1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 11:50:28 +02:00
guile/api/gc-api.h
Andy Wingo f1b660484e Remove gc_allocator_needs_clear
Whether the returned object needs to be cleared or not depends on a
couple things:
 - Whether the embedder actually needs the object to be cleared.
 - Whether the collector allocated the object from memory that was all
   zeroes already.

The goal of course would be to prevent clearing memory if the mutator
was just going to write all over it.  But it's hard to know statically
if the memory would have been all zeroes anyway, and in that case if you
did clear it you'd be doing double work.  In the end it's simpler to
just require collectors to clear memory in bulk.  We can revisit this
later if it is an issue.
2025-03-07 13:37:59 +01:00

295 lines
11 KiB
C

#ifndef GC_API_H_
#define GC_API_H_
#include "gc-config.h"
#include "gc-assert.h"
#include "gc-attrs.h"
#include "gc-collection-kind.h"
#include "gc-edge.h"
#include "gc-event-listener.h"
#include "gc-inline.h"
#include "gc-options.h"
#include "gc-ref.h"
#include "gc-visibility.h"
#include <stdatomic.h>
#include <stdint.h>
#include <string.h>
struct gc_heap;
struct gc_mutator;
struct gc_stack_addr;
GC_API_ void* gc_call_with_stack_addr(void* (*f)(struct gc_stack_addr *,
void *),
void *data) GC_NEVER_INLINE;
GC_API_ int gc_init(const struct gc_options *options,
struct gc_stack_addr *base, struct gc_heap **heap,
struct gc_mutator **mutator,
struct gc_event_listener event_listener,
void *event_listener_data);
GC_API_ struct gc_heap* gc_mutator_heap(struct gc_mutator *mut);
GC_API_ uintptr_t gc_small_object_nursery_low_address(struct gc_heap *heap);
GC_API_ uintptr_t gc_small_object_nursery_high_address(struct gc_heap *heap);
struct gc_mutator_roots;
GC_API_ void gc_mutator_set_roots(struct gc_mutator *mut,
struct gc_mutator_roots *roots);
struct gc_heap_roots;
GC_API_ void gc_heap_set_roots(struct gc_heap *heap,
struct gc_heap_roots *roots);
struct gc_extern_space;
GC_API_ void gc_heap_set_extern_space(struct gc_heap *heap,
struct gc_extern_space *space);
GC_API_ struct gc_mutator* gc_init_for_thread(struct gc_stack_addr *base,
struct gc_heap *heap);
GC_API_ void gc_finish_for_thread(struct gc_mutator *mut);
GC_API_ void* gc_call_without_gc(struct gc_mutator *mut, void* (*f)(void*),
void *data) GC_NEVER_INLINE;
GC_API_ void gc_collect(struct gc_mutator *mut,
enum gc_collection_kind requested_kind);
static inline void gc_update_alloc_table(struct gc_ref obj,
size_t size) GC_ALWAYS_INLINE;
static inline void gc_update_alloc_table(struct gc_ref obj,
size_t size) {
size_t alignment = gc_allocator_alloc_table_alignment();
if (!alignment) return;
uintptr_t addr = gc_ref_value(obj);
uintptr_t base = addr & ~(alignment - 1);
size_t granule_size = gc_allocator_small_granule_size();
uintptr_t granule = (addr & (alignment - 1)) / granule_size;
uint8_t *alloc = (uint8_t*)(base + granule);
uint8_t begin_pattern = gc_allocator_alloc_table_begin_pattern();
uint8_t end_pattern = gc_allocator_alloc_table_end_pattern();
if (end_pattern) {
size_t granules = size / granule_size;
if (granules == 1) {
alloc[0] = begin_pattern | end_pattern;
} else {
alloc[0] = begin_pattern;
if (granules > 2)
memset(alloc + 1, 0, granules - 2);
alloc[granules - 1] = end_pattern;
}
} else {
alloc[0] = begin_pattern;
}
}
GC_API_ void* gc_allocate_slow(struct gc_mutator *mut, size_t bytes) GC_NEVER_INLINE;
static inline void*
gc_allocate_small_fast_bump_pointer(struct gc_mutator *mut, size_t size) GC_ALWAYS_INLINE;
static inline void* gc_allocate_small_fast_bump_pointer(struct gc_mutator *mut, size_t size) {
