mirror of
https://https.git.savannah.gnu.org/git/guix.git/
synced 2025-07-16 03:50:45 +02:00
Merge branch 'staging' into core-updates
This commit is contained in:
commit
6cb1ef9ea2
106 changed files with 4401 additions and 1339 deletions
|
@ -10,6 +10,7 @@
|
|||
;;; Copyright © 2018 Fis Trivial <ybbs.daans@hotmail.com>
|
||||
;;; Copyright © 2018 Julien Lepiller <julien@lepiller.eu>
|
||||
;;; Copyright © 2018 Björn Höfling <bjoern.hoefling@bjoernhoefling.de>
|
||||
;;; Copyright © 2019 Nicolas Goaziou <mail@nicolasgoaziou.fr>
|
||||
;;;
|
||||
;;; This file is part of GNU Guix.
|
||||
;;;
|
||||
|
@ -53,6 +54,7 @@
|
|||
#:use-module (gnu packages dejagnu)
|
||||
#:use-module (gnu packages gcc)
|
||||
#:use-module (gnu packages glib)
|
||||
#:use-module (gnu packages graphviz)
|
||||
#:use-module (gnu packages gstreamer)
|
||||
#:use-module (gnu packages image)
|
||||
#:use-module (gnu packages linux)
|
||||
|
@ -67,6 +69,7 @@
|
|||
#:use-module (gnu packages python-web)
|
||||
#:use-module (gnu packages python-xyz)
|
||||
#:use-module (gnu packages serialization)
|
||||
#:use-module (gnu packages sphinx)
|
||||
#:use-module (gnu packages statistics)
|
||||
#:use-module (gnu packages sqlite)
|
||||
#:use-module (gnu packages swig)
|
||||
|
@ -668,7 +671,7 @@ geometric models.")
|
|||
`(#:configure-flags
|
||||
(list ,@(match (%current-system)
|
||||
((or "x86_64-linux" "i686-linux")
|
||||
'("-DCMAKE_CXX_FLAGS=-msse4.1"))
|
||||
'("-DCMAKE_CXX_FLAGS=-msse2"))
|
||||
(_ '())))
|
||||
#:phases
|
||||
(modify-phases %standard-phases
|
||||
|
@ -792,7 +795,7 @@ computing environments.")
|
|||
(define-public python-scikit-learn
|
||||
(package
|
||||
(name "python-scikit-learn")
|
||||
(version "0.20.1")
|
||||
(version "0.20.3")
|
||||
(source
|
||||
(origin
|
||||
(method git-fetch)
|
||||
|
@ -802,7 +805,7 @@ computing environments.")
|
|||
(file-name (git-file-name name version))
|
||||
(sha256
|
||||
(base32
|
||||
"0fkhwg3xn1s7ln9q1szq6kwc4jhwvjh8w4kmv9wcrqy7cq3lbv0d"))))
|
||||
"08aaby5zphfxy83mggg35bwyka7wk91l2qijh8kk0bl08dikq8dl"))))
|
||||
(build-system python-build-system)
|
||||
(arguments
|
||||
`(#:phases
|
||||
|
@ -1753,3 +1756,162 @@ API for beginners that allows users to build models quickly by plugging
|
|||
together building blocks and a subclassing API with an imperative style for
|
||||
advanced research.")
|
||||
(license license:asl2.0)))
|
||||
|
||||
(define-public python-iml
|
||||
(package
|
||||
(name "python-iml")
|
||||
(version "0.6.2")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (pypi-uri "iml" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1k8szlpm19rcwcxdny9qdm3gmaqq8akb4xlvrzyz8c2d679aak6l"))))
|
||||
(build-system python-build-system)
|
||||
(propagated-inputs
|
||||
`(("ipython" ,python-ipython)
|
||||
("nose" ,python-nose)
|
||||
("numpy" ,python-numpy)
|
||||
("pandas" ,python-pandas)
|
||||
("scipy" ,python-scipy)))
|
||||
(home-page "http://github.com/interpretable-ml/iml")
|
||||
(synopsis "Interpretable Machine Learning (iML) package")
|
||||
(description "Interpretable ML (iML) is a set of data type objects,
|
||||
visualizations, and interfaces that can be used by any method designed to
|
||||
explain the predictions of machine learning models (or really the output of
|
||||
any function). It currently contains the interface and IO code from the Shap
|
||||
project, and it will potentially also do the same for the Lime project.")
|
||||
(license license:expat)))
|
||||
|
||||
(define-public python-keras-applications
|
||||
(package
|
||||
(name "python-keras-applications")
|
||||
(version "1.0.8")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (pypi-uri "Keras_Applications" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1rcz31ca4axa6kzhjx4lwqxbg4wvlljkj8qj9a7p9sfd5fhzjyam"))))
|
||||
(build-system python-build-system)
|
||||
;; The tests require Keras, but this package is needed to build Keras.
|
||||
(arguments '(#:tests? #f))
|
||||
(propagated-inputs
|
||||
`(("python-h5py" ,python-h5py)
|
||||
("python-numpy" ,python-numpy)))
|
||||
(native-inputs
|
||||
`(("python-pytest" ,python-pytest)
|
||||
("python-pytest-cov" ,python-pytest-cov)
|
||||
("python-pytest-pep8" ,python-pytest-pep8)
|
||||
("python-pytest-xdist" ,python-pytest-xdist)))
|
||||
(home-page "https://github.com/keras-team/keras-applications")
|
||||
(synopsis "Reference implementations of popular deep learning models")
|
||||
(description
|
||||
"This package provides reference implementations of popular deep learning
|
||||
models for use with the Keras deep learning framework.")
