1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/srfi/srfi-1.c
Kevin Ryde eccd308a5b (scm_srfi1_count, scm_srfi1_filter_map): Don't modify the
rest argument, that belongs to the caller when reached from apply.
Use a temp vector like scm_srfi1_for_each.
2005-04-23 00:10:50 +00:00

1266 lines
38 KiB
C

/* srfi-1.c --- SRFI-1 procedures for Guile
*
* Copyright (C) 1995, 1996, 1997, 2000, 2001, 2002, 2003 Free Software
* Foundation, Inc.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <libguile.h>
#include <libguile/lang.h>
#include "srfi-1.h"
/* The intent of this file is to gradually replace those Scheme
* procedures in srfi-1.scm which extends core primitive procedures,
* so that using srfi-1 won't have performance penalties.
*
* Please feel free to contribute any new replacements!
*/
static long
srfi1_ilength (SCM sx)
{
long i = 0;
SCM tortoise = sx;
SCM hare = sx;
do {
if (SCM_NULL_OR_NIL_P(hare)) return i;
if (!scm_is_pair (hare)) return -2;
hare = SCM_CDR(hare);
i++;
if (SCM_NULL_OR_NIL_P(hare)) return i;
if (!scm_is_pair (hare)) return -2;
hare = SCM_CDR(hare);
i++;
/* For every two steps the hare takes, the tortoise takes one. */
tortoise = SCM_CDR(tortoise);
}
while (! scm_is_eq (hare, tortoise));
/* If the tortoise ever catches the hare, then the list must contain
a cycle. */
return -1;
}
static SCM
equal_trampoline (SCM proc, SCM arg1, SCM arg2)
{
return scm_equal_p (arg1, arg2);
}
SCM_DEFINE (scm_srfi1_alist_copy, "alist-copy", 1, 0, 0,
(SCM alist),
"Return a copy of @var{alist}, copying both the pairs comprising\n"
"the list and those making the associations.")
#define FUNC_NAME s_scm_srfi1_alist_copy
{
SCM ret, *p, elem, c;
/* ret is the list to return. p is where to append to it, initially &ret
then SCM_CDRLOC of the last pair. */
ret = SCM_EOL;
p = &ret;
for ( ; scm_is_pair (alist); alist = SCM_CDR (alist))
{
elem = SCM_CAR (alist);
/* each element of alist must be a pair */
SCM_ASSERT_TYPE (scm_is_pair (elem), alist, SCM_ARG1, FUNC_NAME,
"association list");
c = scm_cons (scm_cons (SCM_CAR (elem), SCM_CDR (elem)), SCM_EOL);
*p = c;
p = SCM_CDRLOC (c);
}
/* alist must be a proper list */
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (alist), alist, SCM_ARG1, FUNC_NAME,
"association list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_concatenate, "concatenate", 1, 0, 0,
(SCM lstlst),
"Construct a list by appending all lists in @var{lstlst}.\n"
"\n"
"@code{concatenate} is the same as @code{(apply append\n"
"@var{lstlst})}. It exists because some Scheme implementations\n"
"have a limit on the number of arguments a function takes, which\n"
"the @code{apply} might exceed. In Guile there is no such\n"
"limit.")
#define FUNC_NAME s_scm_srfi1_concatenate
{
SCM_VALIDATE_LIST (SCM_ARG1, lstlst);
return scm_append (lstlst);
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_concatenate_x, "concatenate!", 1, 0, 0,
(SCM lstlst),
"Construct a list by appending all lists in @var{lstlst}. Those\n"
"lists may be modified to produce the result.\n"
"\n"
"@code{concatenate!} is the same as @code{(apply append!\n"
"@var{lstlst})}. It exists because some Scheme implementations\n"
"have a limit on the number of arguments a function takes, which\n"
"the @code{apply} might exceed. In Guile there is no such\n"
"limit.")
#define FUNC_NAME s_scm_srfi1_concatenate
{
SCM_VALIDATE_LIST (SCM_ARG1, lstlst);
return scm_append_x (lstlst);
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_count, "count", 2, 0, 1,
(SCM pred, SCM list1, SCM rest),
"Return a count of the number of times @var{pred} returns true\n"
"when called on elements from the given lists.\n"
"\n"
"@var{pred} is called with @var{N} parameters @code{(@var{pred}\n"
"@var{elem1} @dots{} @var{elemN})}, each element being from the\n"
"corresponding @var{list1} @dots{} @var{lstN}. The first call is\n"
"with the first element of each list, the second with the second\n"
"element from each, and so on.\n"
"\n"
"Counting stops when the end of the shortest list is reached.\n"
"At least one list must be non-circular.")