GC_ASSERT(size <= gc_allocator_large_threshold());
size_t granule_size = gc_allocator_small_granule_size();
size_t hp_offset = gc_allocator_allocation_pointer_offset();
size_t limit_offset = gc_allocator_allocation_limit_offset();
uintptr_t base_addr = (uintptr_t)mut;
uintptr_t *hp_loc = (uintptr_t*)(base_addr + hp_offset);
uintptr_t *limit_loc = (uintptr_t*)(base_addr + limit_offset);
size = (size + granule_size - 1) & ~(granule_size - 1);
uintptr_t hp = *hp_loc;
uintptr_t limit = *limit_loc;
uintptr_t new_hp = hp + size;
if (GC_UNLIKELY (new_hp > limit))
return NULL;
*hp_loc = new_hp;
gc_update_alloc_table(gc_ref(hp), size);
return (void*)hp;
}
static inline void* gc_allocate_small_fast_freelist(struct gc_mutator *mut,
size_t size) GC_ALWAYS_INLINE;
static inline void* gc_allocate_small_fast_freelist(struct gc_mutator *mut, size_t size) {
GC_ASSERT(size <= gc_allocator_large_threshold());
size_t freelist_offset = gc_allocator_freelist_offset(size);
uintptr_t base_addr = (uintptr_t)mut;
void **freelist_loc = (void**)(base_addr + freelist_offset);
void *head = *freelist_loc;
if (GC_UNLIKELY(!head))
return NULL;
*freelist_loc = *(void**)head;
gc_update_alloc_table(gc_ref_from_heap_object(head), size);
return head;
}
static inline void* gc_allocate_small_fast(struct gc_mutator *mut, size_t size) GC_ALWAYS_INLINE;
static inline void* gc_allocate_small_fast(struct gc_mutator *mut, size_t size) {
GC_ASSERT(size != 0);
GC_ASSERT(size <= gc_allocator_large_threshold());
switch (gc_allocator_kind()) {
case GC_ALLOCATOR_INLINE_BUMP_POINTER:
return gc_allocate_small_fast_bump_pointer(mut, size);
case GC_ALLOCATOR_INLINE_FREELIST:
return gc_allocate_small_fast_freelist(mut, size);
case GC_ALLOCATOR_INLINE_NONE:
return NULL;
default:
GC_CRASH();
}
}
static inline void* gc_allocate_fast(struct gc_mutator *mut, size_t size) GC_ALWAYS_INLINE;
static inline void* gc_allocate_fast(struct gc_mutator *mut, size_t size) {
GC_ASSERT(size != 0);
if (size > gc_allocator_large_threshold())
return NULL;
return gc_allocate_small_fast(mut, size);
}
static inline void* gc_allocate(struct gc_mutator *mut, size_t size) GC_ALWAYS_INLINE;
static inline void* gc_allocate(struct gc_mutator *mut, size_t size) {
void *ret = gc_allocate_fast(mut, size);
if (GC_LIKELY(ret != NULL))
return ret;
return gc_allocate_slow(mut, size);
}
// FIXME: remove :P
GC_API_ void* gc_allocate_pointerless(struct gc_mutator *mut, size_t bytes);
GC_API_ int gc_object_is_old_generation_slow(struct gc_mutator *mut,
struct gc_ref obj) GC_NEVER_INLINE;
static inline int gc_object_is_old_generation(struct gc_mutator *mut,
struct gc_ref obj,
size_t obj_size) GC_ALWAYS_INLINE;
static inline int gc_object_is_old_generation(struct gc_mutator *mut,
struct gc_ref obj,
size_t obj_size) {
switch (gc_old_generation_check_kind(obj_size)) {
case GC_OLD_GENERATION_CHECK_ALLOC_TABLE: {
size_t alignment = gc_allocator_alloc_table_alignment();
GC_ASSERT(alignment);
uintptr_t addr = gc_ref_value(obj);
uintptr_t base = addr & ~(alignment - 1);
size_t granule_size = gc_allocator_small_granule_size();
uintptr_t granule = (addr & (alignment - 1)) / granule_size;
uint8_t *byte_loc = (uint8_t*)(base + granule);
uint8_t byte = atomic_load_explicit(byte_loc, memory_order_relaxed);
return byte & gc_old_generation_check_alloc_table_bit_pattern();
}
case GC_OLD_GENERATION_CHECK_SMALL_OBJECT_NURSERY: {
struct gc_heap *heap = gc_mutator_heap(mut);
// Note that these addresses are fixed and that the embedder might
// want to store them somewhere or inline them into the output of
// JIT-generated code. They may also be power-of-two aligned.
