1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-11 00:00:49 +02:00

Remove gcbench in favor of mt-gcbench. Update quads

This commit is contained in:
Andy Wingo 2022-03-29 14:58:54 +02:00
parent 5522d827e3
commit d879a01913
4 changed files with 23 additions and 310 deletions

View file

@ -1,4 +1,4 @@
TESTS=gcbench quads mt-gcbench # MT_GCBench MT_GCBench2
TESTS=quads mt-gcbench # MT_GCBench MT_GCBench2
COLLECTORS=bdw semi mark-sweep parallel-mark-sweep
CC=gcc

294
gcbench.c
View file

@ -1,294 +0,0 @@
// This is adapted from a benchmark written by John Ellis and Pete Kovac
// of Post Communications.
// It was modified by Hans Boehm of Silicon Graphics.
// Translated to C++ 30 May 1997 by William D Clinger of Northeastern Univ.
// Translated to C 15 March 2000 by Hans Boehm, now at HP Labs.
//
// This is no substitute for real applications. No actual application
// is likely to behave in exactly this way. However, this benchmark was
// designed to be more representative of real applications than other
// Java GC benchmarks of which we are aware.
// It attempts to model those properties of allocation requests that
// are important to current GC techniques.
// It is designed to be used either to obtain a single overall performance
// number, or to give a more detailed estimate of how collector
// performance varies with object lifetimes. It prints the time
// required to allocate and collect balanced binary trees of various
// sizes. Smaller trees result in shorter object lifetimes. Each cycle
// allocates roughly the same amount of memory.
// Two data structures are kept around during the entire process, so
// that the measured performance is representative of applications
// that maintain some live in-memory data. One of these is a tree
// containing many pointers. The other is a large array containing
// double precision floating point numbers. Both should be of comparable
// size.
//
// The results are only really meaningful together with a specification
// of how much memory was used. It is possible to trade memory for
// better time performance. This benchmark should be run in a 32 MB
// heap, though we don't currently know how to enforce that uniformly.
//
// Unlike the original Ellis and Kovac benchmark, we do not attempt
// measure pause times. This facility should eventually be added back
// in. There are several reasons for omitting it for now. The original
// implementation depended on assumptions about the thread scheduler
// that don't hold uniformly. The results really measure both the
// scheduler and GC. Pause time measurements tend to not fit well with
// current benchmark suites. As far as we know, none of the current
// commercial Java implementations seriously attempt to minimize GC pause
// times.
#include <stdio.h>
#include <stdlib.h>
#include <sys/time.h>
#include "assert.h"
#include "gcbench-types.h"
#include "gc.h"
static const int long_lived_tree_depth = 16; // about 4Mb
static const int array_size = 500000; // about 4Mb
static const int min_tree_depth = 4;
static const int max_tree_depth = 16;
struct Node {
GC_HEADER;
struct Node * left;
struct Node * right;
int i, j;
};
struct DoubleArray {
GC_HEADER;
size_t length;
double values[0];
};
static inline size_t node_size(Node *obj) {
return sizeof(Node);
}
static inline size_t double_array_size(DoubleArray *array) {
return sizeof(*array) + array->length * sizeof(double);
}
static inline void
visit_node_fields(Node *node,
void (*visit)(void **loc, void *visit_data),
void *visit_data) {
visit((void**)&node->left, visit_data);
visit((void**)&node->right, visit_data);
}
static inline void
visit_double_array_fields(DoubleArray *obj,
void (*visit)(void **loc, void *visit_data),
void *visit_data) {
}
typedef HANDLE_TO(Node) NodeHandle;
typedef HANDLE_TO(DoubleArray) DoubleArrayHandle;
static Node* allocate_node(struct context *cx) {
// memset to 0 by the collector.
return allocate(cx, ALLOC_KIND_NODE, sizeof (Node));
}
static DoubleArray* allocate_double_array(struct context *cx,
size_t size) {
// May be uninitialized.
DoubleArray *ret =
allocate_pointerless(cx, ALLOC_KIND_DOUBLE_ARRAY,
sizeof(DoubleArray) + sizeof (double) * size);
ret->length = size;
return ret;
}
static unsigned long current_time(void)
{
struct timeval t = { 0 };
gettimeofday(&t, NULL);
return t.tv_sec * 1000 * 1000 + t.tv_usec;
}
static double elapsed_millis(unsigned long start) {
return (current_time() - start) * 1e-3;
}
// Nodes used by a tree of a given size
static int tree_size(int i) {