#define FUNC_NAME s_scm_srfi1_count
{
long count;
SCM lst;
int argnum;
SCM_VALIDATE_REST_ARGUMENT (rest);
count = 0;
if (scm_is_null (rest))
{
/* one list */
scm_t_trampoline_1 pred_tramp;
pred_tramp = scm_trampoline_1 (pred);
SCM_ASSERT (pred_tramp, pred, SCM_ARG1, FUNC_NAME);
for ( ; scm_is_pair (list1); list1 = SCM_CDR (list1))
count += scm_is_true (pred_tramp (pred, SCM_CAR (list1)));
/* check below that list1 is a proper list, and done */
end_list1:
lst = list1;
argnum = 2;
}
else if (scm_is_pair (rest) && scm_is_null (SCM_CDR (rest)))
{
/* two lists */
scm_t_trampoline_2 pred_tramp;
SCM list2;
pred_tramp = scm_trampoline_2 (pred);
SCM_ASSERT (pred_tramp, pred, SCM_ARG1, FUNC_NAME);
list2 = SCM_CAR (rest);
for (;;)
{
if (! scm_is_pair (list1))
goto end_list1;
if (! scm_is_pair (list2))
{
lst = list2;
argnum = 3;
break;
}
count += scm_is_true (pred_tramp
(pred, SCM_CAR (list1), SCM_CAR (list2)));
list1 = SCM_CDR (list1);
list2 = SCM_CDR (list2);
}
}
else
{
/* three or more lists */
SCM vec, args, a;
size_t len, i;
/* vec is the list arguments */
vec = scm_vector (scm_cons (list1, rest));
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
/* args is the argument list to pass to pred, same length as vec,
re-used for each call */
args = scm_make_list (SCM_I_MAKINUM (len), SCM_UNDEFINED);
for (;;)
{
/* first elem of each list in vec into args, and step those
vec entries onto their next element */
for (i = 0, a = args, argnum = 2;
i < len;
i++, a = SCM_CDR (a), argnum++)
{
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
if (! scm_is_pair (lst))
goto check_lst_and_done;
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for pred */
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
}
count += scm_is_true (scm_apply (pred, args, SCM_EOL));
}
}
check_lst_and_done:
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
return scm_from_long (count);
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_delete, "delete", 2, 1, 0,
(SCM x, SCM lst, SCM pred),
"Return a list containing the elements of @var{lst} but with\n"
"those equal to @var{x} deleted. The returned elements will be\n"
"in the same order as they were in @var{lst}.\n"
"\n"
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
"given. An equality call is made just once for each element,\n"
"but the order in which the calls are made on the elements is\n"
"unspecified.\n"
"\n"
"The equality calls are always @code{(pred x elem)}, ie.@: the\n"
"given @var{x} is first. This means for instance elements\n"
"greater than 5 can be deleted with @code{(delete 5 lst <)}.\n"
"\n"
"@var{lst} is not modified, but the returned list might share a\n"
"common tail with @var{lst}.")
#define FUNC_NAME s_scm_srfi1_delete
{
scm_t_trampoline_2 equal_p;
SCM ret, *p, keeplst;
if (SCM_UNBNDP (pred))
return scm_delete (x, lst);
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, SCM_ARG3, FUNC_NAME);
/* ret is the return list being constructed. p is where to append to it,
initially &ret then SCM_CDRLOC of the last pair. lst progresses as
elements are considered.
Elements to be retained are not immediately copied, instead keeplst is
the last pair in lst which is to be retained but not yet copied. When
there's no more deletions, *p can be set to keeplst to share the
remainder of the original lst. (The entire original lst if there's no
deletions at all.) */
keeplst = lst;
ret = SCM_EOL;
p = &ret;
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
{
if (scm_is_true (equal_p (pred, x, SCM_CAR (lst))))
{
/* delete this element, so copy from keeplst (inclusive) to lst
(exclusive) onto ret */
while (! scm_is_eq (keeplst, lst))
{
SCM c = scm_cons (SCM_CAR (keeplst), SCM_EOL);
*p = c;
p = SCM_CDRLOC (c);
keeplst = SCM_CDR (keeplst);
}
keeplst = SCM_CDR (lst);
}
}
/* final retained elements */
*p = keeplst;
/* demand that lst was a proper list */
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_delete_x, "delete!", 2, 1, 0,
(SCM x, SCM lst, SCM pred),
"Return a list containing the elements of @var{lst} but with\n"
"those equal to @var{x} deleted. The returned elements will be\n"
"in the same order as they were in @var{lst}.\n"
"\n"
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
"given. An equality call is made just once for each element,\n"
"but the order in which the calls are made on the elements is\n"
"unspecified.\n"
"\n"
"The equality calls are always @code{(pred x elem)}, ie.@: the\n"
"given @var{x} is first. This means for instance elements\n"
"greater than 5 can be deleted with @code{(delete 5 lst <)}.\n"
"\n"
"@var{lst} may be modified to construct the returned list.")
