mirror of
https://git.savannah.gnu.org/git/guile.git
synced 2025-05-10 15:50:50 +02:00
298 lines
9.4 KiB
C
298 lines
9.4 KiB
C
// This is adapted from a benchmark written by John Ellis and Pete Kovac
|
|
// of Post Communications.
|
|
// It was modified by Hans Boehm of Silicon Graphics.
|
|
// Translated to C++ 30 May 1997 by William D Clinger of Northeastern Univ.
|
|
// Translated to C 15 March 2000 by Hans Boehm, now at HP Labs.
|
|
//
|
|
// This is no substitute for real applications. No actual application
|
|
// is likely to behave in exactly this way. However, this benchmark was
|
|
// designed to be more representative of real applications than other
|
|
// Java GC benchmarks of which we are aware.
|
|
// It attempts to model those properties of allocation requests that
|
|
// are important to current GC techniques.
|
|
// It is designed to be used either to obtain a single overall performance
|
|
// number, or to give a more detailed estimate of how collector
|
|
// performance varies with object lifetimes. It prints the time
|
|
// required to allocate and collect balanced binary trees of various
|
|
// sizes. Smaller trees result in shorter object lifetimes. Each cycle
|
|
// allocates roughly the same amount of memory.
|
|
// Two data structures are kept around during the entire process, so
|
|
// that the measured performance is representative of applications
|
|
// that maintain some live in-memory data. One of these is a tree
|
|
// containing many pointers. The other is a large array containing
|
|
// double precision floating point numbers. Both should be of comparable
|
|
// size.
|
|
//
|
|
// The results are only really meaningful together with a specification
|
|
// of how much memory was used. It is possible to trade memory for
|
|
// better time performance. This benchmark should be run in a 32 MB
|
|
// heap, though we don't currently know how to enforce that uniformly.
|
|
//
|
|
// Unlike the original Ellis and Kovac benchmark, we do not attempt
|
|
// measure pause times. This facility should eventually be added back
|
|
// in. There are several reasons for omitting it for now. The original
|
|
// implementation depended on assumptions about the thread scheduler
|
|
// that don't hold uniformly. The results really measure both the
|
|
// scheduler and GC. Pause time measurements tend to not fit well with
|
|
// current benchmark suites. As far as we know, none of the current
|
|
// commercial Java implementations seriously attempt to minimize GC pause
|
|
// times.
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "assert.h"
|
|
#include "gcbench-types.h"
|
|
#include "gc.h"
|
|
|
|
static const int kStretchTreeDepth = 18; // about 16Mb
|
|
static const int kLongLivedTreeDepth = 16; // about 4Mb
|
|
static const int kArraySize = 500000; // about 4Mb
|
|
static const int kMinTreeDepth = 4;
|
|
static const int kMaxTreeDepth = 16;
|
|
|
|
typedef struct Node {
|
|
GC_HEADER;
|
|
struct Node * left;
|
|
struct Node * right;
|
|
int i, j;
|
|
} Node;
|
|
|
|
typedef struct DoubleArray {
|
|
GC_HEADER;
|
|
size_t length;
|
|
double values[0];
|
|
} DoubleArray;
|
|
|
|
static inline size_t node_size(Node *obj) {
|
|
return sizeof(Node);
|
|
}
|
|
static inline size_t double_array_size(DoubleArray *array) {
|
|
return sizeof(*array) + array->length * sizeof(double);
|
|
}
|
|
static inline void
|
|
visit_node_fields(Node *node,
|
|
void (*visit)(void **loc, void *visit_data),
|
|
void *visit_data) {
|
|
visit((void**)&node->left, visit_data);
|
|
visit((void**)&node->right, visit_data);
|
|
}
|
|
static inline void
|
|
visit_double_array_fields(DoubleArray *obj,
|
|
void (*visit)(void **loc, void *visit_data),
|
|
void *visit_data) {
|
|
}
|
|
|
|
typedef HANDLE_TO(Node) NodeHandle;
|
|
typedef HANDLE_TO(DoubleArray) DoubleArrayHandle;
|
|
|
|
static Node* allocate_node(struct context *cx) {
|
|
// memset to 0 by the collector.
|
|
return allocate(cx, ALLOC_KIND_NODE, sizeof (Node));
|
|
}
|
|
|
|
static struct DoubleArray* allocate_double_array(struct context *cx,
|
|
size_t size) {
|
|
// note, we might allow the collector to leave this data uninitialized.
