1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-09 23:40:29 +02:00
guile/parallel-marker.h
2022-03-11 11:48:26 +01:00

271 lines
7.7 KiB
C

#ifndef SERIAL_TRACE_H
#define SERIAL_TRACE_H
#include <stdatomic.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
// The Chase-Lev work-stealing deque, as initially described in "Dynamic
// Circular Work-Stealing Deque" (Chase and Lev, SPAA'05)
// (https://www.dre.vanderbilt.edu/~schmidt/PDF/work-stealing-dequeue.pdf)
// and improved with C11 atomics in "Correct and Efficient Work-Stealing
// for Weak Memory Models" (Lê et al, PPoPP'13)
// (http://www.di.ens.fr/%7Ezappa/readings/ppopp13.pdf).
struct mark_buf {
unsigned log_size;
size_t size;
atomic_uintptr_t *data;
};
// Min size: 8 kB on 64-bit systems, 4 kB on 32-bit.
#define mark_buf_min_log_size ((unsigned) 10)
// Max size: 2 GB on 64-bit systems, 1 GB on 32-bit.
#define mark_buf_max_log_size ((unsigned) 28)
static int
mark_buf_init(struct mark_buf *buf, unsigned log_size) {
ASSERT(log_size >= mark_buf_min_log_size);
ASSERT(log_size <= mark_buf_max_log_size);
size_t size = (1 << log_size) * sizeof(uintptr_t);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("Failed to grow work-stealing dequeue");
DEBUG("Failed to allocate %zu bytes", size, );
return 0;
}
buf->log_size = log_size;
buf->size = 1 << log_size;
buf->data = mem;
return 1;
}
static inline size_t
mark_buf_size(struct mark_buf *buf) {
return buf->size;
}
static inline size_t
mark_buf_byte_size(struct mark_buf *buf) {
return mark_buf_size(buf) * sizeof(uintptr_t);
}
static void
mark_buf_release(struct mark_buf *buf) {
if (buf->data)
madvise(buf->data, mark_buf_byte_size(buf), MADV_DONTNEED);
}
static void
mark_buf_destroy(struct mark_buf *buf) {
if (buf->data) {
munmap(buf->data, mark_buf_byte_size(buf));
buf->data = NULL;
buf->log_size = 0;
buf->size = 0;
}
}
static inline uintptr_t
mark_buf_get(struct mark_buf *buf, size_t i) {
return atomic_load_explicit(&buf->data[i & (buf->size - 1)],
memory_order_relaxed);
}
static inline void
mark_buf_put(struct mark_buf *buf, size_t i, uintptr_t o) {
return atomic_store_explicit(&buf->data[i & (buf->size - 1)],
o,
memory_order_relaxed);
}
static inline int
mark_buf_grow(struct mark_buf *from, struct mark_buf *to,
size_t b, size_t t) {
if (from->log_size == mark_buf_max_log_size)
return 0;
if (!mark_buf_init (to, from->log_size + 1))
return 0;
for (size_t i=t; i<b; i++)
mark_buf_put(to, i, mark_buf_get(from, i));
return 1;
}
static const uintptr_t mark_deque_empty = 0;
static const uintptr_t mark_deque_abort = 1;
// Chase-Lev work-stealing deque. One thread pushes data into the deque
// at the bottom, and many threads compete to steal data from the top.
struct mark_deque {
// Ensure bottom and top are on different cache lines.
union {
atomic_size_t bottom;
char bottom_padding[64];
};
union {
atomic_size_t top;
char top_padding[64];
};
atomic_int active; // Which mark_buf is active.
struct mark_buf bufs[(mark_buf_max_log_size - mark_buf_min_log_size) + 1];
};
#define LOAD_RELAXED(loc) atomic_load_explicit(loc, memory_order_relaxed)
#define STORE_RELAXED(loc, o) atomic_store_explicit(loc, o, memory_order_relaxed)
#define LOAD_ACQUIRE(loc) atomic_load_explicit(loc, memory_order_acquire)
#define STORE_RELEASE(loc, o) atomic_store_explicit(loc, o, memory_order_release)
#define LOAD_CONSUME(loc) atomic_load_explicit(loc, memory_order_consume)
static int
mark_deque_init(struct mark_deque *q) {
memset(q, 0, sizeof (*q));
int ret = mark_buf_init(&q->bufs[0], mark_buf_min_log_size);
// Note, this fence isn't in the paper, I added it out of caution.
