mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-04-30 11:50:28 +02:00
4385 lines
102 KiB
C
4385 lines
102 KiB
C
/* Copyright (C) 1995,1996,1997,1998,1999,2000 Free Software Foundation, Inc.
|
||
*
|
||
* This program is free software; you can redistribute it and/or modify
|
||
* it under the terms of the GNU General Public License as published by
|
||
* the Free Software Foundation; either version 2, or (at your option)
|
||
* any later version.
|
||
*
|
||
* This program is distributed in the hope that it will be useful,
|
||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
* GNU General Public License for more details.
|
||
*
|
||
* You should have received a copy of the GNU General Public License
|
||
* along with this software; see the file COPYING. If not, write to
|
||
* the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
|
||
* Boston, MA 02111-1307 USA
|
||
*
|
||
* As a special exception, the Free Software Foundation gives permission
|
||
* for additional uses of the text contained in its release of GUILE.
|
||
*
|
||
* The exception is that, if you link the GUILE library with other files
|
||
* to produce an executable, this does not by itself cause the
|
||
* resulting executable to be covered by the GNU General Public License.
|
||
* Your use of that executable is in no way restricted on account of
|
||
* linking the GUILE library code into it.
|
||
*
|
||
* This exception does not however invalidate any other reasons why
|
||
* the executable file might be covered by the GNU General Public License.
|
||
*
|
||
* This exception applies only to the code released by the
|
||
* Free Software Foundation under the name GUILE. If you copy
|
||
* code from other Free Software Foundation releases into a copy of
|
||
* GUILE, as the General Public License permits, the exception does
|
||
* not apply to the code that you add in this way. To avoid misleading
|
||
* anyone as to the status of such modified files, you must delete
|
||
* this exception notice from them.
|
||
*
|
||
* If you write modifications of your own for GUILE, it is your choice
|
||
* whether to permit this exception to apply to your modifications.
|
||
* If you do not wish that, delete this exception notice. */
|
||
|
||
/* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
|
||
gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
|
||
|
||
|
||
|
||
#include <stdio.h>
|
||
#include <math.h>
|
||
#include "libguile/_scm.h"
|
||
#include "libguile/feature.h"
|
||
#include "libguile/ports.h"
|
||
#include "libguile/root.h"
|
||
#include "libguile/smob.h"
|
||
#include "libguile/strings.h"
|
||
|
||
#include "libguile/validate.h"
|
||
#include "libguile/numbers.h"
|
||
|
||
|
||
|
||
static SCM scm_divbigbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes);
|
||
static SCM scm_divbigint (SCM x, long z, int sgn, int mode);
|
||
|
||
|
||
#define DIGITS '0':case '1':case '2':case '3':case '4':\
|
||
case '5':case '6':case '7':case '8':case '9'
|
||
|
||
|
||
#define SCM_SWAP(x,y) do { SCM __t = x; x = y; y = __t; } while (0)
|
||
|
||
|
||
#if (SCM_DEBUG_DEPRECATED == 1) /* not defined in header yet? */
|
||
|
||
/* SCM_FLOBUFLEN is the maximum number of characters neccessary for the
|
||
* printed or scm_string representation of an inexact number.
|
||
*/
|
||
#define SCM_FLOBUFLEN (10+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10)
|
||
|
||
#endif /* SCM_DEBUG_DEPRECATED == 1 */
|
||
|
||
|
||
/* IS_INF tests its floating point number for infiniteness
|
||
Dirk:FIXME:: This test does not work if x == 0
|
||
*/
|
||
#ifndef IS_INF
|
||
#define IS_INF(x) ((x) == (x) / 2)
|
||
#endif
|
||
|
||
|
||
/* Return true if X is not infinite and is not a NaN
|
||
Dirk:FIXME:: Since IS_INF is broken, this test does not work if x == 0
|
||
*/
|
||
#ifndef isfinite
|
||
#define isfinite(x) (!IS_INF (x) && (x) == (x))
|
||
#endif
|
||
|
||
|
||
|
||
|
||
SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return #t if X is an exact number, #f otherwise.")
|
||
#define FUNC_NAME s_scm_exact_p
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else if (SCM_BIGP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else {
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return #t if N is an odd number, #f otherwise.")
|
||
#define FUNC_NAME s_scm_odd_p
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
return SCM_BOOL ((4 & SCM_UNPACK (n)) != 0);
|
||
} else if (SCM_BIGP (n)) {
|
||
return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) != 0);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_even_p, "even?", 1, 0, 0,
|
||
(SCM n),
|
||
"Return #t if N is an even number, #f otherwise.")
|
||
#define FUNC_NAME s_scm_even_p
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
return SCM_BOOL ((4 & SCM_UNPACK (n)) == 0);
|
||
} else if (SCM_BIGP (n)) {
|
||
return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) == 0);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_abs, "abs", 1, 0, 0, scm_abs, g_abs);
|
||
|
||
SCM
|
||
scm_abs (SCM x)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long int xx = SCM_INUM (x);
|
||
if (xx >= 0) {
|
||
return x;
|
||
} else if (SCM_POSFIXABLE (-xx)) {
|
||
return SCM_MAKINUM (-xx);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (-xx);
|
||
#else
|
||
scm_num_overflow (s_abs);
|
||
#endif
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (!SCM_BIGSIGN (x)) {
|
||
return x;
|
||
} else {
|
||
return scm_copybig (x, 0);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
return scm_make_real (fabs (SCM_REAL_VALUE (x)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_abs, x, 1, s_abs);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient);
|
||
|
||
SCM
|
||
scm_quotient (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_quotient);
|
||
} else {
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (z);
|
||
#else
|
||
scm_num_overflow (s_quotient);
|
||
#endif
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_INUM0;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_quotient);
|
||
} else if (yy == 1) {
|
||
return x;
|
||
} else {
|
||
long z = yy < 0 ? -yy : yy;
|
||
|
||
if (z < SCM_BIGRAD) {
|
||
SCM sw = scm_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0));
|
||
scm_divbigdig (SCM_BDIGITS (sw), SCM_NUMDIGS (sw), (SCM_BIGDIG) z);
|
||
return scm_normbig (sw);
|
||
} else {
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long w = scm_pseudolong (z);
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
(SCM_BIGDIG *) & w, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2);
|
||
#else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs (z, zdigs);
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
zdigs, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2);
|
||
#endif
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 2);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder);
|
||
|
||
SCM
|
||
scm_remainder (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_remainder);
|
||
} else {
|
||
long z = SCM_INUM (x) % yy;
|
||
return SCM_MAKINUM (z);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_remainder);
|
||
} else {
|
||
return scm_divbigint (x, yy, SCM_BIGSIGN (x), 0);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (x), 0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo);
|
||
|
||
SCM
|
||
scm_modulo (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
long z = xx % yy;
|
||
return SCM_MAKINUM (((yy < 0) ? (z > 0) : (z < 0)) ? z + yy : z);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return (SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0)) ? scm_sum (x, y) : x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_modulo);
|
||
} else {
|
||
return scm_divbigint (x, yy, yy < 0,
|
||
(SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0)) ? 1 : 0);
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (y),
|
||
(SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)) ? 1 : 0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd);
|
||
|
||
SCM
|
||
scm_gcd (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
return SCM_INUM0;
|
||
} else {
|
||
return x;
|
||
}
|
||
}
|
||
|
||
tailrec:
|
||
if (SCM_INUMP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long xx = SCM_INUM (x);
|
||
long yy = SCM_INUM (y);
|
||
long u = xx < 0 ? -xx : xx;
|
||
long v = yy < 0 ? -yy : yy;
|
||
long result;
|
||
|
||
if (xx == 0) {
|
||
result = v;
|
||
} else if (yy == 0) {
|
||
result = u;
|
||
} else {
|
||
int k = 1;
|
||
long t;
|
||
|
||
/* Determine a common factor 2^k */
|
||
while (!(1 & (u | v))) {
|
||
k <<= 1;
|
||
u >>= 1;
|
||
v >>= 1;
|
||
}
|
||
|
||
/* Now, any factor 2^n can be eliminated */
|
||
if (u & 1) {
|
||
t = -v;
|
||
} else {
|
||
t = u;
|
||
b3:
|
||
t = SCM_SRS (t, 1);
|
||
}
|
||
if (!(1 & t))
|
||
goto b3;
|
||
if (t > 0)
|
||
u = t;
|
||
else
|
||
v = -t;
|
||
t = u - v;
|
||
if (t != 0)
|
||
goto b3;
|
||
|
||
result = u * k;
|
||
}
|
||
if (SCM_POSFIXABLE (result)) {
|
||
return SCM_MAKINUM (result);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (result);
|
||
#else
|
||
scm_num_overflow (s_gcd);
|
||
#endif
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM_SWAP (x, y);
|
||
goto big_gcd;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
big_gcd:
|
||
if (SCM_BIGSIGN (x))
|
||
x = scm_copybig (x, 0);
|
||
newy:
|
||
if (SCM_INUMP (y)) {
|
||
if (SCM_EQ_P (y, SCM_INUM0)) {
|
||
return x;
|
||
} else {
|
||
goto swaprec;
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
if (SCM_BIGSIGN (y))
|
||
y = scm_copybig (y, 0);
|
||
switch (scm_bigcomp (x, y))
|
||
{
|
||
case -1: /* x > y */
|
||
swaprec:
|
||
{
|
||
SCM t = scm_remainder (x, y);
|
||
x = y;
|
||
y = t;
|
||
}
|
||
goto tailrec;
|
||
case 1: /* x < y */
|
||
y = scm_remainder (y, x);
|
||
goto newy;
|
||
default: /* x == y */
|
||
return x;
|
||
}
|
||
/* instead of the switch, we could just
|
||
return scm_gcd (y, scm_modulo (x, y)); */
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm);
|
||
|
||
SCM
|
||
scm_lcm (SCM n1, SCM n2)
|
||
{
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_MAKINUM (1L);
|
||
} else {
|
||
n2 = SCM_MAKINUM (1L);
|
||
}
|
||
};
|
||
|
||
#ifndef SCM_BIGDIG
|
||
SCM_GASSERT2 (SCM_INUMP (n1), g_lcm, n1, n2, SCM_ARG1, s_lcm);
|
||
SCM_GASSERT2 (SCM_INUMP (n2), g_lcm, n1, n2, SCM_ARGn, s_lcm);
|
||
#else
|
||
SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1),
|
||
g_lcm, n1, n2, SCM_ARG1, s_lcm);
|
||
SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2),
|
||
g_lcm, n1, n2, SCM_ARGn, s_lcm);
|
||
#endif
|
||
|
||
{
|
||
SCM d = scm_gcd (n1, n2);
|
||
if (SCM_EQ_P (d, SCM_INUM0)) {
|
||
return d;
|
||
} else {
|
||
return scm_abs (scm_product (n1, scm_quotient (n2, d)));
|
||
}
|
||
}
|
||
}
|
||
|
||
|
||
#ifndef scm_long2num
|
||
#define SCM_LOGOP_RETURN(x) scm_ulong2num(x)
|
||
#else
|
||
#define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x)
|
||
#endif
|
||
|
||
|
||
/* Emulating 2's complement bignums with sign magnitude arithmetic:
|
||
|
||
Logand:
|
||
X Y Result Method:
|
||
(len)
|
||
+ + + x (map digit:logand X Y)
|
||
+ - + x (map digit:logand X (lognot (+ -1 Y)))
|
||
- + + y (map digit:logand (lognot (+ -1 X)) Y)
|
||
- - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y)))
|
||
|
||
Logior:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logior X Y)
|
||
+ - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y)))
|
||
- + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y)))
|
||
- - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y)))
|
||
|
||
Logxor:
|
||
X Y Result Method:
|
||
|
||
+ + + (map digit:logxor X Y)
|
||
+ - - (+ 1 (map digit:logxor X (+ -1 Y)))
|
||
- + - (+ 1 (map digit:logxor (+ -1 X) Y))
|
||
- - + (map digit:logxor (+ -1 X) (+ -1 Y))
|
||
|
||
Logtest:
|
||
X Y Result
|
||
|
||
+ + (any digit:logand X Y)
|
||
+ - (any digit:logand X (lognot (+ -1 Y)))
|
||
- + (any digit:logand (lognot (+ -1 X)) Y)
|
||
- - #t
|
||
|
||
*/
|
||
|
||
#ifdef SCM_BIGDIG
|
||
|
||
SCM scm_copy_big_dec(SCM b, int sign);
|
||
SCM scm_copy_smaller(SCM_BIGDIG *x, scm_sizet nx, int zsgn);
|
||
SCM scm_big_ior(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy);
|
||
SCM scm_big_xor(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy);
|
||
SCM scm_big_and(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int zsgn);
|
||
SCM scm_big_test(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy);
|
||
|
||
SCM scm_copy_big_dec(SCM b, int sign)
|
||
{
|
||
long num = -1;
|
||
scm_sizet nx = SCM_NUMDIGS(b);
|
||
scm_sizet i = 0;
|
||
SCM ans = scm_mkbig(nx, sign);
|
||
SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans);
|
||
if SCM_BIGSIGN(b) do {
|
||
num += src[i];
|
||
if (num < 0) {dst[i] = num + SCM_BIGRAD; num = -1;}
|
||
else {dst[i] = SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
else
|
||
while (nx--) dst[nx] = src[nx];
|
||
return ans;
|
||
}
|
||
|
||
SCM scm_copy_smaller(SCM_BIGDIG *x, scm_sizet nx, int zsgn)
|
||
{
|
||
long num = -1;
|
||
scm_sizet i = 0;
|
||
SCM z = scm_mkbig(nx, zsgn);
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(z);
|
||
if (zsgn) do {
|
||
num += x[i];
|
||
if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] = SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
else do zds[i] = x[i]; while (++i < nx);
|
||
return z;
|
||
}
|
||
|
||
SCM scm_big_ior(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy)
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
|
||
{
|
||
long num = -1;
|
||
scm_sizet i = 0, ny = SCM_NUMDIGS(bigy);