|
|
DoubleArray *ret = allocate(cx, ALLOC_KIND_DOUBLE_ARRAY,
|
|
sizeof(DoubleArray) + sizeof (double) * size);
|
|
ret->length = size;
|
|
return ret;
|
|
}
|
|
|
|
/* Get the current time in milliseconds */
|
|
static unsigned currentTime(void)
|
|
{
|
|
struct timeval t;
|
|
struct timezone tz;
|
|
|
|
if (gettimeofday( &t, &tz ) == -1)
|
|
return 0;
|
|
return (t.tv_sec * 1000 + t.tv_usec / 1000);
|
|
}
|
|
|
|
void init_Node(Node *me, Node *l, Node *r) {
|
|
init_field((void**)&me->left, l);
|
|
init_field((void**)&me->right, r);
|
|
}
|
|
|
|
// Nodes used by a tree of a given size
|
|
static int TreeSize(int i) {
|
|
return ((1 << (i + 1)) - 1);
|
|
}
|
|
|
|
// Number of iterations to use for a given tree depth
|
|
static int NumIters(int i) {
|
|
return 2 * TreeSize(kStretchTreeDepth) / TreeSize(i);
|
|
}
|
|
|
|
// Build tree top down, assigning to older objects.
|
|
static void Populate(struct context *cx, int iDepth, Node *node) {
|
|
if (iDepth<=0) {
|
|
return;
|
|
} else {
|
|
iDepth--;
|
|
|
|
NodeHandle self = { node };
|
|
PUSH_HANDLE(cx, self);
|
|
NodeHandle l = { allocate_node(cx) };
|
|
PUSH_HANDLE(cx, l);
|
|
NodeHandle r = { allocate_node(cx) };
|
|
PUSH_HANDLE(cx, r);
|
|
set_field((void**)&HANDLE_REF(self)->left, HANDLE_REF(l));
|
|
set_field((void**)&HANDLE_REF(self)->right, HANDLE_REF(r));
|
|
Populate (cx, iDepth, HANDLE_REF(self)->left);
|
|
Populate (cx, iDepth, HANDLE_REF(self)->right);
|
|
POP_HANDLE(cx, r);
|
|
POP_HANDLE(cx, l);
|
|
POP_HANDLE(cx, self);
|
|
}
|
|
}
|
|
|
|
// Build tree bottom-up
|
|
static Node* MakeTree(struct context *cx, int iDepth) {
|
|
if (iDepth<=0) {
|
|
return allocate_node(cx);
|
|
} else {
|
|
NodeHandle left = { MakeTree(cx, iDepth-1) };
|
|
PUSH_HANDLE(cx, left);
|
|
NodeHandle right = { MakeTree(cx, iDepth-1) };
|
|
PUSH_HANDLE(cx, right);
|
|
Node *result = allocate_node(cx);
|
|
init_Node(result, HANDLE_REF(left), HANDLE_REF(right));
|
|
POP_HANDLE(cx, right);
|
|
POP_HANDLE(cx, left);
|
|
return result;
|
|
}
|
|
}
|
|
|
|
static void ValidateTree(Node *tree, int depth) {
|
|
#ifndef NDEBUG
|
|
ASSERT_EQ(tree->i, 0);
|
|
ASSERT_EQ(tree->j, 0);
|
|
if (depth == 0) {
|
|
ASSERT(!tree->left);
|
|
ASSERT(!tree->right);
|
|
} else {
|
|
ASSERT(tree->left);
|
|
ASSERT(tree->right);
|
|
ValidateTree(tree->left, depth - 1);
|
|
ValidateTree(tree->right, depth - 1);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void TimeConstruction(struct context *cx, int depth) {
|
|
int iNumIters = NumIters(depth);
|
|
NodeHandle tempTree = { NULL };
|
|
PUSH_HANDLE(cx, tempTree);
|
|
|
|
printf("Creating %d trees of depth %d\n", iNumIters, depth);
|
|
|
|
{
|
|
long tStart = currentTime();
|
|
for (int i = 0; i < iNumIters; ++i) {
|
|
HANDLE_SET(tempTree, allocate_node(cx));
|
|
Populate(cx, depth, HANDLE_REF(tempTree));
|
|
ValidateTree(HANDLE_REF(tempTree), depth);
|
|
HANDLE_SET(tempTree, NULL);
|
|
}
|
|
long tFinish = currentTime();