#define FUNC_NAME s_scm_srfi1_delete_x
{
scm_t_trampoline_2 equal_p;
SCM walk;
SCM *prev;
if (SCM_UNBNDP (pred))
return scm_delete_x (x, lst);
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, SCM_ARG3, FUNC_NAME);
for (prev = &lst, walk = lst;
scm_is_pair (walk);
walk = SCM_CDR (walk))
{
if (scm_is_true (equal_p (pred, x, SCM_CAR (walk))))
*prev = SCM_CDR (walk);
else
prev = SCM_CDRLOC (walk);
}
/* demand the input was a proper list */
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (walk), walk, SCM_ARG2, FUNC_NAME,"list");
return lst;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_delete_duplicates, "delete-duplicates", 1, 1, 0,
(SCM lst, SCM pred),
"Return a list containing the elements of @var{lst} but without\n"
"duplicates.\n"
"\n"
"When elements are equal, only the first in @var{lst} is\n"
"retained. Equal elements can be anywhere in @var{lst}, they\n"
"don't have to be adjacent. The returned list will have the\n"
"retained elements in the same order as they were in @var{lst}.\n"
"\n"
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
"given. Calls @code{(pred x y)} are made with element @var{x}\n"
"being before @var{y} in @var{lst}. A call is made at most once\n"
"for each combination, but the sequence of the calls across the\n"
"elements is unspecified.\n"
"\n"
"@var{lst} is not modified, but the return might share a common\n"
"tail with @var{lst}.\n"
"\n"
"In the worst case, this is an @math{O(N^2)} algorithm because\n"
"it must check each element against all those preceding it. For\n"
"long lists it is more efficient to sort and then compare only\n"
"adjacent elements.")
#define FUNC_NAME s_scm_srfi1_delete_duplicates
{
scm_t_trampoline_2 equal_p;
SCM ret, *p, keeplst, item, l;
/* ret is the new list constructed. p is where to append, initially &ret
then SCM_CDRLOC of the last pair. lst is advanced as each element is
considered.
Elements retained are not immediately appended to ret, instead keeplst
is the last pair in lst which is to be kept but is not yet copied.
Initially this is the first pair of lst, since the first element is
always retained.
*p is kept set to keeplst, so ret (inclusive) to lst (exclusive) is all
the elements retained, making the equality search loop easy.
If an item must be deleted, elements from keeplst (inclusive) to lst
(exclusive) must be copied and appended to ret. When there's no more
deletions, *p is left set to keeplst, so ret shares structure with the
original lst. (ret will be the entire original lst if there are no
deletions.) */
/* skip to end if an empty list (or something invalid) */
ret = lst;
if (scm_is_pair (lst))
{
if (SCM_UNBNDP (pred))
equal_p = equal_trampoline;
else
{
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, SCM_ARG2, FUNC_NAME);
}
keeplst = lst;
p = &ret;
/* loop over lst elements starting from second */
for (;;)
{
lst = SCM_CDR (lst);
if (! scm_is_pair (lst))
break;
item = SCM_CAR (lst);
/* loop searching ret upto lst */
for (l = ret; ! scm_is_eq (l, lst); l = SCM_CDR (l))
{
if (scm_is_true (equal_p (pred, SCM_CAR (l), item)))
{
/* duplicate, don't want this element, so copy keeplst
(inclusive) to lst (exclusive) onto ret */
while (! scm_is_eq (keeplst, lst))
{
SCM c = scm_cons (SCM_CAR (keeplst), SCM_EOL);
*p = c;
p = SCM_CDRLOC (c);
keeplst = SCM_CDR (keeplst);
}
keeplst = SCM_CDR (lst); /* elem after the one deleted */
*p = keeplst;
break;
}
}
}
}
/* demand that lst was a proper list */
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG1, FUNC_NAME, "list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_delete_duplicates_x, "delete-duplicates!", 1, 1, 0,
(SCM lst, SCM pred),
"Return a list containing the elements of @var{lst} but without\n"
"duplicates.\n"
"\n"
"When elements are equal, only the first in @var{lst} is\n"
"retained. Equal elements can be anywhere in @var{lst}, they\n"
"don't have to be adjacent. The returned list will have the\n"
"retained elements in the same order as they were in @var{lst}.\n"
"\n"
"Equality is determined by @var{pred}, or @code{equal?} if not\n"
"given. Calls @code{(pred x y)} are made with element @var{x}\n"
"being before @var{y} in @var{lst}. A call is made at most once\n"
"for each combination, but the sequence of the calls across the\n"
"elements is unspecified.\n"
"\n"
"@var{lst} may be modified to construct the returned list.\n"
"\n"
"In the worst case, this is an @math{O(N^2)} algorithm because\n"
"it must check each element against all those preceding it. For\n"
"long lists it is more efficient to sort and then compare only\n"
"adjacent elements.")
#define FUNC_NAME s_scm_srfi1_delete_duplicates_x
{
scm_t_trampoline_2 equal_p;
SCM ret, endret, item, l;
/* ret is the return list, constructed from the pairs in lst. endret is
the last pair of ret, initially the first pair. lst is advanced as
elements are considered. */
/* skip to end if an empty list (or something invalid) */
ret = lst;
if (scm_is_pair (lst))
{
if (SCM_UNBNDP (pred))
equal_p = equal_trampoline;
else
{
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, SCM_ARG2, FUNC_NAME);
}
endret = ret;
/* loop over lst elements starting from second */
for (;;)
{
lst = SCM_CDR (lst);
if (! scm_is_pair (lst))
break;
item = SCM_CAR (lst);
/* is item equal to any element from ret to endret (inclusive)? */
l = ret;
for (;;)
{
if (scm_is_true (equal_p (pred, SCM_CAR (l), item)))
break; /* equal, forget this element */
if (scm_is_eq (l, endret))
{
/* not equal to any, so append this pair */
SCM_SETCDR (endret, lst);
endret = lst;
break;
}
l = SCM_CDR (l);
}
}
/* terminate, in case last element was deleted */
SCM_SETCDR (endret, SCM_EOL);
}
/* demand that lst was a proper list */
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG1, FUNC_NAME, "list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_drop_right, "drop-right", 2, 0, 0,
(SCM lst, SCM n),
"Return a new list containing all except the last @var{n}\n"
"elements of @var{lst}.")