|
||
SCM z = scm_copy_big_dec (bigy, xsgn & SCM_BIGSIGN (bigy));
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(z);
|
||
if (xsgn) {
|
||
do {
|
||
num += x[i];
|
||
if (num < 0) {zds[i] |= num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] |= SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
/* ========= Need to increment zds now =========== */
|
||
i = 0; num = 1;
|
||
while (i < ny) {
|
||
num += zds[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
if (!num) return z;
|
||
}
|
||
scm_adjbig(z, 1 + ny); /* OOPS, overflowed into next digit. */
|
||
SCM_BDIGITS(z)[ny] = 1;
|
||
return z;
|
||
}
|
||
else do zds[i] = zds[i] | x[i]; while (++i < nx);
|
||
return z;
|
||
}
|
||
|
||
SCM scm_big_xor(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy)
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
|
||
{
|
||
long num = -1;
|
||
scm_sizet i = 0, ny = SCM_NUMDIGS(bigy);
|
||
SCM z = scm_copy_big_dec(bigy, xsgn ^ SCM_BIGSIGN(bigy));
|
||
SCM_BIGDIG *zds = SCM_BDIGITS(z);
|
||
if (xsgn) do {
|
||
num += x[i];
|
||
if (num < 0) {zds[i] ^= num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] ^= SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
else do {
|
||
zds[i] = zds[i] ^ x[i];
|
||
} while (++i < nx);
|
||
|
||
if (xsgn ^ SCM_BIGSIGN(bigy)) {
|
||
/* ========= Need to increment zds now =========== */
|
||
i = 0; num = 1;
|
||
while (i < ny) {
|
||
num += zds[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
if (!num) return scm_normbig(z);
|
||
}
|
||
}
|
||
return scm_normbig(z);
|
||
}
|
||
|
||
SCM scm_big_and(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int zsgn)
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
|
||
/* return sign equals either 0 or SCM_BIGSIGNFLAG */
|
||
{
|
||
long num = -1;
|
||
scm_sizet i = 0;
|
||
SCM z;
|
||
SCM_BIGDIG *zds;
|
||
if (xsgn==zsgn) {
|
||
z = scm_copy_smaller(x, nx, zsgn);
|
||
x = SCM_BDIGITS(bigy);
|
||
xsgn = SCM_BIGSIGN(bigy);
|
||
}
|
||
else z = scm_copy_big_dec(bigy, zsgn);
|
||
zds = SCM_BDIGITS(z);
|
||
|
||
if (zsgn) {
|
||
if (xsgn) do {
|
||
num += x[i];
|
||
if (num < 0) {zds[i] &= num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] &= SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
else do zds[i] = zds[i] & ~x[i]; while (++i < nx);
|
||
/* ========= need to increment zds now =========== */
|
||
i = 0; num = 1;
|
||
while (i < nx) {
|
||
num += zds[i];
|
||
zds[i++] = SCM_BIGLO(num);
|
||
num = SCM_BIGDN(num);
|
||
if (!num) return scm_normbig(z);
|
||
}
|
||
}
|
||
else if (xsgn) do {
|
||
num += x[i];
|
||
if (num < 0) {zds[i] &= num + SCM_BIGRAD; num = -1;}
|
||
else {zds[i] &= ~SCM_BIGLO(num); num = 0;}
|
||
} while (++i < nx);
|
||
else do zds[i] = zds[i] & x[i]; while (++i < nx);
|
||
return scm_normbig(z);
|
||
}
|
||
|
||
SCM scm_big_test(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy)
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */
|
||
{
|
||
SCM_BIGDIG *y;
|
||
scm_sizet i = 0;
|
||
long num = -1;
|
||
if (SCM_BIGSIGN(bigy) & xsgn) return SCM_BOOL_T;
|
||
if (SCM_NUMDIGS(bigy) != nx && xsgn) return SCM_BOOL_T;
|
||
y = SCM_BDIGITS(bigy);
|
||
if (xsgn)
|
||
do {
|
||
num += x[i];
|
||
if (num < 0) {
|
||
if (y[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T;
|
||
num = -1;
|
||
}
|
||
else {
|
||
if (y[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T;
|
||
num = 0;
|
||
}
|
||
} while (++i < nx);
|
||
else if SCM_BIGSIGN(bigy)
|
||
do {
|
||
num += y[i];
|
||
if (num < 0) {
|
||
if (x[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T;
|
||
num = -1;
|
||
}
|
||
else {
|
||
if (x[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T;
|
||
num = 0;
|
||
}
|
||
} while (++i < nx);
|
||
else
|
||
do if (x[i] & y[i]) return SCM_BOOL_T;
|
||
while (++i < nx);
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
#endif
|
||
|
||
|
||
SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Returns the integer which is the bit-wise AND of the two integer\n"
|
||
"arguments.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (logand #b1100 #b1010) 2)\n"
|
||
" @result{} \"1000\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logand
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_MAKINUM (-1);
|
||
} else if (!SCM_NUMBERP (n1)) {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
#ifndef SCM_RECKLESS
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
#else
|
||
} else {
|
||
return n1;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 & nn2);
|
||
} else if SCM_BIGP (n2) {
|
||
intbig:
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (nn1);
|
||
if ((nn1 < 0) && SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGNFLAG, n2);
|
||
} else {
|
||
return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0);
|
||
}
|
||
# else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (nn1, zdigs);
|
||
if ((nn1 < 0) && SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior (zdigs, SCM_DIGSPERLONG, SCM_BIGSIGNFLAG, n2);
|
||
} else {
|
||
return scm_big_and (zdigs, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0);
|
||
}
|
||
# endif
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
};
|
||
if ((SCM_BIGSIGN (n1)) && SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGNFLAG, n2);
|
||
} else {
|
||
return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGN (n1), n2, 0);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Returns the integer which is the bit-wise OR of the two integer\n"
|
||
"arguments.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (logior #b1100 #b1010) 2)\n"
|
||
" @result{} \"1110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logior
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_INUM0;
|
||
#ifndef SCM_RECKLESS
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
#else
|
||
} else {
|
||
return n1;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 | nn2);
|
||
} else if (SCM_BIGP (n2)) {
|
||
intbig:
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (nn1);
|
||
if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
} else {
|
||
return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG);
|
||
}
|
||
# else
|
||
BIGDIG zdigs [DIGSPERLONG];
|
||
scm_longdigs (nn1, zdigs);
|
||
if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior (zdigs, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
} else {
|
||
return scm_big_and (zdigs, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG);
|
||
}
|
||
# endif
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
};
|
||
if ((!SCM_BIGSIGN (n1)) && !SCM_BIGSIGN (n2)) {
|
||
return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGN (n1), n2);
|
||
} else {
|
||
return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGN (n1), n2, SCM_BIGSIGNFLAG);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr,
|
||
(SCM n1, SCM n2),
|
||
"Returns the integer which is the bit-wise XOR of the two integer\n"
|
||
"arguments.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (logxor #b1100 #b1010) 2)\n"
|
||
" @result{} \"110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logxor
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_UNBNDP (n2)) {
|
||
if (SCM_UNBNDP (n1)) {
|
||
return SCM_INUM0;
|
||
#ifndef SCM_RECKLESS
|
||
} else if (SCM_NUMBERP (n1)) {
|
||
return n1;
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
#else
|
||
} else {
|
||
return n1;
|
||
#endif
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_MAKINUM (nn1 ^ nn2);
|
||
} else if (SCM_BIGP (n2)) {
|
||
intbig:
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (nn1);
|
||
return scm_big_xor ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
# else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (nn1, zdigs);
|
||
return scm_big_xor (zdigs, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
# endif
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
if (SCM_NUMDIGS(n1) > SCM_NUMDIGS(n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
}
|
||
return scm_big_xor (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGN (n1), n2);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0,
|
||
(SCM n1, SCM n2),
|
||
"@example\n"
|
||
"(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n"
|
||
"(logtest #b0100 #b1011) @result{} #f\n"
|
||
"(logtest #b0100 #b0111) @result{} #t\n"
|
||
"@end example")
|
||
#define FUNC_NAME s_scm_logtest
|
||
{
|
||
long int nn1;
|
||
|
||
if (SCM_INUMP (n1)) {
|
||
nn1 = SCM_INUM (n1);
|
||
if (SCM_INUMP (n2)) {
|
||
long nn2 = SCM_INUM (n2);
|
||
return SCM_BOOL (nn1 & nn2);
|
||
} else if (SCM_BIGP (n2)) {
|
||
intbig:
|
||
{
|
||
# ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (nn1);
|
||
return scm_big_test ((SCM_BIGDIG *)&z, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
# else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (nn1, zdigs);
|
||
return scm_big_test (zdigs, SCM_DIGSPERLONG,
|
||
(nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2);
|
||
# endif
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else if (SCM_BIGP (n1)) {
|
||
if (SCM_INUMP (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
nn1 = SCM_INUM (n1);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (n2)) {
|
||
if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) {
|
||
SCM_SWAP (n1, n2);
|
||
}
|
||
return scm_big_test (SCM_BDIGITS (n1), SCM_NUMDIGS (n1),
|
||
SCM_BIGSIGN (n1), n2);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, n2);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n1);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0,
|
||
(SCM index, SCM j),
|
||
"@example\n"
|
||
"(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n"
|
||
"(logbit? 0 #b1101) @result{} #t\n"
|
||
"(logbit? 1 #b1101) @result{} #f\n"
|
||
"(logbit? 2 #b1101) @result{} #t\n"
|
||
"(logbit? 3 #b1101) @result{} #t\n"
|
||
"(logbit? 4 #b1101) @result{} #f\n"
|
||
"@end example")
|
||
#define FUNC_NAME s_scm_logbit_p
|
||
{
|
||
unsigned long int iindex;
|
||
|
||
SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0);
|
||
iindex = (unsigned long int) SCM_INUM (index);
|
||
|
||
if (SCM_INUMP (j)) {
|
||
return SCM_BOOL ((1L << iindex) & SCM_INUM (j));
|
||
} else if (SCM_BIGP (j)) {
|
||
if (SCM_NUMDIGS (j) * SCM_BITSPERDIG < iindex) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_BIGSIGN (j)) {
|
||
long num = -1;
|
||
scm_sizet i = 0;
|
||
SCM_BIGDIG * x = SCM_BDIGITS (j);
|
||
scm_sizet nx = iindex / SCM_BITSPERDIG;
|
||
while (1) {
|
||
num += x[i];
|
||
if (nx == i++) {
|
||
return SCM_BOOL (((1L << (iindex % SCM_BITSPERDIG)) & num) == 0);
|
||
} else if (num < 0) {
|
||
num = -1;
|
||
} else {
|
||
num = 0;
|
||
}
|
||
}
|
||
} else {
|
||
return SCM_BOOL (SCM_BDIGITS (j) [iindex / SCM_BITSPERDIG]
|
||
& (1L << (iindex % SCM_BITSPERDIG)));
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG2, j);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0,
|
||
(SCM n),
|
||
"Returns the integer which is the 2s-complement of the integer argument.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (lognot #b10000000) 2)\n"
|
||
" @result{} \"-10000001\"\n"
|
||
"(number->string (lognot #b0) 2)\n"
|
||
" @result{} \"-1\"\n"
|
||
"@end lisp\n"
|
||
"")
|
||
#define FUNC_NAME s_scm_lognot
|
||
{
|
||
return scm_difference (SCM_MAKINUM (-1L), n);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0,
|
||
(SCM n, SCM k),
|
||
"Returns @var{n} raised to the non-negative integer exponent @var{k}.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(integer-expt 2 5)\n"
|
||
" @result{} 32\n"
|
||
"(integer-expt -3 3)\n"
|
||
" @result{} -27\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_expt
|
||
{
|
||
SCM acc = SCM_MAKINUM (1L);
|
||
int i2;
|
||
#ifdef SCM_BIGDIG
|
||
if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc))
|
||
return n;
|
||
else if (SCM_EQ_P (n, SCM_MAKINUM (-1L)))
|
||
return SCM_FALSEP (scm_even_p (k)) ? n : acc;
|
||
#endif
|
||
SCM_VALIDATE_ULONG_COPY (2,k,i2);
|
||
if (i2 < 0)
|
||
{
|
||
i2 = -i2;
|
||
n = scm_divide (n, SCM_UNDEFINED);
|
||
}
|
||
while (1)
|
||
{
|
||
if (0 == i2)
|
||
return acc;
|
||
if (1 == i2)
|
||
return scm_product (acc, n);
|
||
if (i2 & 1)
|
||
acc = scm_product (acc, n);
|
||
n = scm_product (n, n);
|
||
i2 >>= 1;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
SCM_DEFINE (scm_ash, "ash", 2, 0, 0,
|
||
(SCM n, SCM cnt),
|
||
"The function ash performs an arithmetic shift left by CNT bits\n"
|
||
"(or shift right, if CNT is negative). 'Arithmetic' means, that\n"
|
||
"the function does not guarantee to keep the bit structure of N,\n"
|
||
"but rather guarantees that the result will always be rounded\n"
|
||
"towards minus infinity. Therefore, the results of ash and a\n"
|
||
"corresponding bitwise shift will differ if N is negative.\n\n"
|
||
"Formally, the function returns an integer equivalent to\n"
|
||
"@code{(inexact->exact (floor (* N (expt 2 CNT))))}.@refill\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (ash #b1 3) 2)\n"
|
||
" @result{} \"1000\"\n"
|
||
"(number->string (ash #b1010 -1) 2)\n"
|
||
" @result{} \"101\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_ash
|
||
{
|
||
long bits_to_shift;
|
||
|
||
#ifndef SCM_BIGDIG
|
||
SCM_VALIDATE_INUM (1, n)
|
||
#endif
|
||
SCM_VALIDATE_INUM (2, cnt);
|
||
|
||
bits_to_shift = SCM_INUM (cnt);
|
||
#ifdef SCM_BIGDIG
|
||
if (bits_to_shift < 0) {
|
||
/* Shift right by abs(cnt) bits. This is realized as a division by
|
||
div:=2^abs(cnt). However, to guarantee the floor rounding, negative
|
||
values require some special treatment.
