1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-13 17:20:21 +02:00

Use handle API, add semispace collector

This commit is contained in:
Andy Wingo 2022-02-28 21:35:28 +01:00
parent 2fdfefd2fc
commit 30b5c8a6c8
4 changed files with 336 additions and 77 deletions

169
GCBench.c
View file

@ -42,17 +42,65 @@
#include <stdlib.h>
#include <sys/time.h>
#ifdef GC_BDW
#include "bdw.h"
#elif defined(GC_SEMI)
#include "semi.h"
#else
#error unknown gc
#endif
static const int kStretchTreeDepth = 18; // about 16Mb
static const int kLongLivedTreeDepth = 16; // about 4Mb
static const int kArraySize = 500000; // about 4Mb
static const int kMinTreeDepth = 4;
static const int kMaxTreeDepth = 16;
typedef struct Node {
GC_HEADER;
struct Node * left;
struct Node * right;
int i, j;
} Node;
#ifdef GC_BDW
#include "bdw.h"
#else
#error unknown gc
#endif
typedef struct DoubleArray {
GC_HEADER;
size_t length;
double values[0];
} DoubleArray;
static inline size_t node_size(void *obj) {
return sizeof(Node);
}
static inline size_t double_array_size(void *obj) {
DoubleArray *array = obj;
return sizeof(*array) + array->length * sizeof(double);
}
static inline void visit_node_fields(struct context *cx, void *obj,
field_visitor visit) {
Node *node = obj;
visit(cx, (void**)&node->left);
visit(cx, (void**)&node->right);
}
static inline void visit_double_array_fields(struct context *cx, void *obj,
field_visitor visit) {
}
typedef HANDLE_TO(Node) NodeHandle;
typedef HANDLE_TO(DoubleArray) DoubleArrayHandle;
static Node* allocate_node(struct context *cx) {
// memset to 0 by the collector.
return allocate(cx, NODE, sizeof (Node));
}
static struct DoubleArray* allocate_double_array(struct context *cx,
size_t size) {
// note, not memset to 0 by the collector.
DoubleArray *ret = allocate(cx, DOUBLE_ARRAY, sizeof (double) * size);
ret->length = size;
return ret;
}
/* Get the current time in milliseconds */
static unsigned currentTime(void)
@ -65,12 +113,6 @@ static unsigned currentTime(void)
return (t.tv_sec * 1000 + t.tv_usec / 1000);
}
static const int kStretchTreeDepth = 18; // about 16Mb
static const int kLongLivedTreeDepth = 16; // about 4Mb
static const int kArraySize = 500000; // about 4Mb
static const int kMinTreeDepth = 4;
static const int kMaxTreeDepth = 16;
void init_Node(Node *me, Node *l, Node *r) {
init_field((void**)&me->left, l);
init_field((void**)&me->right, r);
@ -87,57 +129,57 @@ static int NumIters(int i) {
}
// Build tree top down, assigning to older objects.
static void Populate(int iDepth, Node *node) {
static void Populate(struct context *cx, int iDepth, Node *node) {
if (iDepth<=0) {
return;
} else {
iDepth--;
NodeHandle self = { node };
PUSH_HANDLE(self);
NodeHandle l = { allocate_node() };
PUSH_HANDLE(l);
NodeHandle r = { allocate_node() };
PUSH_HANDLE(r);
PUSH_HANDLE(cx, self);
NodeHandle l = { allocate_node(cx) };
PUSH_HANDLE(cx, l);
NodeHandle r = { allocate_node(cx) };
PUSH_HANDLE(cx, r);
set_field((void**)&HANDLE_REF(self)->left, HANDLE_REF(l));
set_field((void**)&HANDLE_REF(self)->right, HANDLE_REF(r));
Populate (iDepth, HANDLE_REF(self)->left);
Populate (iDepth, HANDLE_REF(self)->right);
POP_HANDLE(r);
POP_HANDLE(l);
POP_HANDLE(self);
Populate (cx, iDepth, HANDLE_REF(self)->left);
Populate (cx, iDepth, HANDLE_REF(self)->right);
POP_HANDLE(cx, r);
POP_HANDLE(cx, l);
POP_HANDLE(cx, self);
}
}
// Build tree bottom-up
static Node* MakeTree(int iDepth) {
static Node* MakeTree(struct context *cx, int iDepth) {
if (iDepth<=0) {
return allocate_node();
return allocate_node(cx);
} else {
NodeHandle left = { MakeTree(iDepth-1) };
PUSH_HANDLE(left);
NodeHandle right = { MakeTree(iDepth-1) };
PUSH_HANDLE(right);
Node *result = allocate_node();
NodeHandle left = { MakeTree(cx, iDepth-1) };
PUSH_HANDLE(cx, left);
NodeHandle right = { MakeTree(cx, iDepth-1) };