#define FUNC_NAME s_scm_srfi1_drop_right
{
SCM tail = scm_list_tail (lst, n);
SCM ret = SCM_EOL;
SCM *rend = &ret;
while (scm_is_pair (tail))
{
*rend = scm_cons (SCM_CAR (lst), SCM_EOL);
rend = SCM_CDRLOC (*rend);
lst = SCM_CDR (lst);
tail = SCM_CDR (tail);
}
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(tail), tail, SCM_ARG1, FUNC_NAME, "list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_filter_map, "filter-map", 2, 0, 1,
(SCM proc, SCM list1, SCM rest),
"Apply @var{proc} to to the elements of @var{list1} @dots{} and\n"
"return a list of the results as per SRFI-1 @code{map}, except\n"
"that any @code{#f} results are omitted from the list returned.")
#define FUNC_NAME s_scm_srfi1_filter_map
{
SCM ret, *loc, elem, newcell, lst;
int argnum;
SCM_VALIDATE_REST_ARGUMENT (rest);
ret = SCM_EOL;
loc = &ret;
if (SCM_NULLP (rest))
{
/* one list */
scm_t_trampoline_1 proc_tramp = scm_trampoline_1 (proc);
SCM_ASSERT (proc_tramp, proc, SCM_ARG1, FUNC_NAME);
for ( ; scm_is_pair (list1); list1 = SCM_CDR (list1))
{
elem = proc_tramp (proc, SCM_CAR (list1));
if (scm_is_true (elem))
{
newcell = scm_cons (elem, SCM_EOL);
*loc = newcell;
loc = SCM_CDRLOC (newcell);
}
}
/* check below that list1 is a proper list, and done */
end_list1:
lst = list1;
argnum = 2;
}
else if (SCM_NULLP (SCM_CDR (rest)))
{
/* two lists */
scm_t_trampoline_2 proc_tramp = scm_trampoline_2 (proc);
SCM list2 = SCM_CAR (rest);
SCM_ASSERT (proc_tramp, proc, SCM_ARG1, FUNC_NAME);
for (;;)
{
if (! scm_is_pair (list1))
goto end_list1;
if (! scm_is_pair (list2))
{
lst = list2;
argnum = 3;
goto check_lst_and_done;
}
elem = proc_tramp (proc, SCM_CAR (list1), SCM_CAR (list2));
if (scm_is_true (elem))
{
newcell = scm_cons (elem, SCM_EOL);
*loc = newcell;
loc = SCM_CDRLOC (newcell);
}
list1 = SCM_CDR (list1);
list2 = SCM_CDR (list2);
}
}
else
{
/* three or more lists */
SCM vec, args, a;
size_t len, i;
/* vec is the list arguments */
vec = scm_vector (scm_cons (list1, rest));
len = SCM_SIMPLE_VECTOR_LENGTH (vec);
/* args is the argument list to pass to proc, same length as vec,
re-used for each call */
args = scm_make_list (SCM_I_MAKINUM (len), SCM_UNDEFINED);
for (;;)
{
/* first elem of each list in vec into args, and step those
vec entries onto their next element */
for (i = 0, a = args, argnum = 2;
i < len;
i++, a = SCM_CDR (a), argnum++)
{
lst = SCM_SIMPLE_VECTOR_REF (vec, i); /* list argument */
if (! scm_is_pair (lst))
goto check_lst_and_done;
SCM_SETCAR (a, SCM_CAR (lst)); /* arg for proc */
SCM_SIMPLE_VECTOR_SET (vec, i, SCM_CDR (lst)); /* rest of lst */
}
elem = scm_apply (proc, args, SCM_EOL);
if (scm_is_true (elem))
{
newcell = scm_cons (elem, SCM_EOL);
*loc = newcell;
loc = SCM_CDRLOC (newcell);
}
}
}
check_lst_and_done:
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, argnum, FUNC_NAME, "list");
return ret;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_find, "find", 2, 0, 0,
(SCM pred, SCM lst),
"Return the first element of @var{lst} which satisfies the\n"
"predicate @var{pred}, or return @code{#f} if no such element is\n"
"found.")
#define FUNC_NAME s_scm_srfi1_find
{
scm_t_trampoline_1 pred_tramp = scm_trampoline_1 (pred);
SCM_ASSERT (pred_tramp, pred, SCM_ARG1, FUNC_NAME);
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
{
SCM elem = SCM_CAR (lst);
if (scm_is_true (pred_tramp (pred, elem)))
return elem;
}
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_find_tail, "find-tail", 2, 0, 0,
(SCM pred, SCM lst),
"Return the first pair of @var{lst} whose @sc{car} satisfies the\n"
"predicate @var{pred}, or return @code{#f} if no such element is\n"
"found.")
