1
Fork 0
mirror of https://https.git.savannah.gnu.org/git/guix.git/ synced 2025-07-16 03:50:45 +02:00

Merge branch 'staging' into core-updates

This commit is contained in:
Marius Bakke 2019-06-20 23:38:56 +02:00
commit 6cb1ef9ea2
No known key found for this signature in database
GPG key ID: A2A06DF2A33A54FA
106 changed files with 4401 additions and 1339 deletions

View file

@ -10,6 +10,7 @@
;;; Copyright © 2018 Fis Trivial <ybbs.daans@hotmail.com>
;;; Copyright © 2018 Julien Lepiller <julien@lepiller.eu>
;;; Copyright © 2018 Björn Höfling <bjoern.hoefling@bjoernhoefling.de>
;;; Copyright © 2019 Nicolas Goaziou <mail@nicolasgoaziou.fr>
;;;
;;; This file is part of GNU Guix.
;;;
@ -53,6 +54,7 @@
#:use-module (gnu packages dejagnu)
#:use-module (gnu packages gcc)
#:use-module (gnu packages glib)
#:use-module (gnu packages graphviz)
#:use-module (gnu packages gstreamer)
#:use-module (gnu packages image)
#:use-module (gnu packages linux)
@ -67,6 +69,7 @@
#:use-module (gnu packages python-web)
#:use-module (gnu packages python-xyz)
#:use-module (gnu packages serialization)
#:use-module (gnu packages sphinx)
#:use-module (gnu packages statistics)
#:use-module (gnu packages sqlite)
#:use-module (gnu packages swig)
@ -668,7 +671,7 @@ geometric models.")
`(#:configure-flags
(list ,@(match (%current-system)
((or "x86_64-linux" "i686-linux")
'("-DCMAKE_CXX_FLAGS=-msse4.1"))
'("-DCMAKE_CXX_FLAGS=-msse2"))
(_ '())))
#:phases
(modify-phases %standard-phases
@ -792,7 +795,7 @@ computing environments.")
(define-public python-scikit-learn
(package
(name "python-scikit-learn")
(version "0.20.1")
(version "0.20.3")
(source
(origin
(method git-fetch)
@ -802,7 +805,7 @@ computing environments.")
(file-name (git-file-name name version))
(sha256
(base32
"0fkhwg3xn1s7ln9q1szq6kwc4jhwvjh8w4kmv9wcrqy7cq3lbv0d"))))
"08aaby5zphfxy83mggg35bwyka7wk91l2qijh8kk0bl08dikq8dl"))))
(build-system python-build-system)
(arguments
`(#:phases
@ -1753,3 +1756,162 @@ API for beginners that allows users to build models quickly by plugging
together building blocks and a subclassing API with an imperative style for
advanced research.")
(license license:asl2.0)))
(define-public python-iml
(package
(name "python-iml")
(version "0.6.2")
(source
(origin
(method url-fetch)
(uri (pypi-uri "iml" version))
(sha256
(base32
"1k8szlpm19rcwcxdny9qdm3gmaqq8akb4xlvrzyz8c2d679aak6l"))))
(build-system python-build-system)
(propagated-inputs
`(("ipython" ,python-ipython)
("nose" ,python-nose)
("numpy" ,python-numpy)
("pandas" ,python-pandas)
("scipy" ,python-scipy)))
(home-page "http://github.com/interpretable-ml/iml")
(synopsis "Interpretable Machine Learning (iML) package")
(description "Interpretable ML (iML) is a set of data type objects,
visualizations, and interfaces that can be used by any method designed to
explain the predictions of machine learning models (or really the output of
any function). It currently contains the interface and IO code from the Shap
project, and it will potentially also do the same for the Lime project.")
(license license:expat)))
(define-public python-keras-applications
(package
(name "python-keras-applications")
(version "1.0.8")
(source
(origin
(method url-fetch)
(uri (pypi-uri "Keras_Applications" version))
(sha256
(base32
"1rcz31ca4axa6kzhjx4lwqxbg4wvlljkj8qj9a7p9sfd5fhzjyam"))))
(build-system python-build-system)
;; The tests require Keras, but this package is needed to build Keras.
(arguments '(#:tests? #f))
(propagated-inputs
`(("python-h5py" ,python-h5py)
("python-numpy" ,python-numpy)))
(native-inputs
`(("python-pytest" ,python-pytest)
("python-pytest-cov" ,python-pytest-cov)
("python-pytest-pep8" ,python-pytest-pep8)