|
||||
(license license:expat)))
|
||||
|
||||
(define-public python-keras-preprocessing
|
||||
(package
|
||||
(name "python-keras-preprocessing")
|
||||
(version "1.1.0")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (pypi-uri "Keras_Preprocessing" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1r98nm4k1svsqjyaqkfk23i31bl1kcfcyp7094yyj3c43phfp3as"))))
|
||||
(build-system python-build-system)
|
||||
(propagated-inputs
|
||||
`(("python-numpy" ,python-numpy)
|
||||
("python-six" ,python-six)))
|
||||
(native-inputs
|
||||
`(("python-pandas" ,python-pandas)
|
||||
("python-pillow" ,python-pillow)
|
||||
("python-pytest" ,python-pytest)
|
||||
("python-pytest-cov" ,python-pytest-cov)
|
||||
("python-pytest-xdist" ,python-pytest-xdist)
|
||||
("tensorflow" ,tensorflow)))
|
||||
(home-page "https://github.com/keras-team/keras-preprocessing/")
|
||||
(synopsis "Data preprocessing and augmentation for deep learning models")
|
||||
(description
|
||||
"Keras Preprocessing is the data preprocessing and data augmentation
|
||||
module of the Keras deep learning library. It provides utilities for working
|
||||
with image data, text data, and sequence data.")
|
||||
(license license:expat)))
|
||||
|
||||
(define-public python-keras
|
||||
(package
|
||||
(name "python-keras")
|
||||
(version "2.2.4")
|
||||
(source
|
||||
(origin
|
||||
(method url-fetch)
|
||||
(uri (pypi-uri "Keras" version))
|
||||
(sha256
|
||||
(base32
|
||||
"1j8bsqzh49vjdxy6l1k4iwax5vpjzniynyd041xjavdzvfii1dlh"))))
|
||||
(build-system python-build-system)
|
||||
(arguments
|
||||
`(#:phases
|
||||
(modify-phases %standard-phases
|
||||
(add-after 'unpack 'remove-tests-for-unavailable-features
|
||||
(lambda _
|
||||
(delete-file "keras/backend/theano_backend.py")
|
||||
(delete-file "keras/backend/cntk_backend.py")
|
||||
(delete-file "tests/keras/backend/backend_test.py")
|
||||
|
||||
;; FIXME: This doesn't work because Tensorflow is missing the
|
||||
;; coder ops library.
|
||||
(delete-file "tests/keras/test_callbacks.py")
|
||||
#t))
|
||||
(replace 'check
|
||||
(lambda _
|
||||
;; These tests attempt to download data files from the internet.
|
||||
(delete-file "tests/integration_tests/test_datasets.py")
|
||||
(delete-file "tests/integration_tests/imagenet_utils_test.py")
|
||||
|
||||
(setenv "PYTHONPATH"
|
||||
(string-append (getcwd) "/build/lib:"
|
||||
(getenv "PYTHONPATH")))
|
||||
(invoke "py.test" "-v"
|
||||
"-p" "no:cacheprovider"
|
||||
"--ignore" "keras/utils"))))))
|
||||
(propagated-inputs
|
||||
`(("python-h5py" ,python-h5py)
|
||||
("python-keras-applications" ,python-keras-applications)
|
||||
("python-keras-preprocessing" ,python-keras-preprocessing)
|
||||
("python-numpy" ,python-numpy)
|
||||
("python-pydot" ,python-pydot)
|
||||
("python-pyyaml" ,python-pyyaml)
|
||||
("python-scipy" ,python-scipy)
|
||||
("python-six" ,python-six)
|
||||
("tensorflow" ,tensorflow)
|
||||
("graphviz" ,graphviz)))
|
||||
(native-inputs
|
||||
`(("python-pandas" ,python-pandas)
|
||||
("python-pytest" ,python-pytest)
|
||||
("python-pytest-cov" ,python-pytest-cov)
|
||||
("python-pytest-pep8" ,python-pytest-pep8)
|
||||
("python-pytest-timeout" ,python-pytest-timeout)
|
||||
("python-pytest-xdist" ,python-pytest-xdist)
|
||||
("python-sphinx" ,python-sphinx)
|
||||
("python-requests" ,python-requests)))
|
||||
(home-page "https://github.com/keras-team/keras")
|
||||
(synopsis "High-level deep learning framework")
|
||||
(description "Keras is a high-level neural networks API, written in Python
|
||||
and capable of running on top of TensorFlow. It was developed with a focus on
|
||||
enabling fast experimentation. Use Keras if you need a deep learning library
|
||||
that:
|
||||
|
||||
@itemize
|
||||
@item Allows for easy and fast prototyping (through user friendliness,
|
||||
modularity, and extensibility).
|
||||
@item Supports both convolutional networks and recurrent networks, as well as
|
||||
combinations of the two.
|
||||
@item Runs seamlessly on CPU and GPU.
|
||||
@end itemize\n")
|
||||
(license license:expat)))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue