs);
a = SCM_CAR (pos);
SCM_ASSERT (SCM_NIMP (a) && SCM_ASYNCP (a), a, SCM_ARG1, s_run_asyncs);
it = SCM_ASYNC (a);
scm_mask_ints = 1;
if (it->got_it)
{
it->got_it = 0;
scm_apply (it->thunk, SCM_EOL, SCM_EOL);
}
scm_mask_ints = 0;
pos = SCM_CDR (pos);
}
return SCM_BOOL_T;
}
SCM_PROC(s_noop, "noop", 0, 0, 1, scm_noop);
#ifdef __STDC__
SCM
scm_noop (SCM args)
#else
SCM
scm_noop (args)
SCM args;
#endif
{
return (SCM_NULLP (args)
? SCM_BOOL_F
: SCM_CAR (args));
}
SCM_PROC(s_set_tick_rate, "set-tick-rate", 1, 0, 0, scm_set_tick_rate);
#ifdef __STDC__
SCM
scm_set_tick_rate (SCM n)
#else
SCM
scm_set_tick_rate (n)
SCM n;
#endif
{
unsigned int old_n;
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_set_tick_rate);
old_n = scm_tick_rate;
scm_desired_tick_rate = SCM_INUM (n);
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
return SCM_MAKINUM (old_n);
}
SCM_PROC(s_set_switch_rate, "set-switch-rate", 1, 0, 0, scm_set_switch_rate);
#ifdef __STDC__
SCM
scm_set_switch_rate (SCM n)
#else
SCM
scm_set_switch_rate (n)
SCM n;
#endif
{
unsigned int old_n;
SCM_ASSERT (SCM_INUMP (n), n, SCM_ARG1, s_set_switch_rate);
old_n = scm_switch_rate;
scm_desired_switch_rate = SCM_INUM (n);
scm_async_rate = 1 + scm_async_rate - scm_async_clock;
scm_async_clock = 1;
return SCM_MAKINUM (old_n);
}
#ifdef __STDC__
static SCM
scm_sys_hup_async_thunk (void)
#else
static SCM
scm_sys_hup_async_thunk ()
#endif
{
scm_deliver_signal (SCM_HUP_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_int_async_thunk (void)
#else
static SCM
scm_sys_int_async_thunk ()
#endif
{
scm_deliver_signal (SCM_INT_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_fpe_async_thunk (void)
#else
static SCM
scm_sys_fpe_async_thunk ()
#endif
{
scm_deliver_signal (SCM_FPE_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_bus_async_thunk (void)
#else
static SCM
scm_sys_bus_async_thunk ()
#endif
{
scm_deliver_signal (SCM_BUS_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_segv_async_thunk (void)
#else
static SCM
scm_sys_segv_async_thunk ()
#endif
{
scm_deliver_signal (SCM_SEGV_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_alrm_async_thunk (void)
#else
static SCM
scm_sys_alrm_async_thunk ()
#endif
{
scm_deliver_signal (SCM_ALRM_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_gc_async_thunk (void)
#else
static SCM
scm_sys_gc_async_thunk ()
#endif
{
scm_deliver_signal (SCM_GC_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
static SCM
scm_sys_tick_async_thunk (void)
#else
static SCM
scm_sys_tick_async_thunk ()
#endif
{
scm_deliver_signal (SCM_TICK_SIGNAL);
return SCM_BOOL_F;
}
#ifdef __STDC__
SCM
scm_take_signal (int n)
#else
SCM
scm_take_signal (n)
int n;
#endif
{
SCM ignored;
if (!scm_ints_disabled)
{
/* For reasons of speed, the SCM_NEWCELL macro doesn't defer
interrupts. Instead, it first sets its argument to point to
the first cell in the list, and then advances the freelist
pointer to the next cell. Now, if this procedure is
interrupted, the only anomalous state possible is to have
both SCM_NEWCELL's argument and scm_freelist pointing to the
same cell. To deal with this case, we always throw away the
first cell in scm_freelist here.
At least, that's the theory. I'm not convinced that that's
the only anomalous path we need to worry about. */
SCM_NEWCELL (ignored);
}
scm_system_async_mark (system_signal_asyncs[SCM_SIG_ORD(n)]);
return SCM_BOOL_F;
}
SCM_PROC(s_unmask_signals, "unmask-signals", 0, 0, 0, scm_unmask_signals);
#ifdef __STDC__
SCM
scm_unmask_signals (void)
#else
SCM
scm_unmask_signals ()
#endif
{
scm_mask_ints = 0;
return SCM_UNSPECIFIED;
}
SCM_PROC(s_mask_signals, "mask-signals", 0, 0, 0, scm_mask_signals);
#ifdef __STDC__
SCM
scm_mask_signals (void)
#else
SCM
scm_mask_signals ()
#endif
{
scm_mask_ints = 1;
return SCM_UNSPECIFIED;
}
#ifdef __STDC__
void
scm_init_async (void)
#else
void
scm_init_async ()
#endif
{
SCM a_thunk;
scm_tc16_async = scm_newsmob (&async_smob);
symbol_signal = SCM_CAR (scm_sysintern ("signal", SCM_UNDEFINED));
scm_permanent_object (symbol_signal);
/* These are in the opposite order of delivery priortity.
*
* Error conditions are given low priority:
*/
a_thunk = scm_make_gsubr ("%hup-thunk", 0, 0, 0, scm_sys_hup_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_HUP_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%int-thunk", 0, 0, 0, scm_sys_int_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_INT_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%fpe-thunk", 0, 0, 0, scm_sys_fpe_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_FPE_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%bus-thunk", 0, 0, 0, scm_sys_bus_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_BUS_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%segv-thunk", 0, 0, 0, scm_sys_segv_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_SEGV_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%gc-thunk", 0, 0, 0, scm_sys_gc_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_GC_SIGNAL)] = scm_system_async (a_thunk);
/* Clock and PC driven conditions are given highest priority. */
a_thunk = scm_make_gsubr ("%tick-thunk", 0, 0, 0, scm_sys_tick_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_TICK_SIGNAL)] = scm_system_async (a_thunk);
a_thunk = scm_make_gsubr ("%alrm-thunk", 0, 0, 0, scm_sys_alrm_async_thunk);
system_signal_asyncs[SCM_SIG_ORD(SCM_ALRM_SIGNAL)] = scm_system_async (a_thunk);
handler_var = scm_sysintern ("signal-handler", SCM_UNDEFINED);
SCM_SETCDR (handler_var, SCM_BOOL_F);
scm_permanent_object (handler_var);
#include "async.x"
}