#define FUNC_NAME s_scm_srfi1_find_tail
{
scm_t_trampoline_1 pred_tramp = scm_trampoline_1 (pred);
SCM_ASSERT (pred_tramp, pred, SCM_ARG1, FUNC_NAME);
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
if (scm_is_true (pred_tramp (pred, SCM_CAR (lst))))
return lst;
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_length_plus, "length+", 1, 0, 0,
(SCM lst),
"Return the length of @var{lst}, or @code{#f} if @var{lst} is\n"
"circular.")
#define FUNC_NAME s_scm_srfi1_length_plus
{
long len = scm_ilength (lst);
return (len >= 0 ? SCM_I_MAKINUM (len) : SCM_BOOL_F);
}
#undef FUNC_NAME
/* This routine differs from the core list-copy in allowing improper lists.
Maybe the core could allow them similarly. */
SCM_DEFINE (scm_srfi1_list_copy, "list-copy", 1, 0, 0,
(SCM lst),
"Return a copy of the given list @var{lst}.\n"
"\n"
"@var{lst} can be a proper or improper list. And if @var{lst}\n"
"is not a pair then it's treated as the final tail of an\n"
"improper list and simply returned.")
#define FUNC_NAME s_scm_srfi1_list_copy
{
SCM newlst;
SCM * fill_here;
SCM from_here;
newlst = lst;
fill_here = &newlst;
from_here = lst;
while (scm_is_pair (from_here))
{
SCM c;
c = scm_cons (SCM_CAR (from_here), SCM_CDR (from_here));
*fill_here = c;
fill_here = SCM_CDRLOC (c);
from_here = SCM_CDR (from_here);
}
return newlst;
}
#undef FUNC_NAME
/* Typechecking for multi-argument MAP and FOR-EACH.
Verify that each element of the vector ARGV, except for the first,
is a list and return minimum length. Attribute errors to WHO,
and claim that the i'th element of ARGV is WHO's i+2'th argument. */
static inline int
check_map_args (SCM argv,
long len,
SCM gf,
SCM proc,
SCM args,
const char *who)
{
long i;
for (i = SCM_SIMPLE_VECTOR_LENGTH (argv) - 1; i >= 1; i--)
{
SCM elt = SCM_SIMPLE_VECTOR_REF (argv, i);
long elt_len;
if (!(scm_is_null (elt) || scm_is_pair (elt)))
{
check_map_error:
if (gf)
scm_apply_generic (gf, scm_cons (proc, args));
else
scm_wrong_type_arg (who, i + 2, elt);
}
elt_len = srfi1_ilength (elt);
if (elt_len < -1)
goto check_map_error;
if (len < 0 || (elt_len >= 0 && elt_len < len))
len = elt_len;
}
if (len < 0)
/* i == 0 */
goto check_map_error;
scm_remember_upto_here_1 (argv);
return len;
}
SCM_GPROC (s_srfi1_map, "map", 2, 0, 1, scm_srfi1_map, g_srfi1_map);
/* Note: Currently, scm_srfi1_map applies PROC to the argument list(s)
sequentially, starting with the first element(s). This is used in
the Scheme procedure `map-in-order', which guarantees sequential
behaviour, is implemented using scm_map. If the behaviour changes,
we need to update `map-in-order'.