|
||
*/
|
||
SCM div = scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (-bits_to_shift));
|
||
if (SCM_FALSEP (scm_negative_p (n)))
|
||
return scm_quotient (n, div);
|
||
else
|
||
return scm_sum (SCM_MAKINUM (-1L),
|
||
scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div));
|
||
} else
|
||
/* Shift left is done by multiplication with 2^CNT */
|
||
return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt));
|
||
#else
|
||
if (bits_to_shift < 0)
|
||
/* Signed right shift (SCM_SRS does it right) by abs(cnt) bits. */
|
||
return SCM_MAKINUM (SCM_SRS (SCM_INUM (n), -bits_to_shift));
|
||
else {
|
||
/* Shift left, but make sure not to leave the range of inums */
|
||
SCM res = SCM_MAKINUM (SCM_INUM (n) << cnt);
|
||
if (SCM_INUM (res) >> cnt != SCM_INUM (n))
|
||
scm_num_overflow (FUNC_NAME);
|
||
return res;
|
||
}
|
||
#endif
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0,
|
||
(SCM n, SCM start, SCM end),
|
||
"Returns the integer composed of the @var{start} (inclusive) through\n"
|
||
"@var{end} (exclusive) bits of @var{n}. The @var{start}th bit becomes\n"
|
||
"the 0-th bit in the result.@refill\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(number->string (bit-extract #b1101101010 0 4) 2)\n"
|
||
" @result{} \"1010\"\n"
|
||
"(number->string (bit-extract #b1101101010 4 9) 2)\n"
|
||
" @result{} \"10110\"\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_bit_extract
|
||
{
|
||
int istart, iend;
|
||
SCM_VALIDATE_INUM_MIN_COPY (2,start,0,istart);
|
||
SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend);
|
||
SCM_ASSERT_RANGE (3, end, (iend >= istart));
|
||
|
||
if (SCM_INUMP (n)) {
|
||
return SCM_MAKINUM ((SCM_INUM (n) >> istart) & ((1L << (iend - istart)) - 1));
|
||
} else if (SCM_BIGP (n)) {
|
||
SCM num1 = SCM_MAKINUM (1L);
|
||
SCM num2 = SCM_MAKINUM (2L);
|
||
SCM bits = SCM_MAKINUM (iend - istart);
|
||
SCM mask = scm_difference (scm_integer_expt (num2, bits), num1);
|
||
return scm_logand (mask, scm_ash (n, SCM_MAKINUM (-istart)));
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static const char scm_logtab[] = {
|
||
0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4
|
||
};
|
||
|
||
SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0,
|
||
(SCM n),
|
||
"Returns the number of bits in integer @var{n}. If integer is positive,\n"
|
||
"the 1-bits in its binary representation are counted. If negative, the\n"
|
||
"0-bits in its two's-complement binary representation are counted. If 0,\n"
|
||
"0 is returned.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(logcount #b10101010)\n"
|
||
" @result{} 4\n"
|
||
"(logcount 0)\n"
|
||
" @result{} 0\n"
|
||
"(logcount -2)\n"
|
||
" @result{} 1\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_logcount
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
unsigned long int c = 0;
|
||
long int nn = SCM_INUM (n);
|
||
if (nn < 0) {
|
||
nn = -1 - nn;
|
||
};
|
||
while (nn) {
|
||
c += scm_logtab[15 & nn];
|
||
nn >>= 4;
|
||
};
|
||
return SCM_MAKINUM (c);
|
||
} else if (SCM_BIGP (n)) {
|
||
if (SCM_BIGSIGN (n)) {
|
||
return scm_logcount (scm_difference (SCM_MAKINUM (-1L), n));
|
||
} else {
|
||
unsigned long int c = 0;
|
||
scm_sizet i = SCM_NUMDIGS (n);
|
||
SCM_BIGDIG * ds = SCM_BDIGITS (n);
|
||
while (i--) {
|
||
SCM_BIGDIG d;
|
||
for (d = ds[i]; d; d >>= 4) {
|
||
c += scm_logtab[15 & d];
|
||
}
|
||
}
|
||
return SCM_MAKINUM (c);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
static const char scm_ilentab[] = {
|
||
0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4
|
||
};
|
||
|
||
SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0,
|
||
(SCM n),
|
||
"Returns the number of bits neccessary to represent @var{n}.\n\n"
|
||
"Example:\n"
|
||
"@lisp\n"
|
||
"(integer-length #b10101010)\n"
|
||
" @result{} 8\n"
|
||
"(integer-length 0)\n"
|
||
" @result{} 0\n"
|
||
"(integer-length #b1111)\n"
|
||
" @result{} 4\n"
|
||
"@end lisp")
|
||
#define FUNC_NAME s_scm_integer_length
|
||
{
|
||
if (SCM_INUMP (n)) {
|
||
unsigned long int c = 0;
|
||
unsigned int l = 4;
|
||
long int nn = SCM_INUM (n);
|
||
if (nn < 0) {
|
||
nn = -1 - nn;
|
||
};
|
||
while (nn) {
|
||
c += 4;
|
||
l = scm_ilentab [15 & nn];
|
||
nn >>= 4;
|
||
};
|
||
return SCM_MAKINUM (c - 4 + l);
|
||
} else if (SCM_BIGP (n)) {
|
||
if (SCM_BIGSIGN (n)) {
|
||
return scm_integer_length (scm_difference (SCM_MAKINUM (-1L), n));
|
||
} else {
|
||
unsigned long int digs = SCM_NUMDIGS (n) - 1;
|
||
unsigned long int c = digs * SCM_BITSPERDIG;
|
||
unsigned int l = 4;
|
||
SCM_BIGDIG * ds = SCM_BDIGITS (n);
|
||
SCM_BIGDIG d = ds [digs];
|
||
while (d) {
|
||
c += 4;
|
||
l = scm_ilentab [15 & d];
|
||
d >>= 4;
|
||
};
|
||
return SCM_MAKINUM (c - 4 + l);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARG1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
#ifdef SCM_BIGDIG
|
||
static const char s_bignum[] = "bignum";
|
||
|
||
SCM
|
||
scm_mkbig (scm_sizet nlen, int sign)
|
||
{
|
||
SCM v;
|
||
/* Cast to long int to avoid signed/unsigned comparison warnings. */
|
||
if ((( ((long int) nlen) << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD)
|
||
!= (long int) nlen)
|
||
scm_memory_error (s_bignum);
|
||
|
||
SCM_NEWCELL (v);
|
||
SCM_DEFER_INTS;
|
||
SCM_SET_BIGNUM_BASE (v, scm_must_malloc (nlen * sizeof (SCM_BIGDIG), s_bignum));
|
||
SCM_SETNUMDIGS (v, nlen, sign);
|
||
SCM_ALLOW_INTS;
|
||
return v;
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_big2inum (SCM b, scm_sizet l)
|
||
{
|
||
unsigned long num = 0;
|
||
SCM_BIGDIG *tmp = SCM_BDIGITS (b);
|
||
while (l--)
|
||
num = SCM_BIGUP (num) + tmp[l];
|
||
if (!SCM_BIGSIGN (b))
|
||
{
|
||
if (SCM_POSFIXABLE (num))
|
||
return SCM_MAKINUM (num);
|
||
}
|
||
else if (num <= -SCM_MOST_NEGATIVE_FIXNUM)
|
||
return SCM_MAKINUM (-num);
|
||
return b;
|
||
}
|
||
|
||
|
||
static const char s_adjbig[] = "scm_adjbig";
|
||
|
||
SCM
|
||
scm_adjbig (SCM b, scm_sizet nlen)
|
||
{
|
||
scm_sizet nsiz = nlen;
|
||
if (((nsiz << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD) != nlen)
|
||
scm_memory_error (s_adjbig);
|
||
|
||
SCM_DEFER_INTS;
|
||
{
|
||
SCM_BIGDIG *digits
|
||
= ((SCM_BIGDIG *)
|
||
scm_must_realloc ((char *) SCM_BDIGITS (b),
|
||
(long) (SCM_NUMDIGS (b) * sizeof (SCM_BIGDIG)),
|
||
(long) (nsiz * sizeof (SCM_BIGDIG)), s_bignum));
|
||
|
||
SCM_SET_BIGNUM_BASE (b, digits);
|
||
SCM_SETNUMDIGS (b, nsiz, SCM_BIGSIGN (b));
|
||
}
|
||
SCM_ALLOW_INTS;
|
||
return b;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_normbig (SCM b)
|
||
{
|
||
#ifndef _UNICOS
|
||
scm_sizet nlen = SCM_NUMDIGS (b);
|
||
#else
|
||
int nlen = SCM_NUMDIGS (b); /* unsigned nlen breaks on Cray when nlen => 0 */
|
||
#endif
|
||
SCM_BIGDIG *zds = SCM_BDIGITS (b);
|
||
while (nlen-- && !zds[nlen]);
|
||
nlen++;
|
||
if (nlen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
|
||
if (SCM_INUMP (b = scm_big2inum (b, (scm_sizet) nlen)))
|
||
return b;
|
||
if (SCM_NUMDIGS (b) == nlen)
|
||
return b;
|
||
return scm_adjbig (b, (scm_sizet) nlen);
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_copybig (SCM b, int sign)
|
||
{
|
||
scm_sizet i = SCM_NUMDIGS (b);
|
||
SCM ans = scm_mkbig (i, sign);
|
||
SCM_BIGDIG *src = SCM_BDIGITS (b), *dst = SCM_BDIGITS (ans);
|
||
while (i--)
|
||
dst[i] = src[i];
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_long2big (long n)
|
||
{
|
||
scm_sizet i = 0;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans = scm_mkbig (SCM_DIGSPERLONG, n < 0);
|
||
digits = SCM_BDIGITS (ans);
|
||
if (n < 0)
|
||
n = -n;
|
||
while (i < SCM_DIGSPERLONG)
|
||
{
|
||
digits[i++] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN ((unsigned long) n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
#ifdef HAVE_LONG_LONGS
|
||
|
||
SCM
|
||
scm_long_long2big (long_long n)
|
||
{
|
||
scm_sizet i;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
int n_digits;
|
||
|
||
{
|
||
long tn;
|
||
tn = (long) n;
|
||
if ((long long) tn == n)
|
||
return scm_long2big (tn);
|
||
}
|
||
|
||
{
|
||
long_long tn;
|
||
|
||
for (tn = n, n_digits = 0;
|
||
tn;
|
||
++n_digits, tn = SCM_BIGDN ((ulong_long) tn))
|
||
;
|
||
}
|
||
|
||
i = 0;
|
||
ans = scm_mkbig (n_digits, n < 0);
|
||
digits = SCM_BDIGITS (ans);
|
||
if (n < 0)
|
||
n = -n;
|
||
while (i < n_digits)
|
||
{
|
||
digits[i++] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN ((ulong_long) n);
|
||
}
|
||
return ans;
|
||
}
|
||
#endif /* HAVE_LONG_LONGS */
|
||
|
||
|
||
SCM
|
||
scm_2ulong2big (unsigned long *np)
|
||
{
|
||
unsigned long n;
|
||
scm_sizet i;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
|
||
ans = scm_mkbig (2 * SCM_DIGSPERLONG, 0);
|
||
digits = SCM_BDIGITS (ans);
|
||
|
||
n = np[0];
|
||
for (i = 0; i < SCM_DIGSPERLONG; ++i)
|
||
{
|
||
digits[i] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN ((unsigned long) n);
|
||
}
|
||
n = np[1];
|
||
for (i = 0; i < SCM_DIGSPERLONG; ++i)
|
||
{
|
||
digits[i + SCM_DIGSPERLONG] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN ((unsigned long) n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_ulong2big (unsigned long n)
|
||
{
|
||
scm_sizet i = 0;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans = scm_mkbig (SCM_DIGSPERLONG, 0);
|
||
digits = SCM_BDIGITS (ans);
|
||
while (i < SCM_DIGSPERLONG)
|
||
{
|
||
digits[i++] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN (n);
|
||
}
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
int
|
||
scm_bigcomp (SCM x, SCM y)
|
||
{
|
||
int xsign = SCM_BIGSIGN (x);
|
||
int ysign = SCM_BIGSIGN (y);
|
||
scm_sizet xlen, ylen;
|
||
|
||
/* Look at the signs, first. */
|
||
if (ysign < xsign)
|
||
return 1;
|
||
if (ysign > xsign)
|
||
return -1;
|
||
|
||
/* They're the same sign, so see which one has more digits. Note
|
||
that, if they are negative, the longer number is the lesser. */
|
||
ylen = SCM_NUMDIGS (y);
|
||
xlen = SCM_NUMDIGS (x);
|
||
if (ylen > xlen)
|
||
return (xsign) ? -1 : 1;
|
||
if (ylen < xlen)
|
||
return (xsign) ? 1 : -1;
|
||
|
||
/* They have the same number of digits, so find the most significant
|
||
digit where they differ. */
|
||
while (xlen)
|
||
{
|
||
--xlen;
|
||
if (SCM_BDIGITS (y)[xlen] != SCM_BDIGITS (x)[xlen])
|
||
/* Make the discrimination based on the digit that differs. */
|
||
return ((SCM_BDIGITS (y)[xlen] > SCM_BDIGITS (x)[xlen])
|
||
? (xsign ? -1 : 1)
|
||
: (xsign ? 1 : -1));
|
||
}
|
||
|
||
/* The numbers are identical. */
|
||