PUSH_HANDLE(cx, right);
Node *result = allocate_node(cx);
init_Node(result, HANDLE_REF(left), HANDLE_REF(right));
POP_HANDLE(left);
POP_HANDLE(right);
POP_HANDLE(cx, right);
POP_HANDLE(cx, left);
return result;
}
}
static void TimeConstruction(int depth) {
static void TimeConstruction(struct context *cx, int depth) {
int iNumIters = NumIters(depth);
NodeHandle tempTree = { NULL };
PUSH_HANDLE(tempTree);
PUSH_HANDLE(cx, tempTree);
printf("Creating %d trees of depth %d\n", iNumIters, depth);
{
long tStart = currentTime();
for (int i = 0; i < iNumIters; ++i) {
HANDLE_SET(tempTree, allocate_node());
Populate(depth, HANDLE_REF(tempTree));
HANDLE_SET(tempTree, allocate_node(cx));
Populate(cx, depth, HANDLE_REF(tempTree));
HANDLE_SET(tempTree, NULL);
}
long tFinish = currentTime();
@ -148,7 +190,7 @@ static void TimeConstruction(int depth) {
{
long tStart = currentTime();
for (int i = 0; i < iNumIters; ++i) {
HANDLE_SET(tempTree, MakeTree(depth));
HANDLE_SET(tempTree, MakeTree(cx, depth));
HANDLE_SET(tempTree, NULL);
}
long tFinish = currentTime();
@ -156,54 +198,61 @@ static void TimeConstruction(int depth) {
tFinish - tStart);
}
POP_HANDLE(tempTree);
POP_HANDLE(cx, tempTree);
}
int main() {
size_t kHeapMaxLive =
2 * sizeof(struct Node) * TreeSize(kLongLivedTreeDepth) +
sizeof(double) * kArraySize;
double kHeapMultiplier = 3;
size_t kHeapSize = kHeapMaxLive * kHeapMultiplier;
struct context _cx;
struct context *cx = &_cx;
initialize_gc(cx, kHeapSize);
NodeHandle root = { NULL };
NodeHandle longLivedTree = { NULL };
NodeHandle tempTree = { NULL };
HANDLE_TO(double) array = { NULL };
DoubleArrayHandle array = { NULL };
PUSH_HANDLE(root);
PUSH_HANDLE(longLivedTree);
PUSH_HANDLE(tempTree);
PUSH_HANDLE(array);
initialize_gc();
PUSH_HANDLE(cx, root);
PUSH_HANDLE(cx, longLivedTree);
PUSH_HANDLE(cx, tempTree);
PUSH_HANDLE(cx, array);
printf("Garbage Collector Test\n");
printf(" Live storage will peak at %zd bytes.\n\n",
2 * sizeof(struct Node) * TreeSize(kLongLivedTreeDepth) +
sizeof(double) * kArraySize);
printf(" Live storage will peak at %zd bytes.\n\n", kHeapMaxLive);
printf(" Stretching memory with a binary tree of depth %d\n",
kStretchTreeDepth);
print_start_gc_stats();
print_start_gc_stats(cx);
long tStart = currentTime();
// Stretch the memory space quickly
HANDLE_SET(tempTree, MakeTree(kStretchTreeDepth));
HANDLE_SET(tempTree, MakeTree(cx, kStretchTreeDepth));
HANDLE_SET(tempTree, NULL);
// Create a long lived object
printf(" Creating a long-lived binary tree of depth %d\n",
kLongLivedTreeDepth);
HANDLE_SET(longLivedTree, allocate_node());
Populate(kLongLivedTreeDepth, HANDLE_REF(longLivedTree));
HANDLE_SET(longLivedTree, allocate_node(cx));
Populate(cx, kLongLivedTreeDepth, HANDLE_REF(longLivedTree));
// Create long-lived array, filling half of it
printf(" Creating a long-lived array of %d doubles\n", kArraySize);
HANDLE_SET(array, allocate_double_array(kArraySize));
HANDLE_SET(array, allocate_double_array(cx, kArraySize));
for (int i = 0; i < kArraySize/2; ++i) {
HANDLE_REF(array)[i] = 1.0/i;
HANDLE_REF(array)->values[i] = 1.0/i;
}
for (int d = kMinTreeDepth; d <= kMaxTreeDepth; d += 2) {
TimeConstruction(d);
TimeConstruction(cx, d);
}
if (HANDLE_REF(longLivedTree) == 0 || HANDLE_REF(array)[1000] != 1.0/1000)
if (HANDLE_REF(longLivedTree) == 0
|| HANDLE_REF(array)->values[1000] != 1.0/1000)
fprintf(stderr, "Failed\n");
// fake reference to LongLivedTree
// and array
@ -212,11 +261,11 @@ int main() {
long tFinish = currentTime();
long tElapsed = tFinish - tStart;
printf("Completed in %ld msec\n", tElapsed);
print_end_gc_stats();
print_end_gc_stats(cx);
POP_HANDLE(array);
POP_HANDLE(tempTree);
POP_HANDLE(longLivedTree);
POP_HANDLE(root);
POP_HANDLE(cx, array);
POP_HANDLE(cx, tempTree);
POP_HANDLE(cx, longLivedTree);
POP_HANDLE(cx, root);
}