*/
SCM
scm_srfi1_map (SCM proc, SCM arg1, SCM args)
#define FUNC_NAME s_srfi1_map
{
long i, len;
SCM res = SCM_EOL;
SCM *pres = &res;
len = srfi1_ilength (arg1);
SCM_GASSERTn ((scm_is_null (arg1) || scm_is_pair (arg1)) && len >= -1,
g_srfi1_map,
scm_cons2 (proc, arg1, args), SCM_ARG2, s_srfi1_map);
SCM_VALIDATE_REST_ARGUMENT (args);
if (scm_is_null (args))
{
scm_t_trampoline_1 call = scm_trampoline_1 (proc);
SCM_GASSERT2 (call, g_srfi1_map, proc, arg1, SCM_ARG1, s_srfi1_map);
SCM_GASSERT2 (len >= 0, g_srfi1_map, proc, arg1, SCM_ARG2, s_srfi1_map);
while (SCM_NIMP (arg1))
{
*pres = scm_list_1 (call (proc, SCM_CAR (arg1)));
pres = SCM_CDRLOC (*pres);
arg1 = SCM_CDR (arg1);
}
return res;
}
if (scm_is_null (SCM_CDR (args)))
{
SCM arg2 = SCM_CAR (args);
int len2 = srfi1_ilength (arg2);
scm_t_trampoline_2 call = scm_trampoline_2 (proc);
SCM_GASSERTn (call, g_srfi1_map,
scm_cons2 (proc, arg1, args), SCM_ARG1, s_srfi1_map);
if (len < 0 || (len2 >= 0 && len2 < len))
len = len2;
SCM_GASSERTn ((scm_is_null (arg2) || scm_is_pair (arg2))
&& len >= 0 && len2 >= -1,
g_srfi1_map,
scm_cons2 (proc, arg1, args),
len2 >= 0 ? SCM_ARG2 : SCM_ARG3,
s_srfi1_map);
while (len > 0)
{
*pres = scm_list_1 (call (proc, SCM_CAR (arg1), SCM_CAR (arg2)));
pres = SCM_CDRLOC (*pres);
arg1 = SCM_CDR (arg1);
arg2 = SCM_CDR (arg2);
--len;
}
return res;
}
args = scm_vector (arg1 = scm_cons (arg1, args));
len = check_map_args (args, len, g_srfi1_map, proc, arg1, s_srfi1_map);
while (len > 0)
{
arg1 = SCM_EOL;
for (i = SCM_SIMPLE_VECTOR_LENGTH (args) - 1; i >= 0; i--)
{
SCM elt = SCM_SIMPLE_VECTOR_REF (args, i);
arg1 = scm_cons (SCM_CAR (elt), arg1);
SCM_SIMPLE_VECTOR_SET (args, i, SCM_CDR (elt));
}
*pres = scm_list_1 (scm_apply (proc, arg1, SCM_EOL));
pres = SCM_CDRLOC (*pres);
--len;
}
return res;
}
#undef FUNC_NAME
SCM_REGISTER_PROC (s_srfi1_map_in_order, "map-in-order", 2, 0, 1, scm_srfi1_map);
SCM_GPROC (s_srfi1_for_each, "for-each", 2, 0, 1, scm_srfi1_for_each, g_srfi1_for_each);
SCM
scm_srfi1_for_each (SCM proc, SCM arg1, SCM args)
#define FUNC_NAME s_srfi1_for_each
{
long i, len;
len = srfi1_ilength (arg1);
SCM_GASSERTn ((scm_is_null (arg1) || scm_is_pair (arg1)) && len >= -1,
g_srfi1_for_each, scm_cons2 (proc, arg1, args),
SCM_ARG2, s_srfi1_for_each);
SCM_VALIDATE_REST_ARGUMENT (args);
if (scm_is_null (args))
{
scm_t_trampoline_1 call = scm_trampoline_1 (proc);
SCM_GASSERT2 (call, g_srfi1_for_each, proc, arg1,
SCM_ARG1, s_srfi1_for_each);
SCM_GASSERT2 (len >= 0, g_srfi1_for_each, proc, arg1,
SCM_ARG2, s_srfi1_map);
while (SCM_NIMP (arg1))
{
call (proc, SCM_CAR (arg1));
arg1 = SCM_CDR (arg1);
}
return SCM_UNSPECIFIED;
}
if (scm_is_null (SCM_CDR (args)))
{
SCM arg2 = SCM_CAR (args);
int len2 = srfi1_ilength (arg2);
scm_t_trampoline_2 call = scm_trampoline_2 (proc);
SCM_GASSERTn (call, g_srfi1_for_each,
scm_cons2 (proc, arg1, args), SCM_ARG1, s_srfi1_for_each);
if (len < 0 || (len2 >= 0 && len2 < len))
len = len2;
SCM_GASSERTn ((scm_is_null (arg2) || scm_is_pair (arg2))
&& len >= 0 && len2 >= -1,
g_srfi1_for_each,
scm_cons2 (proc, arg1, args),
len2 >= 0 ? SCM_ARG2 : SCM_ARG3,
s_srfi1_for_each);
while (len > 0)
{
call (proc, SCM_CAR (arg1), SCM_CAR (arg2));
arg1 = SCM_CDR (arg1);
arg2 = SCM_CDR (arg2);
--len;
}
return SCM_UNSPECIFIED;
}
args = scm_vector (arg1 = scm_cons (arg1, args));
len = check_map_args (args, len, g_srfi1_for_each, proc, arg1,
s_srfi1_for_each);
while (len > 0)
{
arg1 = SCM_EOL;
for (i = SCM_SIMPLE_VECTOR_LENGTH (args) - 1; i >= 0; i--)
{
SCM elt = SCM_SIMPLE_VECTOR_REF (args, i);
arg1 = scm_cons (SCM_CAR (elt), arg1);
SCM_SIMPLE_VECTOR_SET (args, i, SCM_CDR (elt));
}
scm_apply (proc, arg1, SCM_EOL);
--len;
}
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_member, "member", 2, 1, 0,
(SCM x, SCM lst, SCM pred),
"Return the first sublist of @var{lst} whose @sc{car} is equal\n"
"to @var{x}. If @var{x} does not appear in @var{lst}, return\n"
"@code{#f}.\n"
"\n"
"Equality is determined by @code{equal?}, or by the equality\n"
"predicate @var{=} if given. @var{=} is called @code{(= @var{x}\n"
"elem)}, ie.@: with the given @var{x} first, so for example to\n"
"find the first element greater than 5,\n"
"\n"
"@example\n"
"(member 5 '(3 5 1 7 2 9) <) @result{} (7 2 9)\n"
"@end example\n"
"\n"
"This version of @code{member} extends the core @code{member} by\n"
"accepting an equality predicate.")