return 0;
|
||
}
|
||
|
||
#ifndef SCM_DIGSTOOBIG
|
||
|
||
|
||
long
|
||
scm_pseudolong (long x)
|
||
{
|
||
union
|
||
{
|
||
long l;
|
||
SCM_BIGDIG bd[SCM_DIGSPERLONG];
|
||
}
|
||
p;
|
||
scm_sizet i = 0;
|
||
if (x < 0)
|
||
x = -x;
|
||
while (i < SCM_DIGSPERLONG)
|
||
{
|
||
p.bd[i++] = SCM_BIGLO (x);
|
||
x = SCM_BIGDN (x);
|
||
}
|
||
/* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */
|
||
return p.l;
|
||
}
|
||
|
||
#else
|
||
|
||
|
||
void
|
||
scm_longdigs (long x, SCM_BIGDIG digs[])
|
||
{
|
||
scm_sizet i = 0;
|
||
if (x < 0)
|
||
x = -x;
|
||
while (i < SCM_DIGSPERLONG)
|
||
{
|
||
digs[i++] = SCM_BIGLO (x);
|
||
x = SCM_BIGDN (x);
|
||
}
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
SCM
|
||
scm_addbig (SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int sgny)
|
||
{
|
||
/* Assumes nx <= SCM_NUMDIGS(bigy) */
|
||
/* Assumes xsgn and sgny scm_equal either 0 or SCM_BIGSIGNFLAG */
|
||
long num = 0;
|
||
scm_sizet i = 0, ny = SCM_NUMDIGS (bigy);
|
||
SCM z = scm_copybig (bigy, SCM_BIGSIGN (bigy) ^ sgny);
|
||
SCM_BIGDIG *zds = SCM_BDIGITS (z);
|
||
if (xsgn ^ SCM_BIGSIGN (z))
|
||
{
|
||
do
|
||
{
|
||
num += (long) zds[i] - x[i];
|
||
if (num < 0)
|
||
{
|
||
zds[i] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[i] = SCM_BIGLO (num);
|
||
num = 0;
|
||
}
|
||
}
|
||
while (++i < nx);
|
||
if (num && nx == ny)
|
||
{
|
||
num = 1;
|
||
i = 0;
|
||
SCM_SET_CELL_WORD_0 (z, SCM_CELL_WORD_0 (z) ^ SCM_BIGSIGNFLAG);
|
||
do
|
||
{
|
||
num += (SCM_BIGRAD - 1) - zds[i];
|
||
zds[i++] = SCM_BIGLO (num);
|
||
num = SCM_BIGDN (num);
|
||
}
|
||
while (i < ny);
|
||
}
|
||
else
|
||
while (i < ny)
|
||
{
|
||
num += zds[i];
|
||
if (num < 0)
|
||
{
|
||
zds[i++] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[i++] = SCM_BIGLO (num);
|
||
num = 0;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
{
|
||
do
|
||
{
|
||
num += (long) zds[i] + x[i];
|
||
zds[i++] = SCM_BIGLO (num);
|
||
num = SCM_BIGDN (num);
|
||
}
|
||
while (i < nx);
|
||
if (!num)
|
||
return z;
|
||
while (i < ny)
|
||
{
|
||
num += zds[i];
|
||
zds[i++] = SCM_BIGLO (num);
|
||
num = SCM_BIGDN (num);
|
||
if (!num)
|
||
return z;
|
||
}
|
||
if (num)
|
||
{
|
||
z = scm_adjbig (z, ny + 1);
|
||
SCM_BDIGITS (z)[ny] = num;
|
||
return z;
|
||
}
|
||
}
|
||
return scm_normbig (z);
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_mulbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn)
|
||
{
|
||
scm_sizet i = 0, j = nx + ny;
|
||
unsigned long n = 0;
|
||
SCM z = scm_mkbig (j, sgn);
|
||
SCM_BIGDIG *zds = SCM_BDIGITS (z);
|
||
while (j--)
|
||
zds[j] = 0;
|
||
do
|
||
{
|
||
j = 0;
|
||
if (x[i])
|
||
{
|
||
do
|
||
{
|
||
n += zds[i + j] + ((unsigned long) x[i] * y[j]);
|
||
zds[i + j++] = SCM_BIGLO (n);
|
||
n = SCM_BIGDN (n);
|
||
}
|
||
while (j < ny);
|
||
if (n)
|
||
{
|
||
zds[i + j] = n;
|
||
n = 0;
|
||
}
|
||
}
|
||
}
|
||
while (++i < nx);
|
||
return scm_normbig (z);
|
||
}
|
||
|
||
|
||
unsigned int
|
||
scm_divbigdig (SCM_BIGDIG * ds, scm_sizet h, SCM_BIGDIG div)
|
||
{
|
||
register unsigned long t2 = 0;
|
||
while (h--)
|
||
{
|
||
t2 = SCM_BIGUP (t2) + ds[h];
|
||
ds[h] = t2 / div;
|
||
t2 %= div;
|
||
}
|
||
return t2;
|
||
}
|
||
|
||
|
||
|
||
static SCM
|
||
scm_divbigint (SCM x, long z, int sgn, int mode)
|
||
{
|
||
if (z < 0)
|
||
z = -z;
|
||
if (z < SCM_BIGRAD)
|
||
{
|
||
register unsigned long t2 = 0;
|
||
register SCM_BIGDIG *ds = SCM_BDIGITS (x);
|
||
scm_sizet nd = SCM_NUMDIGS (x);
|
||
while (nd--)
|
||
t2 = (SCM_BIGUP (t2) + ds[nd]) % z;
|
||
if (mode && t2)
|
||
t2 = z - t2;
|
||
return SCM_MAKINUM (sgn ? -t2 : t2);
|
||
}
|
||
{
|
||
#ifndef SCM_DIGSTOOBIG
|
||
unsigned long t2 = scm_pseudolong (z);
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
(SCM_BIGDIG *) & t2, SCM_DIGSPERLONG,
|
||
sgn, mode);
|
||
#else
|
||
SCM_BIGDIG t2[SCM_DIGSPERLONG];
|
||
scm_longdigs (z, t2);
|
||
return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
t2, SCM_DIGSPERLONG,
|
||
sgn, mode);
|
||
#endif
|
||
}
|
||
}
|
||
|
||
|
||
static SCM
|
||
scm_divbigbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes)
|
||
{
|
||
/* modes description
|
||
0 remainder
|
||
1 scm_modulo
|
||
2 quotient
|
||
3 quotient but returns SCM_UNDEFINED if division is not exact. */
|
||
scm_sizet i = 0, j = 0;
|
||
long num = 0;
|
||
unsigned long t2 = 0;
|
||
SCM z, newy;
|
||
SCM_BIGDIG d = 0, qhat, *zds, *yds;
|
||
/* algorithm requires nx >= ny */
|
||
if (nx < ny)
|
||
switch (modes)
|
||
{
|
||
case 0: /* remainder -- just return x */
|
||
z = scm_mkbig (nx, sgn);
|
||
zds = SCM_BDIGITS (z);
|
||
do
|
||
{
|
||
zds[i] = x[i];
|
||
}
|
||
while (++i < nx);
|
||
return z;
|
||
case 1: /* scm_modulo -- return y-x */
|
||
z = scm_mkbig (ny, sgn);
|
||
zds = SCM_BDIGITS (z);
|
||
do
|
||
{
|
||
num += (long) y[i] - x[i];
|
||
if (num < 0)
|
||
{
|
||
zds[i] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[i] = num;
|
||
num = 0;
|
||
}
|
||
}
|
||
while (++i < nx);
|
||
while (i < ny)
|
||
{
|
||
num += y[i];
|
||
if (num < 0)
|
||
{
|
||
zds[i++] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[i++] = num;
|
||
num = 0;
|
||
}
|
||
}
|
||
goto doadj;
|
||
case 2:
|
||
return SCM_INUM0; /* quotient is zero */
|
||
case 3:
|
||
return SCM_UNDEFINED; /* the division is not exact */
|
||
}
|
||
|
||
z = scm_mkbig (nx == ny ? nx + 2 : nx + 1, sgn);
|
||
zds = SCM_BDIGITS (z);
|
||
if (nx == ny)
|
||
zds[nx + 1] = 0;
|
||
while (!y[ny - 1])
|
||
ny--; /* in case y came in as a psuedolong */
|
||
if (y[ny - 1] < (SCM_BIGRAD >> 1))
|
||
{ /* normalize operands */
|
||
d = SCM_BIGRAD / (y[ny - 1] + 1);
|
||
newy = scm_mkbig (ny, 0);
|
||
yds = SCM_BDIGITS (newy);
|
||
while (j < ny)
|
||
{
|
||
t2 += (unsigned long) y[j] * d;
|
||
yds[j++] = SCM_BIGLO (t2);
|
||
t2 = SCM_BIGDN (t2);
|
||
}
|
||
y = yds;
|
||
j = 0;
|
||
t2 = 0;
|
||
while (j < nx)
|
||
{
|
||
t2 += (unsigned long) x[j] * d;
|
||
zds[j++] = SCM_BIGLO (t2);
|
||
t2 = SCM_BIGDN (t2);
|
||
}
|
||
zds[j] = t2;
|
||
}
|
||
else
|
||
{
|
||
zds[j = nx] = 0;
|
||
while (j--)
|
||
zds[j] = x[j];
|
||
}
|
||
j = nx == ny ? nx + 1 : nx; /* dividend needs more digits than divisor */
|
||
do
|
||
{ /* loop over digits of quotient */
|
||
if (zds[j] == y[ny - 1])
|
||
qhat = SCM_BIGRAD - 1;
|
||
else
|
||
qhat = (SCM_BIGUP (zds[j]) + zds[j - 1]) / y[ny - 1];
|
||
if (!qhat)
|
||
continue;
|
||
i = 0;
|
||
num = 0;
|
||
t2 = 0;
|
||
do
|
||
{ /* multiply and subtract */
|
||
t2 += (unsigned long) y[i] * qhat;
|
||
num += zds[j - ny + i] - SCM_BIGLO (t2);
|
||
if (num < 0)
|
||
{
|
||
zds[j - ny + i] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[j - ny + i] = num;
|
||
num = 0;
|
||
}
|
||
t2 = SCM_BIGDN (t2);
|
||
}
|
||
while (++i < ny);
|
||
num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */
|
||
while (num)
|
||
{ /* "add back" required */
|
||
i = 0;
|
||
num = 0;
|
||
qhat--;
|
||
do
|
||
{
|
||
num += (long) zds[j - ny + i] + y[i];
|
||
zds[j - ny + i] = SCM_BIGLO (num);
|
||
num = SCM_BIGDN (num);
|
||
}
|
||
while (++i < ny);
|
||
num--;
|
||
}
|
||
if (modes & 2)
|
||
zds[j] = qhat;
|
||
}
|
||
while (--j >= ny);
|
||
switch (modes)
|
||
{
|
||
case 3: /* check that remainder==0 */
|
||
for (j = ny; j && !zds[j - 1]; --j);
|
||
if (j)
|
||
return SCM_UNDEFINED;
|
||
case 2: /* move quotient down in z */
|
||
j = (nx == ny ? nx + 2 : nx + 1) - ny;
|
||
for (i = 0; i < j; i++)
|
||
zds[i] = zds[i + ny];
|
||
ny = i;
|
||
break;
|
||
case 1: /* subtract for scm_modulo */
|
||
i = 0;
|
||
num = 0;
|
||
j = 0;
|
||
do
|
||
{
|
||
num += y[i] - zds[i];
|
||
j = j | zds[i];
|
||
if (num < 0)
|
||
{
|
||
zds[i] = num + SCM_BIGRAD;
|
||
num = -1;
|
||
}
|
||
else
|
||
{
|
||
zds[i] = num;
|
||
num = 0;
|
||
}
|
||
}
|
||
while (++i < ny);
|
||
if (!j)
|
||
return SCM_INUM0;
|
||
case 0: /* just normalize remainder */
|
||
if (d)
|
||
scm_divbigdig (zds, ny, d);
|
||
}
|
||
doadj:
|
||
for (j = ny; j && !zds[j - 1]; --j);
|
||
if (j * SCM_BITSPERDIG <= sizeof (SCM) * SCM_CHAR_BIT)
|
||
if (SCM_INUMP (z = scm_big2inum (z, j)))
|
||
return z;
|
||
return scm_adjbig (z, j);
|
||
}
|
||
#endif
|
||
|
||
|
||
|
||
|
||
|
||
/*** NUMBERS -> STRINGS ***/
|
||
int scm_dblprec;
|
||
static const double fx[] =
|
||
{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5,
|
||
5e-6, 5e-7, 5e-8, 5e-9, 5e-10,
|
||
5e-11, 5e-12, 5e-13, 5e-14, 5e-15,
|
||
5e-16, 5e-17, 5e-18, 5e-19, 5e-20};
|
||
|
||
|
||
|
||
|
||
static scm_sizet
|
||
idbl2str (double f, char *a)
|
||
{
|
||
int efmt, dpt, d, i, wp = scm_dblprec;
|
||
scm_sizet ch = 0;
|
||
int exp = 0;
|
||
|
||
if (f == 0.0)
|
||
goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */
|
||
if (f < 0.0)
|
||
{
|
||
f = -f;
|
||
a[ch++] = '-';
|
||
}
|
||
else if (f > 0.0);
|
||
else
|
||
goto funny;
|
||
if (IS_INF (f))
|
||
{
|
||
if (ch == 0)
|
||
a[ch++] = '+';
|
||
funny:
|
||
a[ch++] = '#';
|
||
a[ch++] = '.';
|
||
a[ch++] = '#';
|
||
return ch;
|
||
}
|
||
#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from
|
||
make-uniform-vector, from causing infinite loops. */
|
||
while (f < 1.0)
|
||
{
|
||
f *= 10.0;
|
||
if (exp-- < DBL_MIN_10_EXP)
|
||
goto funny;
|
||
}
|
||
while (f > 10.0)
|
||
{
|
||
f *= 0.10;
|
||
if (exp++ > DBL_MAX_10_EXP)
|
||
goto funny;
|
||
}
|
||
#else
|
||
while (f < 1.0)
|
||
{
|
||
f *= 10.0;
|
||
exp--;
|
||
}
|
||
while (f > 10.0)
|
||
{
|
||
f /= 10.0;
|
||
exp++;
|
||
}
|
||
#endif
|
||
if (f + fx[wp] >= 10.0)
|
||
{
|
||
f = 1.0;
|
||
exp++;
|
||
}
|
||
zero:
|
||
#ifdef ENGNOT
|
||
dpt = (exp + 9999) % 3;
|
||
exp -= dpt++;
|
||
efmt = 1;
|
||
#else
|
||
efmt = (exp < -3) || (exp > wp + 2);
|
||
if (!efmt)
|
||
{
|
||
if (exp < 0)
|
||
{
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
dpt = exp;
|
||
while (++dpt)
|
||
a[ch++] = '0';
|
||
}
|
||
else
|
||
dpt = exp + 1;
|
||
}
|
||
else
|
||
dpt = 1;
|
||
#endif
|
||
|
||
do
|
||
{
|
||
d = f;
|
||
f -= d;
|
||
a[ch++] = d + '0';
|
||
if (f < fx[wp])
|
||
break;
|
||
if (f + fx[wp] >= 1.0)
|
||
{
|
||
a[ch - 1]++;
|
||
break;
|
||
}
|
||
f *= 10.0;
|
||
if (!(--dpt))
|
||
a[ch++] = '.';
|
||
}
|
||
while (wp--);
|
||
|
||
if (dpt > 0)
|
||
{
|
||
#ifndef ENGNOT
|
||
if ((dpt > 4) && (exp > 6))
|
||
{
|
||
d = (a[0] == '-' ? 2 : 1);
|
||
for (i = ch++; i > d; i--)
|
||
a[i] = a[i - 1];
|
||
a[d] = '.';
|
||
efmt = 1;
|
||
}
|
||
else
|
||
#endif
|
||
{
|
||
while (--dpt)
|
||
a[ch++] = '0';
|
||
a[ch++] = '.';
|
||
}
|
||
}
|
||
if (a[ch - 1] == '.')