View file

@ -1,5 +1,5 @@
TESTS=GCBench MT_GCBench MT_GCBench2
COLLECTORS=bdw
COLLECTORS=bdw semi
CC=gcc
CFLAGS=-Wall -O2 -g
@ -11,6 +11,9 @@ all: $(ALL_TESTS)
bdw-%: bdw.h %.c
$(CC) $(CFLAGS) -lpthread `pkg-config --libs --cflags bdw-gc` -I. -DGC_BDW -o $@ $*.c
semi-%: semi.h %.c
$(CC) $(CFLAGS) -I. -DGC_SEMI -o $@ $*.c
check: $(addprefix test-$(TARGET),$(TARGETS))
test-%: $(ALL_TESTS)

46
bdw.h
View file

@ -12,14 +12,24 @@
#include <gc/gc.h>
static Node* allocate_node(void) {
// memset to 0 by the collector.
return GC_malloc (sizeof (Node));
}
struct context {};
static double* allocate_double_array(size_t size) {
// note, not memset to 0 by the collector.
return GC_malloc_atomic (sizeof (double) * size);
enum alloc_kind { NODE, DOUBLE_ARRAY };
typedef void (*field_visitor)(struct context *, void **ref);
#define GC_HEADER /**/
static inline void* allocate(struct context *cx, enum alloc_kind kind,
size_t size) {
// memset to 0 by the collector.
switch (kind) {
case NODE:
return GC_malloc(size);
case DOUBLE_ARRAY:
return GC_malloc_atomic(size);
}
abort();
}
struct handle {
@ -29,15 +39,13 @@ struct handle {
#define HANDLE_TO(T) union { T* v; struct handle handle; }
#define HANDLE_REF(h) h.v
#define HANDLE_SET(h,val) do { h.v = val; } while (0)
#define PUSH_HANDLE(h) push_handle(&h.handle)
#define POP_HANDLE(h) pop_handle(&h.handle)
#define PUSH_HANDLE(cx, h) push_handle(cx, &h.handle)
#define POP_HANDLE(cx, h) pop_handle(cx, &h.handle)
typedef HANDLE_TO(Node) NodeHandle;
static inline void push_handle(struct handle *handle) {
static inline void push_handle(struct context *cx, struct handle *handle) {
}
static inline void pop_handle(struct handle *handle) {
static inline void pop_handle(struct context *cx, struct handle *handle) {
}
static inline void init_field(void **addr, void *val) {
@ -50,16 +58,22 @@ static inline void* get_field(void **addr) {
return *addr;
}
static inline void initialize_gc(void) {
static inline void initialize_gc(struct context* cx, size_t heap_size) {
// GC_full_freq = 30;
// GC_free_space_divisor = 16;
// GC_enable_incremental();
GC_INIT();
size_t current_heap_size = GC_get_heap_size();
if (heap_size > current_heap_size) {
GC_set_max_heap_size (heap_size);
GC_expand_hp(heap_size - current_heap_size);
}
}
static inline void print_start_gc_stats(void) {
static inline void print_start_gc_stats(struct context *cx) {
}
static inline void print_end_gc_stats(void) {
static inline void print_end_gc_stats(struct context *cx) {
printf("Completed %ld collections\n", (long)GC_get_gc_no());
printf("Heap size is %ld\n", (long)GC_get_heap_size());
}