uintptr_t low_addr = gc_small_object_nursery_low_address(heap);
uintptr_t high_addr = gc_small_object_nursery_high_address(heap);
uintptr_t size = high_addr - low_addr;
uintptr_t addr = gc_ref_value(obj);
return addr - low_addr >= size;
}
case GC_OLD_GENERATION_CHECK_SLOW:
return gc_object_is_old_generation_slow(mut, obj);
default:
GC_CRASH();
}
}
GC_API_ void gc_write_barrier_slow(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) GC_NEVER_INLINE;
static inline int gc_write_barrier_fast(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) GC_ALWAYS_INLINE;
static inline int gc_write_barrier_fast(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) {
switch (gc_write_barrier_kind(obj_size)) {
case GC_WRITE_BARRIER_NONE:
return 0;
case GC_WRITE_BARRIER_CARD: {
size_t card_table_alignment = gc_write_barrier_card_table_alignment();
size_t card_size = gc_write_barrier_card_size();
uintptr_t addr = gc_ref_value(obj);
uintptr_t base = addr & ~(card_table_alignment - 1);
uintptr_t card = (addr & (card_table_alignment - 1)) / card_size;
atomic_store_explicit((uint8_t*)(base + card), 1, memory_order_relaxed);
return 0;
}
case GC_WRITE_BARRIER_FIELD: {
if (!gc_object_is_old_generation(mut, obj, obj_size))
return 0;
size_t field_table_alignment = gc_write_barrier_field_table_alignment();
size_t fields_per_byte = gc_write_barrier_field_fields_per_byte();
uint8_t first_bit_pattern = gc_write_barrier_field_first_bit_pattern();
ssize_t table_offset = gc_write_barrier_field_table_offset();
uintptr_t addr = gc_edge_address(edge);
uintptr_t base = addr & ~(field_table_alignment - 1);
uintptr_t field = (addr & (field_table_alignment - 1)) / sizeof(uintptr_t);
uintptr_t log_byte = field / fields_per_byte;
uint8_t log_bit = first_bit_pattern << (field % fields_per_byte);
uint8_t *byte_loc = (uint8_t*)(base + table_offset + log_byte);
uint8_t byte = atomic_load_explicit(byte_loc, memory_order_relaxed);
return !(byte & log_bit);
}
case GC_WRITE_BARRIER_SLOW:
return 1;
default:
GC_CRASH();
}
}
static inline void gc_write_barrier(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) GC_ALWAYS_INLINE;
static inline void gc_write_barrier(struct gc_mutator *mut, struct gc_ref obj,
size_t obj_size, struct gc_edge edge,
struct gc_ref new_val) {
if (GC_UNLIKELY(gc_write_barrier_fast(mut, obj, obj_size, edge, new_val)))
gc_write_barrier_slow(mut, obj, obj_size, edge, new_val);
}
GC_API_ void gc_pin_object(struct gc_mutator *mut, struct gc_ref obj);
GC_API_ void gc_safepoint_slow(struct gc_mutator *mut) GC_NEVER_INLINE;
GC_API_ int* gc_safepoint_flag_loc(struct gc_mutator *mut);
static inline int gc_should_stop_for_safepoint(struct gc_mutator *mut) {
switch (gc_cooperative_safepoint_kind()) {
case GC_COOPERATIVE_SAFEPOINT_NONE:
return 0;
case GC_COOPERATIVE_SAFEPOINT_MUTATOR_FLAG:
case GC_COOPERATIVE_SAFEPOINT_HEAP_FLAG: {
return atomic_load_explicit(gc_safepoint_flag_loc(mut),
memory_order_relaxed);
}
default:
GC_CRASH();
}
}
static inline void gc_safepoint(struct gc_mutator *mut) {
if (GC_UNLIKELY(gc_should_stop_for_safepoint(mut)))
gc_safepoint_slow(mut);
}
#endif // GC_API_H_