|
||
a[ch++] = '0'; /* trailing zero */
|
||
if (efmt && exp)
|
||
{
|
||
a[ch++] = 'e';
|
||
if (exp < 0)
|
||
{
|
||
exp = -exp;
|
||
a[ch++] = '-';
|
||
}
|
||
for (i = 10; i <= exp; i *= 10);
|
||
for (i /= 10; i; i /= 10)
|
||
{
|
||
a[ch++] = exp / i + '0';
|
||
exp %= i;
|
||
}
|
||
}
|
||
return ch;
|
||
}
|
||
|
||
|
||
static scm_sizet
|
||
iflo2str (SCM flt, char *str)
|
||
{
|
||
scm_sizet i;
|
||
if (SCM_SLOPPY_REALP (flt))
|
||
i = idbl2str (SCM_REAL_VALUE (flt), str);
|
||
else
|
||
{
|
||
i = idbl2str (SCM_COMPLEX_REAL (flt), str);
|
||
if (SCM_COMPLEX_IMAG (flt) != 0.0)
|
||
{
|
||
if (0 <= SCM_COMPLEX_IMAG (flt))
|
||
str[i++] = '+';
|
||
i += idbl2str (SCM_COMPLEX_IMAG (flt), &str[i]);
|
||
str[i++] = 'i';
|
||
}
|
||
}
|
||
return i;
|
||
}
|
||
|
||
/* convert a long to a string (unterminated). returns the number of
|
||
characters in the result.
|
||
rad is output base
|
||
p is destination: worst case (base 2) is SCM_INTBUFLEN */
|
||
scm_sizet
|
||
scm_iint2str (long num, int rad, char *p)
|
||
{
|
||
scm_sizet j = 1;
|
||
scm_sizet i;
|
||
unsigned long n = (num < 0) ? -num : num;
|
||
|
||
for (n /= rad; n > 0; n /= rad)
|
||
j++;
|
||
|
||
i = j;
|
||
if (num < 0)
|
||
{
|
||
*p++ = '-';
|
||
j++;
|
||
n = -num;
|
||
}
|
||
else
|
||
n = num;
|
||
while (i--)
|
||
{
|
||
int d = n % rad;
|
||
|
||
n /= rad;
|
||
p[i] = d + ((d < 10) ? '0' : 'a' - 10);
|
||
}
|
||
return j;
|
||
}
|
||
|
||
|
||
#ifdef SCM_BIGDIG
|
||
|
||
static SCM
|
||
big2str (SCM b, unsigned int radix)
|
||
{
|
||
SCM t = scm_copybig (b, 0); /* sign of temp doesn't matter */
|
||
register SCM_BIGDIG *ds = SCM_BDIGITS (t);
|
||
scm_sizet i = SCM_NUMDIGS (t);
|
||
scm_sizet j = radix == 16 ? (SCM_BITSPERDIG * i) / 4 + 2
|
||
: radix >= 10 ? (SCM_BITSPERDIG * i * 241L) / 800 + 2
|
||
: (SCM_BITSPERDIG * i) + 2;
|
||
scm_sizet k = 0;
|
||
scm_sizet radct = 0;
|
||
SCM_BIGDIG radpow = 1, radmod = 0;
|
||
SCM ss = scm_makstr ((long) j, 0);
|
||
char *s = SCM_STRING_CHARS (ss), c;
|
||
while ((long) radpow * radix < SCM_BIGRAD)
|
||
{
|
||
radpow *= radix;
|
||
radct++;
|
||
}
|
||
while ((i || radmod) && j)
|
||
{
|
||
if (k == 0)
|
||
{
|
||
radmod = (SCM_BIGDIG) scm_divbigdig (ds, i, radpow);
|
||
k = radct;
|
||
if (!ds[i - 1])
|
||
i--;
|
||
}
|
||
c = radmod % radix;
|
||
radmod /= radix;
|
||
k--;
|
||
s[--j] = c < 10 ? c + '0' : c + 'a' - 10;
|
||
}
|
||
|
||
if (SCM_BIGSIGN (b))
|
||
s[--j] = '-';
|
||
|
||
if (j > 0)
|
||
{
|
||
/* The pre-reserved string length was too large. */
|
||
unsigned long int length = SCM_STRING_LENGTH (ss);
|
||
ss = scm_substring (ss, SCM_MAKINUM (j), SCM_MAKINUM (length));
|
||
}
|
||
|
||
return scm_return_first (ss, t);
|
||
}
|
||
#endif
|
||
|
||
|
||
SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0,
|
||
(SCM n, SCM radix),
|
||
"Return a string holding the external representation of the\n"
|
||
"number N in the given RADIX. If N is inexact, a radix of 10\n"
|
||
"will be used.")
|
||
#define FUNC_NAME s_scm_number_to_string
|
||
{
|
||
int base;
|
||
|
||
if (SCM_UNBNDP (radix)) {
|
||
base = 10;
|
||
} else {
|
||
SCM_VALIDATE_INUM (2, radix);
|
||
base = SCM_INUM (radix);
|
||
SCM_ASSERT_RANGE (2, radix, base >= 2);
|
||
}
|
||
|
||
if (SCM_INUMP (n)) {
|
||
char num_buf [SCM_INTBUFLEN];
|
||
scm_sizet length = scm_iint2str (SCM_INUM (n), base, num_buf);
|
||
return scm_makfromstr (num_buf, length, 0);
|
||
} else if (SCM_BIGP (n)) {
|
||
return big2str (n, (unsigned int) base);
|
||
} else if (SCM_INEXACTP (n)) {
|
||
char num_buf [SCM_FLOBUFLEN];
|
||
return scm_makfromstr (num_buf, iflo2str (n, num_buf), 0);
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, n);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
/* These print routines are stubbed here so that scm_repl.c doesn't need
|
||
SCM_BIGDIG conditionals */
|
||
|
||
int
|
||
scm_print_real (SCM sexp, SCM port, scm_print_state *pstate)
|
||
{
|
||
char num_buf[SCM_FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate)
|
||
{
|
||
char num_buf[SCM_FLOBUFLEN];
|
||
scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port);
|
||
return !0;
|
||
}
|
||
|
||
int
|
||
scm_bigprint (SCM exp, SCM port, scm_print_state *pstate)
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
exp = big2str (exp, (unsigned int) 10);
|
||
scm_lfwrite (SCM_STRING_CHARS (exp), (scm_sizet) SCM_STRING_LENGTH (exp), port);
|
||
#else
|
||
scm_ipruk ("bignum", exp, port);
|
||
#endif
|
||
return !0;
|
||
}
|
||
/*** END nums->strs ***/
|
||
|
||
/*** STRINGS -> NUMBERS ***/
|
||
|
||
static SCM
|
||
scm_small_istr2int (char *str, long len, long radix)
|
||
{
|
||
register long n = 0, ln;
|
||
register int c;
|
||
register int i = 0;
|
||
int lead_neg = 0;
|
||
if (0 >= len)
|
||
return SCM_BOOL_F; /* zero scm_length */
|
||
switch (*str)
|
||
{ /* leading sign */
|
||
case '-':
|
||
lead_neg = 1;
|
||
case '+':
|
||
if (++i == len)
|
||
return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
}
|
||
|
||
do
|
||
{
|
||
switch (c = str[i++])
|
||
{
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accumulate;
|
||
case 'A':
|
||
case 'B':
|
||
case 'C':
|
||
case 'D':
|
||
case 'E':
|
||
case 'F':
|
||
c = c - 'A' + 10;
|
||
goto accumulate;
|
||
case 'a':
|
||
case 'b':
|
||
case 'c':
|
||
case 'd':
|
||
case 'e':
|
||
case 'f':
|
||
c = c - 'a' + 10;
|
||
accumulate:
|
||
if (c >= radix)
|
||
return SCM_BOOL_F; /* bad digit for radix */
|
||
ln = n;
|
||
n = n * radix - c;
|
||
/* Negation is a workaround for HP700 cc bug */
|
||
if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM))
|
||
goto ovfl;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F; /* not a digit */
|
||
}
|
||
}
|
||
while (i < len);
|
||
if (!lead_neg)
|
||
if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM)
|
||
goto ovfl;
|
||
return SCM_MAKINUM (n);
|
||
ovfl: /* overflow scheme integer */
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_istr2int (char *str, long len, long radix)
|
||
{
|
||
scm_sizet j;
|
||
register scm_sizet k, blen = 1;
|
||
scm_sizet i = 0;
|
||
int c;
|
||
SCM res;
|
||
register SCM_BIGDIG *ds;
|
||
register unsigned long t2;
|
||
|
||
if (0 >= len)
|
||
return SCM_BOOL_F; /* zero scm_length */
|
||
|
||
/* Short numbers we parse directly into an int, to avoid the overhead
|
||
of creating a bignum. */
|
||
if (len < 6)
|
||
return scm_small_istr2int (str, len, radix);
|
||
|
||
if (16 == radix)
|
||
j = 1 + (4 * len * sizeof (char)) / (SCM_BITSPERDIG);
|
||
else if (10 <= radix)
|
||
j = 1 + (84 * len * sizeof (char)) / (SCM_BITSPERDIG * 25);
|
||
else
|
||
j = 1 + (len * sizeof (char)) / (SCM_BITSPERDIG);
|
||
switch (str[0])
|
||
{ /* leading sign */
|
||
case '-':
|
||
case '+':
|
||
if (++i == (unsigned) len)
|
||
return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
}
|
||
res = scm_mkbig (j, '-' == str[0]);
|
||
ds = SCM_BDIGITS (res);
|
||
for (k = j; k--;)
|
||
ds[k] = 0;
|
||
do
|
||
{
|
||
switch (c = str[i++])
|
||
{
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accumulate;
|
||
case 'A':
|
||
case 'B':
|
||
case 'C':
|
||
case 'D':
|
||
case 'E':
|
||
case 'F':
|
||
c = c - 'A' + 10;
|
||
goto accumulate;
|
||
case 'a':
|
||
case 'b':
|
||
case 'c':
|
||
case 'd':
|
||
case 'e':
|
||
case 'f':
|
||
c = c - 'a' + 10;
|
||
accumulate:
|
||
if (c >= radix)
|
||
return SCM_BOOL_F; /* bad digit for radix */
|
||
k = 0;
|
||
t2 = c;
|
||
moretodo:
|
||
while (k < blen)
|
||
{
|
||
/* printf ("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]); */
|
||
t2 += ds[k] * radix;
|
||
ds[k++] = SCM_BIGLO (t2);
|
||
t2 = SCM_BIGDN (t2);
|
||
}
|
||
if (blen > j)
|
||
scm_num_overflow ("bignum");
|
||
if (t2)
|
||
{
|
||
blen++;
|
||
goto moretodo;
|
||
}
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F; /* not a digit */
|
||
}
|
||
}
|
||
while (i < (unsigned) len);
|
||
if (blen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM))
|
||
if (SCM_INUMP (res = scm_big2inum (res, blen)))
|
||
return res;
|
||
if (j == blen)
|
||
return res;
|
||
return scm_adjbig (res, blen);
|
||
}
|
||
|
||
SCM
|
||
scm_istr2flo (char *str, long len, long radix)
|
||
{
|
||
register int c, i = 0;
|
||
double lead_sgn;
|
||
double res = 0.0, tmp = 0.0;
|
||
int flg = 0;
|
||
int point = 0;
|
||
SCM second;
|
||
|
||
if (i >= len)
|
||
return SCM_BOOL_F; /* zero scm_length */
|
||
|
||
switch (*str)
|
||
{ /* leading sign */
|
||
case '-':
|
||
lead_sgn = -1.0;
|
||
i++;
|
||
break;
|
||
case '+':
|
||
lead_sgn = 1.0;
|
||
i++;
|
||
break;
|
||
default:
|
||
lead_sgn = 0.0;
|
||
}
|
||
if (i == len)
|
||
return SCM_BOOL_F; /* bad if lone `+' or `-' */
|
||
|
||
if (str[i] == 'i' || str[i] == 'I')
|
||
{ /* handle `+i' and `-i' */
|
||
if (lead_sgn == 0.0)
|
||
return SCM_BOOL_F; /* must have leading sign */
|
||
if (++i < len)
|
||
return SCM_BOOL_F; /* `i' not last character */
|
||
return scm_make_complex (0.0, lead_sgn);
|
||
}
|
||
do
|
||
{ /* check initial digits */
|
||
switch (c = str[i])
|
||
{
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accum1;
|
||
case 'D':
|
||
case 'E':
|
||
case 'F':
|
||
if (radix == 10)
|
||
goto out1; /* must be exponent */
|
||
case 'A':
|
||
case 'B':
|
||
case 'C':
|
||
c = c - 'A' + 10;
|
||
goto accum1;
|
||
case 'd':
|
||
case 'e':
|
||
case 'f':
|
||
if (radix == 10)
|
||
goto out1;
|
||
case 'a':
|
||
case 'b':
|
||
case 'c':
|
||
c = c - 'a' + 10;
|
||
accum1:
|
||
if (c >= radix)
|
||
return SCM_BOOL_F; /* bad digit for radix */
|
||
res = res * radix + c;
|
||
flg = 1; /* res is valid */
|
||
break;
|
||
default:
|
||
goto out1;
|
||
}
|
||
}
|
||
while (++i < len);
|
||
out1:
|
||
|
||
/* if true, then we did see a digit above, and res is valid */
|
||
if (i == len)
|
||
goto done;
|
||
|
||
/* By here, must have seen a digit,
|
||
or must have next char be a `.' with radix==10 */
|
||
if (!flg)
|
||
if (!(str[i] == '.' && radix == 10))
|
||
return SCM_BOOL_F;
|
||
|
||
while (str[i] == '#')
|
||
{ /* optional sharps */
|
||
res *= radix;
|
||
if (++i == len)
|
||
goto done;
|
||
}
|
||
|
||
if (str[i] == '/')
|
||
{
|
||
while (++i < len)
|
||
{
|
||
switch (c = str[i])
|
||
{
|
||
case DIGITS:
|
||
c = c - '0';
|
||
goto accum2;
|
||
case 'A':
|
||
case 'B':
|
||
case 'C':
|
||
case 'D':
|
||
case 'E':
|
||
case 'F':
|
||
c = c - 'A' + 10;
|
||
goto accum2;
|
||
case 'a':
|
||
case 'b':
|
||
case 'c':
|
||
case 'd':
|
||
case 'e':
|
||
case 'f':
|
||
c = c - 'a' + 10;
|
||
accum2:
|
||
if (c >= radix)
|
||
return SCM_BOOL_F;
|
||
tmp = tmp * radix + c;
|
||
break;
|
||
default:
|
||
goto out2;
|
||
}
|
||
}
|
||
out2:
|
||
if (tmp == 0.0)
|
||
return SCM_BOOL_F; /* `slash zero' not allowed */
|
||
if (i < len)
|
||
while (str[i] == '#')
|
||
{ /* optional sharps */
|
||
tmp *= radix;
|
||
if (++i == len)
|
||
break;
|
||
}
|
||
res /= tmp;
|
||
goto done;
|
||
}
|
||
|
||
if (str[i] == '.')