#define FUNC_NAME s_scm_srfi1_member
{
scm_t_trampoline_2 equal_p;
SCM_VALIDATE_LIST (2, lst);
if (SCM_UNBNDP (pred))
equal_p = equal_trampoline;
else
{
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, 3, FUNC_NAME);
}
for (; !SCM_NULL_OR_NIL_P (lst); lst = SCM_CDR (lst))
{
if (scm_is_true (equal_p (pred, x, SCM_CAR (lst))))
return lst;
}
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_assoc, "assoc", 2, 1, 0,
(SCM key, SCM alist, SCM pred),
"Behaves like @code{assq} but uses third argument @var{pred?}\n"
"for key comparison. If @var{pred?} is not supplied,\n"
"@code{equal?} is used. (Extended from R5RS.)\n")
#define FUNC_NAME s_scm_srfi1_assoc
{
SCM ls = alist;
scm_t_trampoline_2 equal_p;
if (SCM_UNBNDP (pred))
equal_p = equal_trampoline;
else
{
equal_p = scm_trampoline_2 (pred);
SCM_ASSERT (equal_p, pred, 3, FUNC_NAME);
}
for(; scm_is_pair (ls); ls = SCM_CDR (ls))
{
SCM tmp = SCM_CAR (ls);
SCM_ASSERT_TYPE (scm_is_pair (tmp), alist, SCM_ARG2, FUNC_NAME,
"association list");
if (scm_is_true (equal_p (pred, SCM_CAR (tmp), key)))
return tmp;
}
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (ls), alist, SCM_ARG2, FUNC_NAME,
"association list");
return SCM_BOOL_F;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_partition, "partition", 2, 0, 0,
(SCM pred, SCM list),
"Partition the elements of @var{list} with predicate @var{pred}.\n"
"Return two values: the list of elements satifying @var{pred} and\n"
"the list of elements @emph{not} satisfying @var{pred}. The order\n"
"of the output lists follows the order of @var{list}. @var{list}\n"
"is not mutated. One of the output lists may share memory with @var{list}.\n")
#define FUNC_NAME s_scm_srfi1_partition
{
/* In this implementation, the output lists don't share memory with
list, because it's probably not worth the effort. */
scm_t_trampoline_1 call = scm_trampoline_1(pred);
SCM kept = scm_cons(SCM_EOL, SCM_EOL);
SCM kept_tail = kept;
SCM dropped = scm_cons(SCM_EOL, SCM_EOL);
SCM dropped_tail = dropped;
SCM_ASSERT(call, pred, 2, FUNC_NAME);
for (; !SCM_NULL_OR_NIL_P (list); list = SCM_CDR(list)) {
SCM elt = SCM_CAR(list);
SCM new_tail = scm_cons(SCM_CAR(list), SCM_EOL);
if (scm_is_true (call (pred, elt))) {
SCM_SETCDR(kept_tail, new_tail);
kept_tail = new_tail;
}
else {
SCM_SETCDR(dropped_tail, new_tail);
dropped_tail = new_tail;
}
}
/* re-use the initial conses for the values list */
SCM_SETCAR(kept, SCM_CDR(kept));
SCM_SETCDR(kept, dropped);
SCM_SETCAR(dropped, SCM_CDR(dropped));
SCM_SETCDR(dropped, SCM_EOL);
return scm_values(kept);
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_partition_x, "partition!", 2, 0, 0,
(SCM pred, SCM lst),
"Split @var{lst} into those elements which do and don't satisfy\n"
"the predicate @var{pred}.\n"
"\n"
"The return is two values (@pxref{Multiple Values}), the first\n"
"being a list of all elements from @var{lst} which satisfy\n"
"@var{pred}, the second a list of those which do not.\n"
"\n"
"The elements in the result lists are in the same order as in\n"
"@var{lst} but the order in which the calls @code{(@var{pred}\n"
"elem)} are made on the list elements is unspecified.\n"
"\n"
"@var{lst} may be modified to construct the return lists.")
#define FUNC_NAME s_scm_srfi1_partition_x
{
SCM tlst, flst, *tp, *fp;
scm_t_trampoline_1 pred_tramp;
pred_tramp = scm_trampoline_1 (pred);
SCM_ASSERT (pred_tramp, pred, SCM_ARG1, FUNC_NAME);
/* tlst and flst are the lists of true and false elements. tp and fp are
where to store to append to them, initially &tlst and &flst, then
SCM_CDRLOC of the last pair in the respective lists. */
tlst = SCM_EOL;
flst = SCM_EOL;
tp = &tlst;
fp = &flst;
for ( ; scm_is_pair (lst); lst = SCM_CDR (lst))
{
if (scm_is_true (pred_tramp (pred, SCM_CAR (lst))))
{
*tp = lst;
tp = SCM_CDRLOC (lst);
}
else
{
*fp = lst;
fp = SCM_CDRLOC (lst);
}
}
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P (lst), lst, SCM_ARG2, FUNC_NAME, "list");
/* terminate whichever didn't get the last element(s) */
*tp = SCM_EOL;
*fp = SCM_EOL;
return scm_values (scm_list_2 (tlst, flst));
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_remove, "remove", 2, 0, 0,
(SCM pred, SCM list),
"Return a list containing all elements from @var{lst} which do\n"
"not satisfy the predicate @var{pred}. The elements in the\n"
"result list have the same order as in @var{lst}. The order in\n"
"which @var{pred} is applied to the list elements is not\n"
"specified.")