atomic_thread_fence(memory_order_release);
return ret;
}
static void
mark_deque_release(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_release(&q->bufs[i]);
}
static void
mark_deque_destroy(struct mark_deque *q) {
for (int i = LOAD_RELAXED(&q->active); i >= 0; i--)
mark_buf_destroy(&q->bufs[i]);
}
static int
mark_deque_grow(struct mark_deque *q, int cur, size_t b, size_t t) {
if (!mark_buf_grow(&q->bufs[cur], &q->bufs[cur + 1], b, t)) {
fprintf(stderr, "failed to grow deque!!\n");
abort();
}
cur++;
STORE_RELAXED(&q->active, cur);
return cur;
}
static void
mark_deque_push(struct mark_deque *q, uintptr_t x) {
size_t b = LOAD_RELAXED(&q->bottom);
size_t t = LOAD_ACQUIRE(&q->top);
int active = LOAD_RELAXED(&q->active);
if (b - t > mark_buf_size(&q->bufs[active]) - 1) /* Full queue. */
active = mark_deque_grow(q, active, b, t);
mark_buf_put(&q->bufs[active], b, x);
atomic_thread_fence(memory_order_release);
STORE_RELAXED(&q->bottom, b + 1);
}
static uintptr_t
mark_deque_try_pop(struct mark_deque *q) {
size_t b = LOAD_RELAXED(&q->bottom);
b = b - 1;
int active = LOAD_RELAXED(&q->active);
STORE_RELAXED(&q->bottom, b);
atomic_thread_fence(memory_order_seq_cst);
size_t t = LOAD_RELAXED(&q->top);
uintptr_t x;
if (t <= b) { // Non-empty queue.
x = mark_buf_get(&q->bufs[active], b);
if (t == b) { // Single last element in queue.
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
x = mark_deque_empty;
STORE_RELAXED(&q->bottom, b + 1);
}
} else { // Empty queue.
x = mark_deque_empty;
STORE_RELAXED(&q->bottom, b + 1);
}
return x;
}
static uintptr_t
mark_deque_steal(struct mark_deque *q) {
size_t t = LOAD_ACQUIRE(&q->top);
atomic_thread_fence(memory_order_seq_cst);
size_t b = LOAD_ACQUIRE(&q->bottom);
uintptr_t x = mark_deque_empty;
if (t < b) { // Non-empty queue.
int active = LOAD_CONSUME(&q->active);
x = mark_buf_get(&q->bufs[active], t);
if (!atomic_compare_exchange_strong_explicit(&q->top, &t, t + 1,
memory_order_seq_cst,
memory_order_relaxed))
// Failed race.
return mark_deque_abort;
}
return x;
}
#undef LOAD_RELAXED
#undef STORE_RELAXED
#undef LOAD_ACQUIRE
#undef STORE_RELEASE
#undef LOAD_CONSUME
struct marker {
struct mark_deque deque;
};
struct context;
static inline struct marker* context_marker(struct context *cx);
static int
marker_init(struct context *cx) {
return mark_deque_init(&context_marker(cx)->deque);
}
static void marker_prepare(struct context *cx) {}
static void marker_release(struct context *cx) {
mark_deque_release(&context_marker(cx)->deque);
}
struct gcobj;
static inline void marker_visit(void **loc, void *mark_data) ALWAYS_INLINE;
static inline void marker_trace(struct context *cx,
void (*)(struct context *, struct gcobj *))
ALWAYS_INLINE;
static inline int mark_object(struct context *cx,
struct gcobj *obj) ALWAYS_INLINE;
static inline void
marker_visit(void **loc, void *mark_data) {
struct context *cx = mark_data;
struct gcobj *obj = *loc;
if (obj && mark_object(cx, obj))
mark_deque_push(&context_marker(cx)->deque, (uintptr_t)obj);
}
static inline void
marker_visit_root(void **loc, struct context *cx) {
marker_visit(loc, cx);
}
static inline void
marker_trace(struct context *cx,
void (*process)(struct context *, struct gcobj *)) {
while (1) {
uintptr_t addr = mark_deque_steal(&context_marker(cx)->deque);
if (addr == mark_deque_empty)
return;
if (addr == mark_deque_abort)
continue;
process(cx, (struct gcobj*)addr);
}
}
#endif // SERIAL_MARK_H