|
||
{ /* decimal point notation */
|
||
if (radix != 10)
|
||
return SCM_BOOL_F; /* must be radix 10 */
|
||
while (++i < len)
|
||
{
|
||
switch (c = str[i])
|
||
{
|
||
case DIGITS:
|
||
point--;
|
||
res = res * 10.0 + c - '0';
|
||
flg = 1;
|
||
break;
|
||
default:
|
||
goto out3;
|
||
}
|
||
}
|
||
out3:
|
||
if (!flg)
|
||
return SCM_BOOL_F; /* no digits before or after decimal point */
|
||
if (i == len)
|
||
goto adjust;
|
||
while (str[i] == '#')
|
||
{ /* ignore remaining sharps */
|
||
if (++i == len)
|
||
goto adjust;
|
||
}
|
||
}
|
||
|
||
switch (str[i])
|
||
{ /* exponent */
|
||
case 'd':
|
||
case 'D':
|
||
case 'e':
|
||
case 'E':
|
||
case 'f':
|
||
case 'F':
|
||
case 'l':
|
||
case 'L':
|
||
case 's':
|
||
case 'S':
|
||
{
|
||
int expsgn = 1, expon = 0;
|
||
if (radix != 10)
|
||
return SCM_BOOL_F; /* only in radix 10 */
|
||
if (++i == len)
|
||
return SCM_BOOL_F; /* bad exponent */
|
||
switch (str[i])
|
||
{
|
||
case '-':
|
||
expsgn = (-1);
|
||
case '+':
|
||
if (++i == len)
|
||
return SCM_BOOL_F; /* bad exponent */
|
||
}
|
||
if (str[i] < '0' || str[i] > '9')
|
||
return SCM_BOOL_F; /* bad exponent */
|
||
do
|
||
{
|
||
switch (c = str[i])
|
||
{
|
||
case DIGITS:
|
||
expon = expon * 10 + c - '0';
|
||
if (expon > SCM_MAXEXP)
|
||
scm_out_of_range ("string->number", SCM_MAKINUM (expon));
|
||
break;
|
||
default:
|
||
goto out4;
|
||
}
|
||
}
|
||
while (++i < len);
|
||
out4:
|
||
point += expsgn * expon;
|
||
}
|
||
}
|
||
|
||
adjust:
|
||
if (point >= 0)
|
||
while (point--)
|
||
res *= 10.0;
|
||
else
|
||
#ifdef _UNICOS
|
||
while (point++)
|
||
res *= 0.1;
|
||
#else
|
||
while (point++)
|
||
res /= 10.0;
|
||
#endif
|
||
|
||
done:
|
||
/* at this point, we have a legitimate floating point result */
|
||
if (lead_sgn == -1.0)
|
||
res = -res;
|
||
if (i == len)
|
||
return scm_make_real (res);
|
||
|
||
if (str[i] == 'i' || str[i] == 'I')
|
||
{ /* pure imaginary number */
|
||
if (lead_sgn == 0.0)
|
||
return SCM_BOOL_F; /* must have leading sign */
|
||
if (++i < len)
|
||
return SCM_BOOL_F; /* `i' not last character */
|
||
return scm_make_complex (0.0, res);
|
||
}
|
||
|
||
switch (str[i++])
|
||
{
|
||
case '-':
|
||
lead_sgn = -1.0;
|
||
break;
|
||
case '+':
|
||
lead_sgn = 1.0;
|
||
break;
|
||
case '@':
|
||
{ /* polar input for complex number */
|
||
/* get a `real' for scm_angle */
|
||
second = scm_istr2flo (&str[i], (long) (len - i), radix);
|
||
if (!SCM_SLOPPY_INEXACTP (second))
|
||
return SCM_BOOL_F; /* not `real' */
|
||
if (SCM_SLOPPY_COMPLEXP (second))
|
||
return SCM_BOOL_F; /* not `real' */
|
||
tmp = SCM_REAL_VALUE (second);
|
||
return scm_make_complex (res * cos (tmp), res * sin (tmp));
|
||
}
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
/* at this point, last char must be `i' */
|
||
if (str[len - 1] != 'i' && str[len - 1] != 'I')
|
||
return SCM_BOOL_F;
|
||
/* handles `x+i' and `x-i' */
|
||
if (i == (len - 1))
|
||
return scm_make_complex (res, lead_sgn);
|
||
/* get a `ureal' for complex part */
|
||
second = scm_istr2flo (&str[i], (long) ((len - i) - 1), radix);
|
||
if (!SCM_INEXACTP (second))
|
||
return SCM_BOOL_F; /* not `ureal' */
|
||
if (SCM_SLOPPY_COMPLEXP (second))
|
||
return SCM_BOOL_F; /* not `ureal' */
|
||
tmp = SCM_REAL_VALUE (second);
|
||
if (tmp < 0.0)
|
||
return SCM_BOOL_F; /* not `ureal' */
|
||
return scm_make_complex (res, (lead_sgn * tmp));
|
||
}
|
||
|
||
|
||
|
||
SCM
|
||
scm_istring2number (char *str, long len, long radix)
|
||
{
|
||
int i = 0;
|
||
char ex = 0;
|
||
char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */
|
||
SCM res;
|
||
if (len == 1)
|
||
if (*str == '+' || *str == '-') /* Catches lone `+' and `-' for speed */
|
||
return SCM_BOOL_F;
|
||
|
||
while ((len - i) >= 2 && str[i] == '#' && ++i)
|
||
switch (str[i++])
|
||
{
|
||
case 'b':
|
||
case 'B':
|
||
if (rx_p++)
|
||
return SCM_BOOL_F;
|
||
radix = 2;
|
||
break;
|
||
case 'o':
|
||
case 'O':
|
||
if (rx_p++)
|
||
return SCM_BOOL_F;
|
||
radix = 8;
|
||
break;
|
||
case 'd':
|
||
case 'D':
|
||
if (rx_p++)
|
||
return SCM_BOOL_F;
|
||
radix = 10;
|
||
break;
|
||
case 'x':
|
||
case 'X':
|
||
if (rx_p++)
|
||
return SCM_BOOL_F;
|
||
radix = 16;
|
||
break;
|
||
case 'i':
|
||
case 'I':
|
||
if (ex_p++)
|
||
return SCM_BOOL_F;
|
||
ex = 2;
|
||
break;
|
||
case 'e':
|
||
case 'E':
|
||
if (ex_p++)
|
||
return SCM_BOOL_F;
|
||
ex = 1;
|
||
break;
|
||
default:
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
switch (ex)
|
||
{
|
||
case 1:
|
||
return scm_istr2int (&str[i], len - i, radix);
|
||
case 0:
|
||
res = scm_istr2int (&str[i], len - i, radix);
|
||
if (SCM_NFALSEP (res))
|
||
return res;
|
||
case 2:
|
||
return scm_istr2flo (&str[i], len - i, radix);
|
||
}
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0,
|
||
(SCM string, SCM radix),
|
||
"Returns a number of the maximally precise representation\n"
|
||
"expressed by the given STRING. RADIX must be an exact integer,\n"
|
||
"either 2, 8, 10, or 16. If supplied, RADIX is a default radix\n"
|
||
"that may be overridden by an explicit radix prefix in STRING\n"
|
||
"(e.g. \"#o177\"). If RADIX is not supplied, then the default\n"
|
||
"radix is 10. If string is not a syntactically valid notation\n"
|
||
"for a number, then `string->number' returns #f. (r5rs)")
|
||
#define FUNC_NAME s_scm_string_to_number
|
||
{
|
||
SCM answer;
|
||
int base;
|
||
SCM_VALIDATE_STRING (1, string);
|
||
SCM_VALIDATE_INUM_MIN_DEF_COPY (2,radix,2,10,base);
|
||
answer = scm_istring2number (SCM_STRING_CHARS (string),
|
||
SCM_STRING_LENGTH (string),
|
||
base);
|
||
return scm_return_first (answer, string);
|
||
}
|
||
#undef FUNC_NAME
|
||
/*** END strs->nums ***/
|
||
|
||
|
||
SCM
|
||
scm_make_real (double x)
|
||
{
|
||
SCM z;
|
||
SCM_NEWCELL2 (z);
|
||
SCM_SET_CELL_TYPE (z, scm_tc16_real);
|
||
SCM_REAL_VALUE (z) = x;
|
||
return z;
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_make_complex (double x, double y)
|
||
{
|
||
if (y == 0.0) {
|
||
return scm_make_real (x);
|
||
} else {
|
||
SCM z;
|
||
SCM_NEWSMOB (z, scm_tc16_complex, scm_must_malloc (2L * sizeof (double), "complex"));
|
||
SCM_COMPLEX_REAL (z) = x;
|
||
SCM_COMPLEX_IMAG (z) = y;
|
||
return z;
|
||
}
|
||
}
|
||
|
||
|
||
SCM
|
||
scm_bigequal (SCM x, SCM y)
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
if (0 == scm_bigcomp (x, y))
|
||
return SCM_BOOL_T;
|
||
#endif
|
||
return SCM_BOOL_F;
|
||
}
|
||
|
||
SCM
|
||
scm_real_equalp (SCM x, SCM y)
|
||
{
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
}
|
||
|
||
SCM
|
||
scm_complex_equalp (SCM x, SCM y)
|
||
{
|
||
return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)
|
||
&& SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y));
|
||
}
|
||
|
||
|
||
|
||
SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p);
|
||
|
||
SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return #t if X is a complex number, #f else. Note that the\n"
|
||
"sets of real, rational and integer values form subsets of the\n"
|
||
"set of complex numbers, i. e. the predicate will also be\n"
|
||
"fulfilled if X is a real, rational or integer number.")
|
||
#define FUNC_NAME s_scm_number_p
|
||
{
|
||
return SCM_BOOL (SCM_NUMBERP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_REGISTER_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p);
|
||
|
||
SCM_DEFINE (scm_real_p, "rational?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return #t if X is a rational number, #f else. Note that the\n"
|
||
"set of integer values forms a subset of the set of rational\n"
|
||
"numbers, i. e. the predicate will also be fulfilled if X is an\n"
|
||
"integer number.")
|
||
#define FUNC_NAME s_scm_real_p
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else if (SCM_IMP (x)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_SLOPPY_REALP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else if (SCM_BIGP (x)) {
|
||
return SCM_BOOL_T;
|
||
} else {
|
||
return SCM_BOOL_F;
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return #t if X is an integer number, #f else.")
|
||
#define FUNC_NAME s_scm_integer_p
|
||
{
|
||
double r;
|
||
if (SCM_INUMP (x))
|
||
return SCM_BOOL_T;
|
||
if (SCM_IMP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_BIGP (x))
|
||
return SCM_BOOL_T;
|
||
if (!SCM_SLOPPY_INEXACTP (x))
|
||
return SCM_BOOL_F;
|
||
if (SCM_SLOPPY_COMPLEXP (x))
|
||
return SCM_BOOL_F;
|
||
r = SCM_REAL_VALUE (x);
|
||
if (r == floor (r))
|
||
return SCM_BOOL_T;
|
||
return SCM_BOOL_F;
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0,
|
||
(SCM x),
|
||
"Return #t if X is an inexact number, #f else.")
|
||
#define FUNC_NAME s_scm_inexact_p
|
||
{
|
||
return SCM_BOOL (SCM_INEXACTP (x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p);
|
||
|
||
SCM
|
||
scm_num_eq_p (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return SCM_BOOL (xx == yy);
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL (0 == scm_bigcomp (x, y));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (scm_big2dbl (x) == SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL ((scm_big2dbl (x) == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y))
|
||
&& (0.0 == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == scm_big2dbl (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == 0.0));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y))
|
||
&& (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p);
|
||
|
||
SCM
|
||
scm_less_p (SCM x, SCM y)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return SCM_BOOL (xx < yy);
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL (!SCM_BIGSIGN (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL (SCM_BIGSIGN (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL (1 == scm_bigcomp (x, y));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (scm_big2dbl (x) < SCM_REAL_VALUE (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) < scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_scm_gr_p, ">", scm_tc7_rpsubr, scm_gr_p, g_gr_p);
|
||
/* "Return #t if the list of parameters is monotonically\n"
|
||
* "increasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_gr_p
|
||
SCM
|
||
scm_gr_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_gr_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else
|
||
return scm_less_p (y, x);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_leq_p, "<=", scm_tc7_rpsubr, scm_leq_p, g_leq_p);
|
||
/* "Return #t if the list of parameters is monotonically\n"
|
||
* "non-decreasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_leq_p
|
||
SCM
|
||
scm_leq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_leq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else
|
||
return SCM_BOOL_NOT (scm_less_p (y, x));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_scm_geq_p, ">=", scm_tc7_rpsubr, scm_geq_p, g_geq_p);
|
||
/* "Return #t if the list of parameters is monotonically\n"
|
||
* "non-increasing."