|
|
printf("\tTop down construction took %ld msec\n",
|
|
tFinish - tStart);
|
|
}
|
|
|
|
{
|
|
long tStart = currentTime();
|
|
for (int i = 0; i < iNumIters; ++i) {
|
|
HANDLE_SET(tempTree, MakeTree(cx, depth));
|
|
ValidateTree(HANDLE_REF(tempTree), depth);
|
|
HANDLE_SET(tempTree, NULL);
|
|
}
|
|
long tFinish = currentTime();
|
|
printf("\tBottom up construction took %ld msec\n",
|
|
tFinish - tStart);
|
|
}
|
|
|
|
POP_HANDLE(cx, tempTree);
|
|
}
|
|
|
|
int main() {
|
|
size_t kHeapMaxLive =
|
|
2 * sizeof(struct Node) * TreeSize(kLongLivedTreeDepth) +
|
|
sizeof(double) * kArraySize;
|
|
double kHeapMultiplier = 3;
|
|
size_t kHeapSize = kHeapMaxLive * kHeapMultiplier;
|
|
|
|
if (getenv("HEAP_SIZE"))
|
|
kHeapSize = atol(getenv("HEAP_SIZE"));
|
|
if (!kHeapSize) {
|
|
fprintf(stderr, "Failed to parse HEAP_SIZE='%s'\n", getenv("HEAP_SIZE"));
|
|
return 1;
|
|
}
|
|
|
|
struct context _cx;
|
|
struct context *cx = &_cx;
|
|
initialize_gc(cx, kHeapSize);
|
|
|
|
NodeHandle root = { NULL };
|
|
NodeHandle longLivedTree = { NULL };
|
|
NodeHandle tempTree = { NULL };
|
|
DoubleArrayHandle array = { NULL };
|
|
|
|
PUSH_HANDLE(cx, root);
|
|
PUSH_HANDLE(cx, longLivedTree);
|
|
PUSH_HANDLE(cx, tempTree);
|
|
PUSH_HANDLE(cx, array);
|
|
|
|
printf("Garbage Collector Test\n");
|
|
printf(" Live storage will peak at %zd bytes.\n\n", kHeapMaxLive);
|
|
printf(" Stretching memory with a binary tree of depth %d\n",
|
|
kStretchTreeDepth);
|
|
print_start_gc_stats(cx);
|
|
|
|
long tStart = currentTime();
|
|
|
|
// Stretch the memory space quickly
|
|
HANDLE_SET(tempTree, MakeTree(cx, kStretchTreeDepth));
|
|
ValidateTree(HANDLE_REF(tempTree), kStretchTreeDepth);
|
|
HANDLE_SET(tempTree, NULL);
|
|
|
|
// Create a long lived object
|
|
printf(" Creating a long-lived binary tree of depth %d\n",
|
|
kLongLivedTreeDepth);
|
|
HANDLE_SET(longLivedTree, allocate_node(cx));
|
|
Populate(cx, kLongLivedTreeDepth, HANDLE_REF(longLivedTree));
|
|
|
|
// Create long-lived array, filling half of it
|
|
printf(" Creating a long-lived array of %d doubles\n", kArraySize);
|
|
HANDLE_SET(array, allocate_double_array(cx, kArraySize));
|
|
for (int i = 0; i < kArraySize/2; ++i) {
|
|
HANDLE_REF(array)->values[i] = 1.0/i;
|
|
}
|
|
|
|
for (int d = kMinTreeDepth; d <= kMaxTreeDepth; d += 2) {
|
|
TimeConstruction(cx, d);
|
|
}
|
|
|
|
ValidateTree(HANDLE_REF(longLivedTree), kLongLivedTreeDepth);
|
|
|
|
if (HANDLE_REF(longLivedTree) == 0
|
|
|| HANDLE_REF(array)->values[1000] != 1.0/1000)
|
|
fprintf(stderr, "Failed\n");
|
|
// fake reference to LongLivedTree
|
|
// and array
|
|
// to keep them from being optimized away
|
|
|
|
long tFinish = currentTime();
|
|
long tElapsed = tFinish - tStart;
|
|
printf("Completed in %ld msec\n", tElapsed);
|
|
print_end_gc_stats(cx);
|
|
|
|
POP_HANDLE(cx, array);
|
|
POP_HANDLE(cx, tempTree);
|
|
POP_HANDLE(cx, longLivedTree);
|
|
POP_HANDLE(cx, root);
|
|
}
|
|
|