1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-04-30 03:40:34 +02:00
guile/libguile/random.c
Andy Wingo f332e95717 generic vector ops to own file
* libguile/Makefile.am:
* libguile/vectors.c:
* libguile/vectors.h:
* libguile/generalized-vectors.c:
* libguile/generalized-vectors.h: Move generic vector ops off into their
  own file too. The implementation is now based on the generic
  array-handle infrastructure.

* libguile.h:
* libguile/array-map.c:
* libguile/bitvectors.c:
* libguile/random.c:
* libguile/srfi-4.c: Update includers.
2009-07-19 15:15:44 +02:00

615 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (C) 1999,2000,2001, 2003, 2005, 2006, 2009 Free Software Foundation, Inc.
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public License
* as published by the Free Software Foundation; either version 3 of
* the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
* 02110-1301 USA
*/
/* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "libguile/_scm.h"
#include <gmp.h>
#include <stdio.h>
#include <math.h>
#include <string.h>
#include "libguile/smob.h"
#include "libguile/numbers.h"
#include "libguile/feature.h"
#include "libguile/strings.h"
#include "libguile/arrays.h"
#include "libguile/srfi-4.h"
#include "libguile/vectors.h"
#include "libguile/generalized-vectors.h"
#include "libguile/validate.h"
#include "libguile/random.h"
/*
* A plugin interface for RNGs
*
* Using this interface, it is possible for the application to tell
* libguile to use a different RNG. This is desirable if it is
* necessary to use the same RNG everywhere in the application in
* order to prevent interference, if the application uses RNG
* hardware, or if the application has special demands on the RNG.
*
* Look in random.h and how the default generator is "plugged in" in
* scm_init_random().
*/
scm_t_rng scm_the_rng;
/*
* The prepackaged RNG
*
* This is the MWC (Multiply With Carry) random number generator
* described by George Marsaglia at the Department of Statistics and
* Supercomputer Computations Research Institute, The Florida State
* University (http://stat.fsu.edu/~geo).
*
* It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
* passes all tests in the DIEHARD test suite
* (http://stat.fsu.edu/~geo/diehard.html)
*/
#define A 2131995753UL
#ifndef M_PI
#define M_PI 3.14159265359
#endif
#if SCM_HAVE_T_UINT64
unsigned long
scm_i_uniform32 (scm_t_i_rstate *state)
{
scm_t_uint64 x = (scm_t_uint64) A * state->w + state->c;
scm_t_uint32 w = x & 0xffffffffUL;
state->w = w;
state->c = x >> 32L;
return w;
}
#else
/* ww This is a portable version of the same RNG without 64 bit
* * aa arithmetic.
* ----
* xx It is only intended to provide identical behaviour on
* xx platforms without 8 byte longs or long longs until
* xx someone has implemented the routine in assembler code.