|
||
*/
|
||
#define FUNC_NAME s_scm_geq_p
|
||
SCM
|
||
scm_geq_p (SCM x, SCM y)
|
||
{
|
||
if (!SCM_NUMBERP (x))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG1, FUNC_NAME);
|
||
else if (!SCM_NUMBERP (y))
|
||
SCM_WTA_DISPATCH_2 (g_geq_p, x, y, SCM_ARG2, FUNC_NAME);
|
||
else
|
||
return SCM_BOOL_NOT (scm_less_p (x, y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p);
|
||
|
||
SCM
|
||
scm_zero_p (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0));
|
||
} else if (SCM_BIGP (z)) {
|
||
return SCM_BOOL_F;
|
||
} else if (SCM_REALP (z)) {
|
||
return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0);
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0
|
||
&& SCM_COMPLEX_IMAG (z) == 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p);
|
||
|
||
SCM
|
||
scm_positive_p (SCM x)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL (SCM_INUM (x) > 0);
|
||
} else if (SCM_BIGP (x)) {
|
||
return SCM_BOOL (!SCM_BIGSIGN (x));
|
||
} else if (SCM_REALP (x)) {
|
||
return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p);
|
||
|
||
SCM
|
||
scm_negative_p (SCM x)
|
||
{
|
||
if (SCM_INUMP (x)) {
|
||
return SCM_BOOL (SCM_INUM (x) < 0);
|
||
} else if (SCM_BIGP (x)) {
|
||
return SCM_BOOL (SCM_BIGSIGN (x));
|
||
} else if (SCM_REALP (x)) {
|
||
return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max);
|
||
|
||
SCM
|
||
scm_max (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_max, x, SCM_ARG1, s_max);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return (xx < yy) ? y : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BIGSIGN (y) ? x : y;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = xx;
|
||
return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BIGSIGN (x) ? y : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
return (1 == scm_bigcomp (x, y)) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = scm_big2dbl (x);
|
||
return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
double z = SCM_INUM (y);
|
||
return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
|
||
} else if (SCM_BIGP (y)) {
|
||
double z = scm_big2dbl (y);
|
||
return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x;
|
||
} else if (SCM_REALP (y)) {
|
||
return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? y : x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min);
|
||
|
||
SCM
|
||
scm_min (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_min, x, SCM_ARG1, s_min);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
return (xx < yy) ? x : y;
|
||
} else if (SCM_BIGP (y)) {
|
||
return SCM_BIGSIGN (y) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = xx;
|
||
return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return SCM_BIGSIGN (x) ? x : y;
|
||
} else if (SCM_BIGP (y)) {
|
||
return (-1 == scm_bigcomp (x, y)) ? y : x;
|
||
} else if (SCM_REALP (y)) {
|
||
double z = scm_big2dbl (x);
|
||
return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
double z = SCM_INUM (y);
|
||
return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z);
|
||
} else if (SCM_BIGP (y)) {
|
||
double z = scm_big2dbl (y);
|
||
return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z);
|
||
} else if (SCM_REALP (y)) {
|
||
return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? x : y;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum);
|
||
|
||
SCM
|
||
scm_sum (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long int xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
long int z = xx + yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (z);
|
||
#else /* SCM_BIGDIG */
|
||
return scm_make_real ((double) z);
|
||
#endif /* SCM_BIGDIG */
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
intbig:
|
||
{
|
||
long int xx = SCM_INUM (x);
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (xx);
|
||
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0);
|
||
#else /* SCM_DIGSTOOBIG */
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (xx, zdigs);
|
||
return scm_addbig (zdigs, SCM_DIGSPERLONG,
|
||
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0);
|
||
#endif /* SCM_DIGSTOOBIG */
|
||
}
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (xx + SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (xx + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
SCM_SWAP (x, y);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (y)) {
|
||
if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y)) {
|
||
SCM_SWAP (x, y);
|
||
}
|
||
return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BIGSIGN (x), y, 0);
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (scm_big2dbl (x) + SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (scm_big2dbl (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) + scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + scm_big2dbl (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference);
|
||
|
||
SCM
|
||
scm_difference (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_INUMP (x)) {
|
||
long xx = -SCM_INUM (x);
|
||
if (SCM_FIXABLE (xx)) {
|
||
return SCM_MAKINUM (xx);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (xx);
|
||
#else
|
||
return scm_make_real ((double) xx);
|
||
#endif
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
SCM z = scm_copybig (x, !SCM_BIGSIGN (x));
|
||
unsigned int digs = SCM_NUMDIGS (z);
|
||
unsigned int size = digs * SCM_BITSPERDIG / SCM_CHAR_BIT;
|
||
return size <= sizeof (SCM) ? scm_big2inum (z, digs) : z;
|
||
} else if (SCM_REALP (x)) {
|
||
return scm_make_real (-SCM_REAL_VALUE (x));
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
return scm_make_complex (-SCM_COMPLEX_REAL (x), -SCM_COMPLEX_IMAG (x));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long int xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
long int z = xx - yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (z);
|
||
#else
|
||
return scm_make_real ((double) z);
|
||
#endif
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (xx);
|
||
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG);
|
||
#else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (xx, zdigs);
|
||
return scm_addbig (zdigs, SCM_DIGSPERLONG,
|
||
(xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG);
|
||
#endif
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (xx - SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (xx - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (yy);
|
||
return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
(yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0);
|
||
#else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (yy, zdigs);
|
||
return scm_addbig (zdigs, SCM_DIGSPERLONG,
|
||
(yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0);
|
||
#endif
|
||
} else if (SCM_BIGP (y)) {
|
||
return (SCM_NUMDIGS (x) < SCM_NUMDIGS (y))
|
||
? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BIGSIGN (x), y, SCM_BIGSIGNFLAG)
|
||
: scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (y) ^ SCM_BIGSIGNFLAG, x, 0);
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (scm_big2dbl (x) - SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (scm_big2dbl (x) - SCM_COMPLEX_REAL (y),
|
||
- SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) - scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y),
|
||
-SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - scm_big2dbl (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y),
|
||
SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y),
|
||
SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product);
|
||
|
||
SCM
|
||
scm_product (SCM x, SCM y)
|
||
{
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
return SCM_MAKINUM (1L);
|
||
} else if (SCM_NUMBERP (x)) {
|
||
return x;
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx;
|
||
|
||
intbig:
|
||
xx = SCM_INUM (x);
|
||
|
||
if (xx == 0) {
|
||
return x;
|
||
} else if (xx == 1) {
|
||
return y;
|
||
}
|
||
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
long kk = xx * yy;
|
||
SCM k = SCM_MAKINUM (kk);
|
||
if (kk != SCM_INUM (k) || kk / xx != yy) {
|
||
#ifdef SCM_BIGDIG
|
||
int sgn = (xx < 0) ^ (yy < 0);
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long i = scm_pseudolong (xx);
|
||
long j = scm_pseudolong (yy);
|
||
return scm_mulbig ((SCM_BIGDIG *) & i, SCM_DIGSPERLONG,
|
||
(SCM_BIGDIG *) & j, SCM_DIGSPERLONG, sgn);
|
||
#else /* SCM_DIGSTOOBIG */
|
||
SCM_BIGDIG xdigs [SCM_DIGSPERLONG];
|
||
SCM_BIGDIG ydigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (xx, xdigs);
|
||
scm_longdigs (yy, ydigs);
|
||
return scm_mulbig (xdigs, SCM_DIGSPERLONG,
|
||
ydigs, SCM_DIGSPERLONG,
|
||
sgn);
|
||
#endif
|
||
#else
|
||
return scm_make_real (((double) xx) * ((double) yy));
|
||
#endif
|
||
} else {
|
||
return k;
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
#ifndef SCM_DIGSTOOBIG
|
||
long z = scm_pseudolong (xx);
|
||
return scm_mulbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0));
|
||
#else
|
||
SCM_BIGDIG zdigs [SCM_DIGSPERLONG];
|
||
scm_longdigs (xx, zdigs);
|
||
return scm_mulbig (zdigs, SCM_DIGSPERLONG,
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0));
|
||
#endif
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (xx * SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (xx * SCM_COMPLEX_REAL (y),
|
||
xx * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
SCM_SWAP (x, y);
|
||
goto intbig;
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (scm_big2dbl (x) * SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
double z = scm_big2dbl (x);
|
||
return scm_make_complex (z * SCM_COMPLEX_REAL (y),
|
||
z * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real (scm_big2dbl (y) * SCM_REAL_VALUE (x));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y),
|
||
SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_INUM (y) * SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_BIGP (y)) {
|
||
double z = scm_big2dbl (y);
|
||
return scm_make_complex (z * SCM_COMPLEX_REAL (x),
|
||
z * SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x),
|
||
SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y)
|
||
- SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y),
|
||
SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y)
|
||
+ SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y));
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product);
|
||
}
|
||
}
|
||
|
||
|
||
double
|
||
scm_num2dbl (SCM a, const char *why)
|
||
#define FUNC_NAME why
|
||
{
|
||
if (SCM_INUMP (a)) {
|
||
return (double) SCM_INUM (a);
|
||
} else if (SCM_BIGP (a)) {
|
||
return scm_big2dbl (a);
|
||
} else if (SCM_REALP (a)) {
|
||
return (SCM_REAL_VALUE (a));
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (SCM_ARGn, a);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide);
|
||
|
||
SCM
|
||
scm_divide (SCM x, SCM y)
|
||
{
|
||
double a;
|
||
|
||
if (SCM_UNBNDP (y)) {
|
||
if (SCM_UNBNDP (x)) {
|
||
SCM_WTA_DISPATCH_0 (g_divide, x, SCM_ARG1, s_divide);
|
||
} else if (SCM_INUMP (x)) {
|
||
if (SCM_EQ_P (x, SCM_MAKINUM (1L)) || SCM_EQ_P (x, SCM_MAKINUM (-1L))) {
|
||
return x;
|
||
} else {
|
||
return scm_make_real (1.0 / (double) SCM_INUM (x));
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
return scm_make_real (1.0 / scm_big2dbl (x));
|
||
} else if (SCM_REALP (x)) {
|
||
return scm_make_real (1.0 / SCM_REAL_VALUE (x));
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
double r = SCM_COMPLEX_REAL (x);
|
||
double i = SCM_COMPLEX_IMAG (x);
|
||
double d = r * r + i * i;
|
||
return scm_make_complex (r / d, -i / d);
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide);
|
||
}
|
||
}
|
||
|
||
if (SCM_INUMP (x)) {
|
||
long xx = SCM_INUM (x);
|
||
if (SCM_INUMP (y)) {
|
||
long yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_divide);
|
||
} else if (xx % yy != 0) {
|
||
return scm_make_real ((double) xx / (double) yy);
|
||
} else {
|
||
long z = xx / yy;
|
||
if (SCM_FIXABLE (z)) {
|
||
return SCM_MAKINUM (z);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (z);
|
||
#else
|
||
return scm_make_real ((double) xx / (double) yy);
|
||
#endif
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real ((double) xx / scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real ((double) xx / SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = xx;
|
||
complex_div: /* y _must_ be a complex number */
|
||
{
|
||
double r = SCM_COMPLEX_REAL (y);
|
||
double i = SCM_COMPLEX_IMAG (y);
|
||
double d = r * r + i * i;
|
||
return scm_make_complex ((a * r) / d, (-a * i) / d);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_BIGP (x)) {
|
||
if (SCM_INUMP (y)) {
|
||
long int yy = SCM_INUM (y);
|
||
if (yy == 0) {
|
||
scm_num_overflow (s_divide);
|
||
} else if (yy == 1) {
|
||
return x;
|
||
} else {
|
||
long z = yy < 0 ? -yy : yy;
|
||
if (z < SCM_BIGRAD) {
|
||
SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0));
|
||
return scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w),
|
||
(SCM_BIGDIG) z)
|
||
? scm_make_real (scm_big2dbl (x) / (double) yy)
|
||
: scm_normbig (w);
|
||
} else {
|
||
SCM w;
|
||
#ifndef SCM_DIGSTOOBIG
|
||
z = scm_pseudolong (z);
|
||
w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
(SCM_BIGDIG *) & z, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3);
|
||
#else
|
||
SCM_BIGDIG zdigs[SCM_DIGSPERLONG];
|
||
scm_longdigs (z, zdigs);
|
||
w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
zdigs, SCM_DIGSPERLONG,
|
||
SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3);
|
||
#endif
|
||
return (!SCM_UNBNDP (w))
|
||
? w
|
||
: scm_make_real (scm_big2dbl (x) / (double) yy);
|
||
}
|
||
}
|
||
} else if (SCM_BIGP (y)) {
|
||
SCM w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x),
|
||
SCM_BDIGITS (y), SCM_NUMDIGS (y),
|
||
SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3);
|
||
return (!SCM_UNBNDP (w))
|
||
? w
|
||
: scm_make_real (scm_big2dbl (x) / scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (scm_big2dbl (x) / SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = scm_big2dbl (x);
|
||
goto complex_div;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_REALP (x)) {
|
||
double rx = SCM_REAL_VALUE (x);
|
||
if (SCM_INUMP (y)) {
|
||
return scm_make_real (rx / (double) SCM_INUM (y));
|
||
} else if (SCM_BIGP (y)) {
|
||
return scm_make_real (rx / scm_big2dbl (y));
|
||
} else if (SCM_REALP (y)) {
|
||
return scm_make_real (rx / SCM_REAL_VALUE (y));
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
a = rx;
|
||
goto complex_div;
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else if (SCM_COMPLEXP (x)) {
|
||
double rx = SCM_COMPLEX_REAL (x);
|
||
double ix = SCM_COMPLEX_IMAG (x);
|
||
if (SCM_INUMP (y)) {
|
||
double d = SCM_INUM (y);
|
||
return scm_make_complex (rx / d, ix / d);
|
||
} else if (SCM_BIGP (y)) {
|
||
double d = scm_big2dbl (y);
|
||
return scm_make_complex (rx / d, ix / d);
|
||
} else if (SCM_REALP (y)) {
|
||
double d = SCM_REAL_VALUE (y);
|
||
return scm_make_complex (rx / d, ix / d);
|
||
} else if (SCM_COMPLEXP (y)) {
|
||
double ry = SCM_COMPLEX_REAL (y);
|
||
double iy = SCM_COMPLEX_IMAG (y);
|
||
double d = ry * ry + iy * iy;
|
||
return scm_make_complex ((rx * ry + ix * iy) / d,
|
||
(ix * ry - rx * iy) / d);
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide);
|
||
}
|
||
} else {
|
||
SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh, g_asinh);
|
||
|
||
double
|
||
scm_asinh (double x)
|
||
{
|
||
return log (x + sqrt (x * x + 1));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh, g_acosh);
|
||
|
||
double
|
||
scm_acosh (double x)
|
||
{
|
||
return log (x + sqrt (x * x - 1));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh, g_atanh);
|
||
|
||
double
|
||
scm_atanh (double x)
|
||
{
|
||
return 0.5 * log ((1 + x) / (1 - x));
|
||
}
|
||
|
||
|
||
|
||
|
||
SCM_GPROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate, g_truncate);
|
||
|
||
double
|
||
scm_truncate (double x)
|
||
{
|
||
if (x < 0.0)
|
||
return -floor (-x);
|
||
return floor (x);
|
||
}
|
||
|
||
|
||
|
||
SCM_GPROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round, g_round);
|
||
|
||
double
|
||
scm_round (double x)
|
||
{
|
||
double plus_half = x + 0.5;
|
||
double result = floor (plus_half);
|
||
/* Adjust so that the scm_round is towards even. */
|
||
return (plus_half == result && plus_half / 2 != floor (plus_half / 2))
|
||
? result - 1 : result;
|
||
}
|
||
|
||
|
||
|
||
SCM_GPROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact, g_exact_to_inexact);
|
||
|
||
double
|
||
scm_exact_to_inexact (double z)
|
||
{
|
||
return z;
|
||
}
|
||
|
||
|
||
SCM_GPROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor, g_i_floor);
|
||
SCM_GPROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil, g_i_ceil);
|
||
SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)()) sqrt, g_i_sqrt);
|
||
SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)()) fabs, g_i_abs);
|
||
SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)()) exp, g_i_exp);
|
||
SCM_GPROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)()) log, g_i_log);
|
||
SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)()) sin, g_i_sin);
|
||
SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)()) cos, g_i_cos);
|
||
SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)()) tan, g_i_tan);
|
||
SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)()) asin, g_i_asin);
|
||
SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)()) acos, g_i_acos);
|
||
SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)()) atan, g_i_atan);
|
||
SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)()) sinh, g_i_sinh);
|
||
SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)()) cosh, g_i_cosh);
|
||
SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)()) tanh, g_i_tanh);
|
||
|
||
struct dpair
|
||
{
|
||
double x, y;
|
||
};
|
||
|
||
static void scm_two_doubles (SCM z1,
|
||
SCM z2,
|
||
const char *sstring,
|
||
struct dpair * xy);
|
||
|
||
static void
|
||
scm_two_doubles (SCM z1, SCM z2, const char *sstring, struct dpair *xy)
|
||
{
|
||
if (SCM_INUMP (z1)) {
|
||
xy->x = SCM_INUM (z1);
|
||
} else if (SCM_BIGP (z1)) {
|
||
xy->x = scm_big2dbl (z1);
|
||
} else if (SCM_REALP (z1)) {
|
||
xy->x = SCM_REAL_VALUE (z1);
|
||
} else {
|
||
scm_wrong_type_arg (sstring, SCM_ARG1, z1);
|
||
}
|
||
|
||
if (SCM_INUMP (z2)) {
|
||
xy->y = SCM_INUM (z2);
|
||
} else if (SCM_BIGP (z2)) {
|
||
xy->y = scm_big2dbl (z2);
|
||
} else if (SCM_REALP (z2)) {
|
||
xy->y = SCM_REAL_VALUE (z2);
|
||
} else {
|
||
scm_wrong_type_arg (sstring, SCM_ARG2, z2);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0,
|
||
(SCM z1, SCM z2),
|
||
"")
|
||
#define FUNC_NAME s_scm_sys_expt
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (z1, z2, FUNC_NAME, &xy);
|
||
return scm_make_real (pow (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0,
|
||
(SCM z1, SCM z2),
|
||
"")
|
||
#define FUNC_NAME s_scm_sys_atan2
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (z1, z2, FUNC_NAME, &xy);
|
||
return scm_make_real (atan2 (xy.x, xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0,
|
||
(SCM real, SCM imaginary),
|
||
"Return a complex number constructed of the given REAL and\n"
|
||
"IMAGINARY parts.")