("python-pytest-xdist" ,python-pytest-xdist)))
(home-page "https://github.com/keras-team/keras-applications")
(synopsis "Reference implementations of popular deep learning models")
(description
"This package provides reference implementations of popular deep learning
models for use with the Keras deep learning framework.")
(license license:expat)))
(define-public python-keras-preprocessing
(package
(name "python-keras-preprocessing")
(version "1.1.0")
(source
(origin
(method url-fetch)
(uri (pypi-uri "Keras_Preprocessing" version))
(sha256
(base32
"1r98nm4k1svsqjyaqkfk23i31bl1kcfcyp7094yyj3c43phfp3as"))))
(build-system python-build-system)
(propagated-inputs
`(("python-numpy" ,python-numpy)
("python-six" ,python-six)))
(native-inputs
`(("python-pandas" ,python-pandas)
("python-pillow" ,python-pillow)
("python-pytest" ,python-pytest)
("python-pytest-cov" ,python-pytest-cov)
("python-pytest-xdist" ,python-pytest-xdist)
("tensorflow" ,tensorflow)))
(home-page "https://github.com/keras-team/keras-preprocessing/")
(synopsis "Data preprocessing and augmentation for deep learning models")
(description
"Keras Preprocessing is the data preprocessing and data augmentation
module of the Keras deep learning library. It provides utilities for working
with image data, text data, and sequence data.")
(license license:expat)))
(define-public python-keras
(package
(name "python-keras")
(version "2.2.4")
(source
(origin
(method url-fetch)
(uri (pypi-uri "Keras" version))
(sha256
(base32
"1j8bsqzh49vjdxy6l1k4iwax5vpjzniynyd041xjavdzvfii1dlh"))))
(build-system python-build-system)
(arguments
`(#:phases
(modify-phases %standard-phases
(add-after 'unpack 'remove-tests-for-unavailable-features
(lambda _
(delete-file "keras/backend/theano_backend.py")
(delete-file "keras/backend/cntk_backend.py")
(delete-file "tests/keras/backend/backend_test.py")
;; FIXME: This doesn't work because Tensorflow is missing the
;; coder ops library.
(delete-file "tests/keras/test_callbacks.py")
#t))
(replace 'check
(lambda _
;; These tests attempt to download data files from the internet.
(delete-file "tests/integration_tests/test_datasets.py")
(delete-file "tests/integration_tests/imagenet_utils_test.py")
(setenv "PYTHONPATH"
(string-append (getcwd) "/build/lib:"
(getenv "PYTHONPATH")))
(invoke "py.test" "-v"
"-p" "no:cacheprovider"
"--ignore" "keras/utils"))))))
(propagated-inputs
`(("python-h5py" ,python-h5py)
("python-keras-applications" ,python-keras-applications)
("python-keras-preprocessing" ,python-keras-preprocessing)
("python-numpy" ,python-numpy)
("python-pydot" ,python-pydot)
("python-pyyaml" ,python-pyyaml)
("python-scipy" ,python-scipy)
("python-six" ,python-six)
("tensorflow" ,tensorflow)
("graphviz" ,graphviz)))
(native-inputs
`(("python-pandas" ,python-pandas)
("python-pytest" ,python-pytest)
("python-pytest-cov" ,python-pytest-cov)
("python-pytest-pep8" ,python-pytest-pep8)
("python-pytest-timeout" ,python-pytest-timeout)
("python-pytest-xdist" ,python-pytest-xdist)
("python-sphinx" ,python-sphinx)
("python-requests" ,python-requests)))
(home-page "https://github.com/keras-team/keras")
(synopsis "High-level deep learning framework")
(description "Keras is a high-level neural networks API, written in Python
and capable of running on top of TensorFlow. It was developed with a focus on
enabling fast experimentation. Use Keras if you need a deep learning library
that:
@itemize
@item Allows for easy and fast prototyping (through user friendliness,
modularity, and extensibility).
@item Supports both convolutional networks and recurrent networks, as well as
combinations of the two.
@item Runs seamlessly on CPU and GPU.
@end itemize\n")
(license license:expat)))