return ((1 << (i + 1)) - 1);
}
// Number of iterations to use for a given tree depth
static int compute_num_iters(int i) {
return 2 * tree_size(max_tree_depth + 2) / tree_size(i);
}
// Build tree top down, assigning to older objects.
static void populate(struct context *cx, int depth, Node *node) {
if (depth <= 0)
return;
NodeHandle self = { node };
PUSH_HANDLE(cx, self);
NodeHandle l = { allocate_node(cx) };
PUSH_HANDLE(cx, l);
NodeHandle r = { allocate_node(cx) };
PUSH_HANDLE(cx, r);
set_field((void**)&HANDLE_REF(self)->left, HANDLE_REF(l));
set_field((void**)&HANDLE_REF(self)->right, HANDLE_REF(r));
populate(cx, depth-1, HANDLE_REF(self)->left);
populate(cx, depth-1, HANDLE_REF(self)->right);
POP_HANDLE(cx);
POP_HANDLE(cx);
POP_HANDLE(cx);
}
// Build tree bottom-up
static Node* make_tree(struct context *cx, int depth) {
if (depth <= 0)
return allocate_node(cx);
NodeHandle left = { make_tree(cx, depth-1) };
PUSH_HANDLE(cx, left);
NodeHandle right = { make_tree(cx, depth-1) };
PUSH_HANDLE(cx, right);
Node *result = allocate_node(cx);
init_field((void**)&result->left, HANDLE_REF(left));
init_field((void**)&result->right, HANDLE_REF(right));
POP_HANDLE(cx);
POP_HANDLE(cx);
return result;
}
static void validate_tree(Node *tree, int depth) {
#ifndef NDEBUG
ASSERT_EQ(tree->i, 0);
ASSERT_EQ(tree->j, 0);
if (depth == 0) {
ASSERT(!tree->left);
ASSERT(!tree->right);
} else {
ASSERT(tree->left);
ASSERT(tree->right);
validate_tree(tree->left, depth - 1);
validate_tree(tree->right, depth - 1);
}
#endif
}
static void time_construction(struct context *cx, int depth) {
int num_iters = compute_num_iters(depth);
NodeHandle temp_tree = { NULL };
PUSH_HANDLE(cx, temp_tree);
printf("Creating %d trees of depth %d\n", num_iters, depth);
{
unsigned long start = current_time();
for (int i = 0; i < num_iters; ++i) {
HANDLE_SET(temp_tree, allocate_node(cx));
populate(cx, depth, HANDLE_REF(temp_tree));
validate_tree(HANDLE_REF(temp_tree), depth);
HANDLE_SET(temp_tree, NULL);
}
printf("\tTop down construction took %.3f msec\n",
elapsed_millis(start));
}
{
long start = current_time();
for (int i = 0; i < num_iters; ++i) {
HANDLE_SET(temp_tree, make_tree(cx, depth));
validate_tree(HANDLE_REF(temp_tree), depth);
HANDLE_SET(temp_tree, NULL);
}
printf("\tBottom up construction took %.3f msec\n",
elapsed_millis(start));
}
POP_HANDLE(cx);
}
int main(int argc, char *argv[]) {
// Define size of Node without any GC header.
size_t sizeof_node = 2 * sizeof(Node*) + 2 * sizeof(int);
size_t sizeof_double_array = sizeof(size_t);
size_t heap_max_live =
tree_size(long_lived_tree_depth) * sizeof_node +
tree_size(max_tree_depth) * sizeof_node +
sizeof_double_array + sizeof(double) * array_size;
if (argc != 2) {
fprintf(stderr, "usage: %s MULTIPLIER\n", argv[0]);
return 1;
}
double multiplier = atof(argv[1]);
if (!(1.0 < multiplier && multiplier < 100)) {
fprintf(stderr, "Failed to parse heap multiplier '%s'\n", argv[2]);
return 1;
}
size_t heap_size = heap_max_live * multiplier;
struct context *cx = initialize_gc(heap_size);
if (!cx) {
fprintf(stderr, "Failed to initialize GC with heap size %zu bytes\n",
heap_size);
return 1;
}
NodeHandle root = { NULL };
NodeHandle long_lived_tree = { NULL };
NodeHandle temp_tree = { NULL };
DoubleArrayHandle array = { NULL };
PUSH_HANDLE(cx, root);
PUSH_HANDLE(cx, long_lived_tree);
PUSH_HANDLE(cx, temp_tree);
PUSH_HANDLE(cx, array);
printf("Garbage Collector Test\n");
printf(" Live storage will peak at %zd bytes.\n\n", heap_max_live);
print_start_gc_stats(cx);
unsigned long start = current_time();
// Create a long lived object
printf(" Creating a long-lived binary tree of depth %d\n",
long_lived_tree_depth);
HANDLE_SET(long_lived_tree, allocate_node(cx));
populate(cx, long_lived_tree_depth, HANDLE_REF(long_lived_tree));
// Create long-lived array, filling half of it
printf(" Creating a long-lived array of %d doubles\n", array_size);
HANDLE_SET(array, allocate_double_array(cx, array_size));
for (int i = 0; i < array_size/2; ++i) {
HANDLE_REF(array)->values[i] = 1.0/i;
}
for (int d = min_tree_depth; d <= max_tree_depth; d += 2) {
time_construction(cx, d);
}
validate_tree(HANDLE_REF(long_lived_tree), long_lived_tree_depth);
// Fake reference to LongLivedTree and array to keep them from being optimized
// away.
if (HANDLE_REF(long_lived_tree) == 0
|| HANDLE_REF(array)->values[1000] != 1.0/1000)
fprintf(stderr, "Failed\n");
printf("Completed in %.3f msec\n", elapsed_millis(start));
print_end_gc_stats(cx);
POP_HANDLE(cx);
POP_HANDLE(cx);
POP_HANDLE(cx);
POP_HANDLE(cx);
}

View file

@ -1,3 +1,4 @@
#include <pthread.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>

36
quads.c
View file

@ -22,9 +22,9 @@ visit_quad_fields(Quad *quad,
}
typedef HANDLE_TO(Quad) QuadHandle;
static Quad* allocate_quad(struct context *cx) {
static Quad* allocate_quad(struct mutator *mut) {
// memset to 0 by the collector.
return allocate(cx, ALLOC_KIND_QUAD, sizeof (Quad));
return allocate(mut, ALLOC_KIND_QUAD, sizeof (Quad));
}
/* Get the current time in microseconds */
@ -37,22 +37,22 @@ static unsigned long current_time(void)
}
// Build tree bottom-up
static Quad* make_tree(struct context *cx, int depth) {
static Quad* make_tree(struct mutator *mut, int depth) {
if (depth<=0) {
return allocate_quad(cx);
return allocate_quad(mut);
} else {
QuadHandle kids[4] = { { NULL }, };
for (size_t i = 0; i < 4; i++) {
HANDLE_SET(kids[i], make_tree(cx, depth-1));
PUSH_HANDLE(cx, kids[i]);
HANDLE_SET(kids[i], make_tree(mut, depth-1));
PUSH_HANDLE(mut, kids[i]);
}
Quad *result = allocate_quad(cx);
Quad *result = allocate_quad(mut);
for (size_t i = 0; i < 4; i++)
init_field((void**)&result->kids[i], HANDLE_REF(kids[i]));
for (size_t i = 0; i < 4; i++)
POP_HANDLE(cx);
POP_HANDLE(mut);
return result;
}
@ -127,18 +127,24 @@ int main(int argc, char *argv[]) {
unsigned long gc_start = current_time();
printf("Allocating heap of %.3fGB (%.2f multiplier of live data).\n",
heap_size / 1e9, multiplier);
struct context *cx = initialize_gc(heap_size);
struct heap *heap;
struct mutator *mut;
if (!initialize_gc(heap_size, &heap, &mut)) {
fprintf(stderr, "Failed to initialize GC with heap size %zu bytes\n",
heap_size);
return 1;
}
QuadHandle quad = { NULL };
PUSH_HANDLE(cx, quad);
PUSH_HANDLE(mut, quad);
print_start_gc_stats(cx);
print_start_gc_stats(heap);
printf("Making quad tree of depth %zu (%zu nodes). Total size %.3fGB.\n",
depth, nquads, (nquads * sizeof(Quad)) / 1e9);
unsigned long start = current_time();
HANDLE_SET(quad, make_tree(cx, depth));
HANDLE_SET(quad, make_tree(mut, depth));
print_elapsed("construction", start);
validate_tree(HANDLE_REF(quad), depth);
@ -151,7 +157,7 @@ int main(int argc, char *argv[]) {
size_t garbage_depth = 3;
start = current_time();
for (size_t i = garbage_step/(tree_size(garbage_depth)*4*sizeof(Quad*)); i; i--)
make_tree(cx, garbage_depth);
make_tree(mut, garbage_depth);
print_elapsed("allocating garbage", start);
start = current_time();
@ -160,9 +166,9 @@ int main(int argc, char *argv[]) {
print_elapsed("allocation loop", garbage_start);
print_elapsed("quads test", gc_start);
print_end_gc_stats(cx);
print_end_gc_stats(heap);
POP_HANDLE(cx);
POP_HANDLE(mut);
return 0;
}