193
semi.h Normal file
View file

@ -0,0 +1,193 @@
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
struct handle {
void *v;
struct handle *next;
};
struct context {
uintptr_t hp;
uintptr_t limit;
uintptr_t base;
size_t size;
struct handle *roots;
long count;
};
static const uintptr_t ALIGNMENT = 8;
static uintptr_t align_up(uintptr_t addr, size_t align) {
return (addr + align - 1) & ~(align-1);
}
#define GC_HEADER uintptr_t _gc_header
enum alloc_kind { NODE, DOUBLE_ARRAY };
typedef void (*field_visitor)(struct context *, void **ref);
static inline size_t node_size(void *obj) __attribute__((always_inline));
static inline size_t double_array_size(void *obj) __attribute__((always_inline));
static inline void visit_node_fields(struct context *cx, void *obj, field_visitor visit) __attribute__((always_inline));
static inline void visit_double_array_fields(struct context *cx, void *obj, field_visitor visit) __attribute__((always_inline));
static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static void collect(struct context *cx, size_t bytes) __attribute__((noinline));
static void process(struct context *cx, void **loc);
static void flip(struct context *cx) {
uintptr_t split = cx->base + (cx->size >> 1);
if (cx->hp <= split) {
cx->hp = split;
cx->limit = cx->base + cx->size;
} else {
cx->hp = cx->base;
cx->limit = split;
}
cx->count++;
}
static void* copy(struct context *cx, uintptr_t kind, void *obj) {
size_t size;
switch (kind) {
case NODE:
size = node_size(obj);
break;
case DOUBLE_ARRAY:
size = double_array_size(obj);
break;
default:
abort ();
}
void *new_obj = (void*)cx->hp;
memcpy(new_obj, obj, size);
*(uintptr_t*) obj = cx->hp;
cx->hp += align_up (size, ALIGNMENT);
return new_obj;
}
static uintptr_t scan(struct context *cx, uintptr_t grey) {
void *obj = (void*)grey;
uintptr_t kind = *(uintptr_t*) obj;
switch (kind) {
case NODE:
visit_node_fields(cx, obj, process);
return grey + align_up (node_size(obj), ALIGNMENT);
break;
case DOUBLE_ARRAY:
visit_double_array_fields(cx, obj, process);
return grey + align_up (double_array_size(obj), ALIGNMENT);
break;
default:
abort ();
}
}
static void* forward(struct context *cx, void *obj) {
uintptr_t header_word = *(uintptr_t*)obj;
switch (header_word) {
case NODE:
case DOUBLE_ARRAY:
return copy(cx, header_word, obj);
default:
return (void*)header_word;
}
}
static void process(struct context *cx, void **loc) {
void *obj = *loc;
if (obj != NULL)
*loc = forward(cx, obj);
}
static void collect(struct context *cx, size_t bytes) {
// fprintf(stderr, "start collect #%ld:\n", cx->count);
flip(cx);
uintptr_t grey = cx->hp;
for (struct handle *h = cx->roots; h; h = h->next)
process(cx, &h->v);
// fprintf(stderr, "pushed %zd bytes in roots\n", cx->hp - grey);
while(grey < cx->hp)
grey = scan(cx, grey);
// fprintf(stderr, "%zd bytes copied\n", (cx->size>>1)-(cx->limit-cx->hp));
if (cx->limit - cx->hp < bytes) {
fprintf(stderr, "ran out of space, heap size %zu\n", cx->size);
abort();
}
}
static inline void* allocate(struct context *cx, enum alloc_kind kind,
size_t size) {
while (1) {
uintptr_t addr = cx->hp;
uintptr_t new_hp = align_up (addr + size, ALIGNMENT);
if (cx->limit < new_hp) {
collect(cx, size);
continue;
}
cx->hp = new_hp;
void *ret = (void *)addr;
uintptr_t *header_word = ret;
*header_word = kind;
if (kind == NODE)
clear_memory(addr + sizeof(uintptr_t), size - sizeof(uintptr_t));
return ret;
}
}
#define HANDLE_TO(T) union { T* v; struct handle handle; }
#define HANDLE_REF(h) h.v
#define HANDLE_SET(h,val) do { h.v = val; } while (0)
#define PUSH_HANDLE(cx, h) push_handle(cx, &h.handle)
#define POP_HANDLE(cx, h) pop_handle(cx, &h.handle)
static inline void push_handle(struct context *cx, struct handle *handle) {
handle->next = cx->roots;
cx->roots = handle;
}
static inline void pop_handle(struct context *cx, struct handle *handle) {
cx->roots = handle->next;
}
static inline void init_field(void **addr, void *val) {
*addr = val;
}
static inline void set_field(void **addr, void *val) {
*addr = val;
}
static inline void* get_field(void **addr) {
return *addr;
}
static inline void initialize_gc(struct context *cx, size_t size) {
size = align_up(size, getpagesize());
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
abort();
}
cx->hp = cx->base = (uintptr_t) mem;
cx->size = size;
cx->count = -1;
flip(cx);
cx->roots = NULL;
}
static inline void print_start_gc_stats(struct context *cx) {
}
static inline void print_end_gc_stats(struct context *cx) {
printf("Completed %ld collections\n", cx->count);
printf("Heap size is %zd\n", cx->size);
}