#define FUNC_NAME s_scm_srfi1_remove
{
scm_t_trampoline_1 call = scm_trampoline_1 (pred);
SCM walk;
SCM *prev;
SCM res = SCM_EOL;
SCM_ASSERT (call, pred, 1, FUNC_NAME);
SCM_VALIDATE_LIST (2, list);
for (prev = &res, walk = list;
scm_is_pair (walk);
walk = SCM_CDR (walk))
{
if (scm_is_false (call (pred, SCM_CAR (walk))))
{
*prev = scm_cons (SCM_CAR (walk), SCM_EOL);
prev = SCM_CDRLOC (*prev);
}
}
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_remove_x, "remove!", 2, 0, 0,
(SCM pred, SCM list),
"Return a list containing all elements from @var{list} which do\n"
"not satisfy the predicate @var{pred}. The elements in the\n"
"result list have the same order as in @var{list}. The order in\n"
"which @var{pred} is applied to the list elements is not\n"
"specified. @var{list} may be modified to build the return\n"
"list.")
#define FUNC_NAME s_scm_srfi1_remove_x
{
scm_t_trampoline_1 call = scm_trampoline_1 (pred);
SCM walk;
SCM *prev;
SCM_ASSERT (call, pred, 1, FUNC_NAME);
SCM_VALIDATE_LIST (2, list);
for (prev = &list, walk = list;
scm_is_pair (walk);
walk = SCM_CDR (walk))
{
if (scm_is_false (call (pred, SCM_CAR (walk))))
prev = SCM_CDRLOC (walk);
else
*prev = SCM_CDR (walk);
}
return list;
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_split_at, "split-at", 2, 0, 0,
(SCM lst, SCM n),
"Return two values (multiple values), being a list of the\n"
"elements before index @var{n} in @var{lst}, and a list of those\n"
"after.")
#define FUNC_NAME s_scm_srfi1_split_at
{
size_t nn;
/* pre is a list of elements before the i split point, loc is the CDRLOC
of the last cell, ie. where to store to append to it */
SCM pre = SCM_EOL;
SCM *loc = &pre;
for (nn = scm_to_size_t (n); nn != 0; nn--)
{
SCM_VALIDATE_CONS (SCM_ARG1, lst);
*loc = scm_cons (SCM_CAR (lst), SCM_EOL);
loc = SCM_CDRLOC (*loc);
lst = SCM_CDR(lst);
}
return scm_values (scm_list_2 (pre, lst));
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_split_at_x, "split-at!", 2, 0, 0,
(SCM lst, SCM n),
"Return two values (multiple values), being a list of the\n"
"elements before index @var{n} in @var{lst}, and a list of those\n"
"after. @var{lst} is modified to form those values.")
#define FUNC_NAME s_scm_srfi1_split_at
{
size_t nn;
SCM upto = lst;
SCM *loc = &lst;
for (nn = scm_to_size_t (n); nn != 0; nn--)
{
SCM_VALIDATE_CONS (SCM_ARG1, upto);
loc = SCM_CDRLOC (upto);
upto = SCM_CDR (upto);
}
*loc = SCM_EOL;
return scm_values (scm_list_2 (lst, upto));
}
#undef FUNC_NAME
SCM_DEFINE (scm_srfi1_take_right, "take-right", 2, 0, 0,
(SCM lst, SCM n),
"Return the a list containing the @var{n} last elements of\n"
"@var{lst}.")
#define FUNC_NAME s_scm_srfi1_take_right
{
SCM tail = scm_list_tail (lst, n);
while (scm_is_pair (tail))
{
lst = SCM_CDR (lst);
tail = SCM_CDR (tail);
}
SCM_ASSERT_TYPE (SCM_NULL_OR_NIL_P(tail), tail, SCM_ARG1, FUNC_NAME, "list");
return lst;
}
#undef FUNC_NAME
void
scm_init_srfi_1 (void)
{
SCM the_root_module = scm_lookup_closure_module (SCM_BOOL_F);
#ifndef SCM_MAGIC_SNARFER
#include "srfi/srfi-1.x"
#endif
scm_c_extend_primitive_generic
(SCM_VARIABLE_REF (scm_c_module_lookup (the_root_module, "map")),
SCM_VARIABLE_REF (scm_c_lookup ("map")));
scm_c_extend_primitive_generic
(SCM_VARIABLE_REF (scm_c_module_lookup (the_root_module, "for-each")),
SCM_VARIABLE_REF (scm_c_lookup ("for-each")));
}
/* End of srfi-1.c. */