1
Fork 0
mirror of https://https.git.savannah.gnu.org/git/guix.git/ synced 2025-07-10 16:50:43 +02:00

gnu: Add python-torchdiffeq.

* gnu/packages/machine-learning.scm (python-torchdiffeq): New variable.

Change-Id: Ic2ab73250b60f1733d2721ebd6d3abae719c5a1f
This commit is contained in:
Navid Afkhami 2025-05-21 16:01:01 +02:00 committed by Ricardo Wurmus
parent 646fef769d
commit d3d157bc61
No known key found for this signature in database
GPG key ID: 197A5888235FACAC

View file

@ -2554,6 +2554,37 @@ forward-mode differentiation, and the two can be composed arbitrarily. The
main intended application of Autograd is gradient-based optimization.")
(license license:expat)))
(define-public python-torchdiffeq
;; There are neither releases nor tags.
(let ((commit "a88aac53cae738addee44251288ce5be9a018af3")
(revision "0"))
(package
(name "python-torchdiffeq")
(version (git-version "0.2.5" revision commit))
(source
(origin
(method git-fetch)
(uri (git-reference
(url "https://github.com/rtqichen/torchdiffeq")
(commit commit)))
(file-name (git-file-name name version))
(sha256
(base32 "0c2zqbdxqvd5abfpk0im6rcy1ij39xvrmixc6l9znb6bhcxk2jra"))))
(build-system pyproject-build-system)
(arguments
(list
#:test-flags
'(list "-k" "not test_seminorm" "tests/run_all.py")))
(propagated-inputs (list python-numpy python-scipy python-pytorch))
(native-inputs (list python-pytest python-setuptools))
(home-page "https://github.com/rtqichen/torchdiffeq")
(synopsis "ODE solvers and adjoint sensitivity analysis in PyTorch")
(description
"This tool provides ordinary differential equation solvers implemented
in PyTorch. Backpropagation through ODE solutions is supported using the
adjoint method for constant memory cost.")
(license license:expat))))
(define-public lightgbm
(package
(name "lightgbm")