* xxcc
* ----
* ccww
*/
#define L(x) ((x) & 0xffff)
#define H(x) ((x) >> 16)
unsigned long
scm_i_uniform32 (scm_t_i_rstate *state)
{
scm_t_uint32 x1 = L (A) * L (state->w);
scm_t_uint32 x2 = L (A) * H (state->w);
scm_t_uint32 x3 = H (A) * L (state->w);
scm_t_uint32 w = L (x1) + L (state->c);
scm_t_uint32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
scm_t_uint32 x4 = H (A) * H (state->w);
state->w = w = (L (m) << 16) + L (w);
state->c = H (x2) + H (x3) + x4 + H (m);
return w;
}
#endif
void
scm_i_init_rstate (scm_t_i_rstate *state, const char *seed, int n)
{
scm_t_uint32 w = 0L;
scm_t_uint32 c = 0L;
int i, m;
for (i = 0; i < n; ++i)
{
m = i % 8;
if (m < 4)
w += seed[i] << (8 * m);
else
c += seed[i] << (8 * (m - 4));
}
if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
++c;
state->w = w;
state->c = c;
}
scm_t_i_rstate *
scm_i_copy_rstate (scm_t_i_rstate *state)
{
scm_t_rstate *new_state = scm_malloc (scm_the_rng.rstate_size);
return memcpy (new_state, state, scm_the_rng.rstate_size);
}
/*
* Random number library functions
*/
scm_t_rstate *
scm_c_make_rstate (const char *seed, int n)
{
scm_t_rstate *state = scm_malloc (scm_the_rng.rstate_size);
state->reserved0 = 0;
scm_the_rng.init_rstate (state, seed, n);
return state;
}
scm_t_rstate *
scm_c_default_rstate ()
#define FUNC_NAME "scm_c_default_rstate"
{
SCM state = SCM_VARIABLE_REF (scm_var_random_state);
if (!SCM_RSTATEP (state))
SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
return SCM_RSTATE (state);
}
#undef FUNC_NAME
inline double
scm_c_uniform01 (scm_t_rstate *state)
{
double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
return ((x + (double) scm_the_rng.random_bits (state))
/ (double) 0xffffffffUL);
}
double
scm_c_normal01 (scm_t_rstate *state)
{
if (state->reserved0)
{
state->reserved0 = 0;
return state->reserved1;
}
else
{
double r, a, n;
r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
a = 2.0 * M_PI * scm_c_uniform01 (state);
n = r * sin (a);
state->reserved1 = r * cos (a);
state->reserved0 = 1;
return n;
}
}
double
scm_c_exp1 (scm_t_rstate *state)
{
return - log (scm_c_uniform01 (state));
}
unsigned char scm_masktab[256];
unsigned long
scm_c_random (scm_t_rstate *state, unsigned long m)
{
unsigned int r, mask;
mask = (m < 0x100
? scm_masktab[m]
: (m < 0x10000
? scm_masktab[m >> 8] << 8 | 0xff
: (m < 0x1000000
? scm_masktab[m >> 16] << 16 | 0xffff
: scm_masktab[m >> 24] << 24 | 0xffffff)));
while ((r = scm_the_rng.random_bits (state) & mask) >= m);
return r;
}
/*
SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
Takes a random state (source of random bits) and a bignum m.
Returns a bignum b, 0 <= b < m.
It does this by allocating a bignum b with as many base 65536 digits
as m, filling b with random bits (in 32 bit chunks) up to the most
significant 1 in m, and, finally checking if the resultant b is too
large (>= m). If too large, we simply repeat the process again. (It
is important to throw away all generated random bits if b >= m,
otherwise we'll end up with a distorted distribution.)
*/
SCM
scm_c_random_bignum (scm_t_rstate *state, SCM m)
{
SCM result = scm_i_mkbig ();
const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
/* how many bits would only partially fill the last unsigned long? */
const size_t end_bits = m_bits % (sizeof (unsigned long) * SCM_CHAR_BIT);
unsigned long *random_chunks = NULL;
const unsigned long num_full_chunks =
m_bits / (sizeof (unsigned long) * SCM_CHAR_BIT);
const unsigned long num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
/* we know the result will be this big */
mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
random_chunks =
(unsigned long *) scm_gc_calloc (num_chunks * sizeof (unsigned long),
"random bignum chunks");
do
{
unsigned long *current_chunk = random_chunks + (num_chunks - 1);
unsigned long chunks_left = num_chunks;
mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
if (end_bits)
{
/* generate a mask with ones in the end_bits position, i.e. if
end_bits is 3, then we'd have a mask of ...0000000111 */
const unsigned long rndbits = scm_the_rng.random_bits (state);
int rshift = (sizeof (unsigned long) * SCM_CHAR_BIT) - end_bits;
unsigned long mask = ((unsigned long) ULONG_MAX) >> rshift;
unsigned long highest_bits = rndbits & mask;
*current_chunk-- = highest_bits;
chunks_left--;
}
while (chunks_left)
{
/* now fill in the remaining unsigned long sized chunks */
*current_chunk-- = scm_the_rng.random_bits (state);
chunks_left--;
}
mpz_import (SCM_I_BIG_MPZ (result),
num_chunks,
-1,
sizeof (unsigned long),
0,
0,
random_chunks);
/* if result >= m, regenerate it (it is important to regenerate
all bits in order not to get a distorted distribution) */
} while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
scm_gc_free (random_chunks,
num_chunks * sizeof (unsigned long),
"random bignum chunks");
return scm_i_normbig (result);
}
/*
* Scheme level representation of random states.
*/
scm_t_bits scm_tc16_rstate;
static SCM
make_rstate (scm_t_rstate *state)
{
SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
}
static size_t
rstate_free (SCM rstate)
{
free (SCM_RSTATE (rstate));
return 0;
}
/*
* Scheme level interface.
*/
SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_locale_string ("URL:http://stat.fsu.edu/~geo/diehard.html")));
SCM_DEFINE (scm_random, "random", 1, 1, 0,
(SCM n, SCM state),
"Return a number in [0, N).\n"
"\n"
"Accepts a positive integer or real n and returns a\n"
"number of the same type between zero (inclusive) and\n"
"N (exclusive). The values returned have a uniform\n"
"distribution.\n"
"\n"
"The optional argument @var{state} must be of the type produced\n"
"by @code{seed->random-state}. It defaults to the value of the\n"
"variable @var{*random-state*}. This object is used to maintain\n"
"the state of the pseudo-random-number generator and is altered\n"
"as a side effect of the random operation.")
#define FUNC_NAME s_scm_random
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
if (SCM_I_INUMP (n))
{
unsigned long m = SCM_I_INUM (n);
SCM_ASSERT_RANGE (1, n, m > 0);
return scm_from_ulong (scm_c_random (SCM_RSTATE (state), m));
}
SCM_VALIDATE_NIM (1, n);
if (SCM_REALP (n))
return scm_from_double (SCM_REAL_VALUE (n)
* scm_c_uniform01 (SCM_RSTATE (state)));
if (!SCM_BIGP (n))
SCM_WRONG_TYPE_ARG (1, n);
return scm_c_random_bignum (SCM_RSTATE (state), n);
}
#undef FUNC_NAME
SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
(SCM state),
"Return a copy of the random state @var{state}.")
#define FUNC_NAME s_scm_copy_random_state
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
(SCM seed),
"Return a new random state using @var{seed}.")
#define FUNC_NAME s_scm_seed_to_random_state
{
SCM res;
if (SCM_NUMBERP (seed))
seed = scm_number_to_string (seed, SCM_UNDEFINED);
SCM_VALIDATE_STRING (1, seed);
res = make_rstate (scm_c_make_rstate (scm_i_string_chars (seed),
scm_i_string_length (seed)));
scm_remember_upto_here_1 (seed);
return res;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
(SCM state),
"Return a uniformly distributed inexact real random number in\n"
"[0,1).")
#define FUNC_NAME s_scm_random_uniform
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
(SCM state),
"Return an inexact real in a normal distribution. The\n"
"distribution used has mean 0 and standard deviation 1. For a\n"
"normal distribution with mean m and standard deviation d use\n"
"@code{(+ m (* d (random:normal)))}.")
#define FUNC_NAME s_scm_random_normal
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
static void
vector_scale_x (SCM v, double c)
{
size_t n;
if (scm_is_simple_vector (v))
{
n = SCM_SIMPLE_VECTOR_LENGTH (v);
while (n-- > 0)
SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n)) *= c;
}
else
{
/* must be a f64vector. */
scm_t_array_handle handle;
size_t i, len;
ssize_t inc;
double *elts;
elts = scm_f64vector_writable_elements (v, &handle, &len, &inc);
for (i = 0; i < len; i++, elts += inc)
*elts *= c;
scm_array_handle_release (&handle);
}
}
static double
vector_sum_squares (SCM v)
{
double x, sum = 0.0;
size_t n;
if (scm_is_simple_vector (v))
{
n = SCM_SIMPLE_VECTOR_LENGTH (v);
while (n-- > 0)
{
x = SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n));
sum += x * x;
}
}
else
{
/* must be a f64vector. */
scm_t_array_handle handle;
size_t i, len;
ssize_t inc;
const double *elts;
elts = scm_f64vector_elements (v, &handle, &len, &inc);
for (i = 0; i < len; i++, elts += inc)
{
x = *elts;
sum += x * x;
}
scm_array_handle_release (&handle);
}
return sum;
}
/* For the uniform distribution on the solid sphere, note that in
* this distribution the length r of the vector has cumulative
* distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
* generated as r=u^(1/n).
*/
SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
(SCM v, SCM state),
"Fills @var{vect} with inexact real random numbers the sum of\n"
"whose squares is less than 1.0. Thinking of @var{vect} as\n"
"coordinates in space of dimension @var{n} @math{=}\n"
"@code{(vector-length @var{vect})}, the coordinates are\n"
"uniformly distributed within the unit @var{n}-sphere.")
#define FUNC_NAME s_scm_random_solid_sphere_x
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_random_normal_vector_x (v, state);
vector_scale_x (v,
pow (scm_c_uniform01 (SCM_RSTATE (state)),
1.0 / scm_c_generalized_vector_length (v))
/ sqrt (vector_sum_squares (v)));
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
(SCM v, SCM state),
"Fills vect with inexact real random numbers\n"
"the sum of whose squares is equal to 1.0.\n"
"Thinking of vect as coordinates in space of\n"
"dimension n = (vector-length vect), the coordinates\n"
"are uniformly distributed over the surface of the\n"
"unit n-sphere.")
#define FUNC_NAME s_scm_random_hollow_sphere_x
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_random_normal_vector_x (v, state);
vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
(SCM v, SCM state),
"Fills vect with inexact real random numbers that are\n"
"independent and standard normally distributed\n"
"(i.e., with mean 0 and variance 1).")
#define FUNC_NAME s_scm_random_normal_vector_x
{
long i;
scm_t_array_handle handle;
scm_t_array_dim *dim;
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (2, state);
scm_generalized_vector_get_handle (v, &handle);
dim = scm_array_handle_dims (&handle);
if (scm_is_vector (v))
{
SCM *elts = scm_array_handle_writable_elements (&handle);
for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
*elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
}
else
{
/* must be a f64vector. */
double *elts = scm_array_handle_f64_writable_elements (&handle);
for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
*elts = scm_c_normal01 (SCM_RSTATE (state));
}
scm_array_handle_release (&handle);
return SCM_UNSPECIFIED;
}
#undef FUNC_NAME
SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
(SCM state),
"Return an inexact real in an exponential distribution with mean\n"
"1. For an exponential distribution with mean u use (* u\n"
"(random:exp)).")
#define FUNC_NAME s_scm_random_exp
{
if (SCM_UNBNDP (state))
state = SCM_VARIABLE_REF (scm_var_random_state);
SCM_VALIDATE_RSTATE (1, state);
return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
}
#undef FUNC_NAME
void
scm_init_random ()
{
int i, m;
/* plug in default RNG */
scm_t_rng rng =
{
sizeof (scm_t_i_rstate),
(unsigned long (*)()) scm_i_uniform32,
(void (*)()) scm_i_init_rstate,
(scm_t_rstate *(*)()) scm_i_copy_rstate
};
scm_the_rng = rng;
scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
scm_set_smob_free (scm_tc16_rstate, rstate_free);
for (m = 1; m <= 0x100; m <<= 1)
for (i = m >> 1; i < m; ++i)
scm_masktab[i] = m - 1;
#include "libguile/random.x"
scm_add_feature ("random");
}
/*
Local Variables:
c-file-style: "gnu"
End:
*/