|
||
#define FUNC_NAME s_scm_make_rectangular
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (real, imaginary, FUNC_NAME, &xy);
|
||
return scm_make_complex (xy.x, xy.y);
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
|
||
SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0,
|
||
(SCM z1, SCM z2),
|
||
"Return the complex number Z1 * e^(i * Z2).")
|
||
#define FUNC_NAME s_scm_make_polar
|
||
{
|
||
struct dpair xy;
|
||
scm_two_doubles (z1, z2, FUNC_NAME, &xy);
|
||
return scm_make_complex (xy.x * cos (xy.y), xy.x * sin (xy.y));
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part);
|
||
|
||
SCM
|
||
scm_real_part (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return z;
|
||
} else if (SCM_BIGP (z)) {
|
||
return z;
|
||
} else if (SCM_REALP (z)) {
|
||
return z;
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (SCM_COMPLEX_REAL (z));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part);
|
||
|
||
SCM
|
||
scm_imag_part (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_BIGP (z)) {
|
||
return SCM_INUM0;
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_flo0;
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (SCM_COMPLEX_IMAG (z));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude);
|
||
|
||
SCM
|
||
scm_magnitude (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
long int zz = SCM_INUM (z);
|
||
if (zz >= 0) {
|
||
return z;
|
||
} else if (SCM_POSFIXABLE (-zz)) {
|
||
return SCM_MAKINUM (-zz);
|
||
} else {
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (-zz);
|
||
#else
|
||
scm_num_overflow (s_magnitude);
|
||
#endif
|
||
}
|
||
} else if (SCM_BIGP (z)) {
|
||
if (!SCM_BIGSIGN (z)) {
|
||
return z;
|
||
} else {
|
||
return scm_copybig (z, 0);
|
||
}
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_make_real (fabs (SCM_REAL_VALUE (z)));
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
double r = SCM_COMPLEX_REAL (z);
|
||
double i = SCM_COMPLEX_IMAG (z);
|
||
return scm_make_real (sqrt (i * i + r * r));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle);
|
||
|
||
SCM
|
||
scm_angle (SCM z)
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
if (SCM_INUM (z) >= 0) {
|
||
return scm_make_real (atan2 (0.0, 1.0));
|
||
} else {
|
||
return scm_make_real (atan2 (0.0, -1.0));
|
||
}
|
||
} else if (SCM_BIGP (z)) {
|
||
if (SCM_BIGSIGN (z)) {
|
||
return scm_make_real (atan2 (0.0, -1.0));
|
||
} else {
|
||
return scm_make_real (atan2 (0.0, 1.0));
|
||
}
|
||
} else if (SCM_REALP (z)) {
|
||
return scm_make_real (atan2 (0.0, SCM_REAL_VALUE (z)));
|
||
} else if (SCM_COMPLEXP (z)) {
|
||
return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z)));
|
||
} else {
|
||
SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle);
|
||
}
|
||
}
|
||
|
||
|
||
SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0,
|
||
(SCM z),
|
||
"Returns an exact number that is numerically closest to Z.")
|
||
#define FUNC_NAME s_scm_inexact_to_exact
|
||
{
|
||
if (SCM_INUMP (z)) {
|
||
return z;
|
||
} else if (SCM_BIGP (z)) {
|
||
return z;
|
||
} else if (SCM_REALP (z)) {
|
||
double u = floor (SCM_REAL_VALUE (z) + 0.5);
|
||
long lu = (long) u;
|
||
if (SCM_FIXABLE (lu)) {
|
||
return SCM_MAKINUM (lu);
|
||
#ifdef SCM_BIGDIG
|
||
} else if (isfinite (u)) {
|
||
return scm_dbl2big (u);
|
||
#endif
|
||
} else {
|
||
scm_num_overflow (s_scm_inexact_to_exact);
|
||
}
|
||
} else {
|
||
SCM_WRONG_TYPE_ARG (1, z);
|
||
}
|
||
}
|
||
#undef FUNC_NAME
|
||
|
||
|
||
#ifdef SCM_BIGDIG
|
||
/* d must be integer */
|
||
|
||
SCM
|
||
scm_dbl2big (double d)
|
||
{
|
||
scm_sizet i = 0;
|
||
long c;
|
||
SCM_BIGDIG *digits;
|
||
SCM ans;
|
||
double u = (d < 0) ? -d : d;
|
||
while (0 != floor (u))
|
||
{
|
||
u /= SCM_BIGRAD;
|
||
i++;
|
||
}
|
||
ans = scm_mkbig (i, d < 0);
|
||
digits = SCM_BDIGITS (ans);
|
||
while (i--)
|
||
{
|
||
u *= SCM_BIGRAD;
|
||
c = floor (u);
|
||
u -= c;
|
||
digits[i] = c;
|
||
}
|
||
#ifndef SCM_RECKLESS
|
||
if (u != 0)
|
||
scm_num_overflow ("dbl2big");
|
||
#endif
|
||
return ans;
|
||
}
|
||
|
||
|
||
|
||
double
|
||
scm_big2dbl (SCM b)
|
||
{
|
||
double ans = 0.0;
|
||
scm_sizet i = SCM_NUMDIGS (b);
|
||
SCM_BIGDIG *digits = SCM_BDIGITS (b);
|
||
while (i--)
|
||
ans = digits[i] + SCM_BIGRAD * ans;
|
||
if (SCM_BIGSIGN (b))
|
||
return - ans;
|
||
return ans;
|
||
}
|
||
#endif
|
||
|
||
|
||
SCM
|
||
scm_long2num (long sl)
|
||
{
|
||
if (!SCM_FIXABLE (sl))
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long2big (sl);
|
||
#else
|
||
return scm_make_real ((double) sl);
|
||
#endif
|
||
}
|
||
return SCM_MAKINUM (sl);
|
||
}
|
||
|
||
|
||
#ifdef HAVE_LONG_LONGS
|
||
|
||
SCM
|
||
scm_long_long2num (long_long sl)
|
||
{
|
||
if (!SCM_FIXABLE (sl))
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
return scm_long_long2big (sl);
|
||
#else
|
||
return scm_make_real ((double) sl);
|
||
#endif
|
||
}
|
||
else
|
||
{
|
||
/* we know that sl fits into an inum */
|
||
return SCM_MAKINUM ((scm_bits_t) sl);
|
||
}
|
||
}
|
||
|
||
#endif /* HAVE_LONG_LONGS */
|
||
|
||
|
||
SCM
|
||
scm_ulong2num (unsigned long sl)
|
||
{
|
||
if (!SCM_POSFIXABLE (sl))
|
||
{
|
||
#ifdef SCM_BIGDIG
|
||
return scm_ulong2big (sl);
|
||
#else
|
||
return scm_make_real ((double) sl);
|
||
#endif
|
||
}
|
||
return SCM_MAKINUM (sl);
|
||
}
|
||
|
||
|
||
long
|
||
scm_num2long (SCM num, char *pos, const char *s_caller)
|
||
{
|
||
if (SCM_INUMP (num)) {
|
||
return SCM_INUM (num);
|
||
} else if (SCM_BIGP (num)) {
|
||
long int res;
|
||
/* can't use res directly in case num is -2^31. */
|
||
unsigned long int pos_res = 0;
|
||
unsigned long int old_res = 0;
|
||
scm_sizet l;
|
||
|
||
for (l = SCM_NUMDIGS (num); l--;) {
|
||
pos_res = SCM_BIGUP (pos_res) + SCM_BDIGITS (num)[l];
|
||
if (pos_res >= old_res) {
|
||
old_res = pos_res;
|
||
} else {
|
||
/* overflow. */
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
}
|
||
if (SCM_BIGSIGN (num)) {
|
||
res = -pos_res;
|
||
if (res <= 0) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else {
|
||
res = pos_res;
|
||
if (res >= 0) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
}
|
||
} else if (SCM_REALP (num)) {
|
||
double u = SCM_REAL_VALUE (num);
|
||
long int res = u;
|
||
if ((double) res == u) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else {
|
||
scm_wrong_type_arg (s_caller, (int) pos, num);
|
||
}
|
||
}
|
||
|
||
|
||
#ifdef HAVE_LONG_LONGS
|
||
|
||
long_long
|
||
scm_num2long_long (SCM num, char *pos, const char *s_caller)
|
||
{
|
||
if (SCM_INUMP (num)) {
|
||
return SCM_INUM (num);
|
||
} else if (SCM_BIGP (num)) {
|
||
long long res;
|
||
/* can't use res directly in case num is -2^63. */
|
||
unsigned long long int pos_res = 0;
|
||
unsigned long long int old_res = 0;
|
||
scm_sizet l;
|
||
|
||
for (l = SCM_NUMDIGS (num); l--;) {
|
||
pos_res = SCM_LONGLONGBIGUP (pos_res) + SCM_BDIGITS (num)[l];
|
||
if (pos_res >= old_res) {
|
||
old_res = pos_res;
|
||
} else {
|
||
/* overflow. */
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
}
|
||
if (SCM_BIGSIGN (num)) {
|
||
res = -pos_res;
|
||
if (res <= 0) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else {
|
||
res = pos_res;
|
||
if (res >= 0) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
}
|
||
} else if (SCM_REALP (num)) {
|
||
double u = SCM_REAL_VALUE (num);
|
||
long long int res = u;
|
||
if ((double) res == u) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else {
|
||
scm_wrong_type_arg (s_caller, (int) pos, num);
|
||
}
|
||
}
|
||
|
||
#endif /* HAVE_LONG_LONGS */
|
||
|
||
|
||
unsigned long
|
||
scm_num2ulong (SCM num, char *pos, const char *s_caller)
|
||
{
|
||
if (SCM_INUMP (num)) {
|
||
long nnum = SCM_INUM (num);
|
||
if (nnum >= 0) {
|
||
return nnum;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else if (SCM_BIGP (num)) {
|
||
unsigned long int res = 0;
|
||
unsigned long int old_res = 0;
|
||
scm_sizet l;
|
||
|
||
for (l = SCM_NUMDIGS (num); l--;) {
|
||
res = SCM_BIGUP (res) + SCM_BDIGITS (num)[l];
|
||
if (res >= old_res) {
|
||
old_res = res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
}
|
||
return res;
|
||
} else if (SCM_REALP (num)) {
|
||
double u = SCM_REAL_VALUE (num);
|
||
unsigned long int res = u;
|
||
if ((double) res == u) {
|
||
return res;
|
||
} else {
|
||
scm_out_of_range (s_caller, num);
|
||
}
|
||
} else {
|
||
scm_wrong_type_arg (s_caller, (int) pos, num);
|
||
}
|
||
}
|
||
|
||
|
||
void
|
||
scm_init_numbers ()
|
||
{
|
||
scm_add_feature ("complex");
|
||
scm_add_feature ("inexact");
|
||
scm_flo0 = scm_make_real (0.0);
|
||
#ifdef DBL_DIG
|
||
scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG;
|
||
#else
|
||
{ /* determine floating point precision */
|
||
double f = 0.1;
|
||
double fsum = 1.0 + f;
|
||
while (fsum != 1.0) {
|
||
if (++scm_dblprec > 20) {
|
||
fsum = 1.0;
|
||
} else {
|
||
f /= 10.0;
|
||
fsum = f + 1.0;
|
||
}
|
||
}
|
||
scm_dblprec = scm_dblprec - 1;
|
||
}
|
||
#endif /* DBL_DIG */
|
||
#ifndef SCM_MAGIC_SNARFER
|
||
#include "libguile/numbers.x"
|
||
#endif
|
||
}
|
||
|
||
/*
|
||
Local Variables:
|
||
c-file-style: "gnu"
|
||
End:
|
||
*/
|