1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-13 01:00:21 +02:00
guile/mark-sweep.h

831 lines
27 KiB
C

#include <pthread.h>
#include <stdatomic.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#include "assert.h"
#include "debug.h"
#include "inline.h"
#include "precise-roots.h"
#ifdef GC_PARALLEL_MARK
#include "parallel-marker.h"
#else
#include "serial-marker.h"
#endif
#define GRANULE_SIZE 8
#define GRANULE_SIZE_LOG_2 3
#define LARGE_OBJECT_THRESHOLD 256
#define LARGE_OBJECT_GRANULE_THRESHOLD 32
STATIC_ASSERT_EQ(GRANULE_SIZE, 1 << GRANULE_SIZE_LOG_2);
STATIC_ASSERT_EQ(LARGE_OBJECT_THRESHOLD,
LARGE_OBJECT_GRANULE_THRESHOLD * GRANULE_SIZE);
// There are small object pages for allocations of these sizes.
#define FOR_EACH_SMALL_OBJECT_GRANULES(M) \
M(1) M(2) M(3) M(4) M(5) M(6) M(8) M(10) M(16) M(32)
enum small_object_size {
#define SMALL_OBJECT_GRANULE_SIZE(i) SMALL_OBJECT_##i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
SMALL_OBJECT_SIZES,
NOT_SMALL_OBJECT = SMALL_OBJECT_SIZES
};
static const uint8_t small_object_granule_sizes[] =
{
#define SMALL_OBJECT_GRANULE_SIZE(i) i,
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE)
#undef SMALL_OBJECT_GRANULE_SIZE
};
static const enum small_object_size small_object_sizes_for_granules[LARGE_OBJECT_GRANULE_THRESHOLD + 2] = {
SMALL_OBJECT_1, SMALL_OBJECT_1, SMALL_OBJECT_2, SMALL_OBJECT_3,
SMALL_OBJECT_4, SMALL_OBJECT_5, SMALL_OBJECT_6, SMALL_OBJECT_8,
SMALL_OBJECT_8, SMALL_OBJECT_10, SMALL_OBJECT_10, SMALL_OBJECT_16,
SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16, SMALL_OBJECT_16,
SMALL_OBJECT_16, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32, SMALL_OBJECT_32,
SMALL_OBJECT_32, NOT_SMALL_OBJECT
};
static enum small_object_size granules_to_small_object_size(unsigned granules) {
ASSERT(granules <= LARGE_OBJECT_GRANULE_THRESHOLD);
return small_object_sizes_for_granules[granules];
}
static uintptr_t align_up(uintptr_t addr, size_t align) {
return (addr + align - 1) & ~(align-1);
}
static inline size_t size_to_granules(size_t size) {
return (size + GRANULE_SIZE - 1) >> GRANULE_SIZE_LOG_2;
}
// Alloc kind is in bits 0-7, for live objects.
static const uintptr_t gcobj_alloc_kind_mask = 0xff;
static const uintptr_t gcobj_alloc_kind_shift = 0;
static inline uint8_t tag_live_alloc_kind(uintptr_t tag) {
return (tag >> gcobj_alloc_kind_shift) & gcobj_alloc_kind_mask;
}
static inline uintptr_t tag_live(uint8_t alloc_kind) {
return ((uintptr_t)alloc_kind << gcobj_alloc_kind_shift);
}
struct gcobj_free {
struct gcobj_free *next;
};
struct gcobj_freelists {
struct gcobj_free *by_size[SMALL_OBJECT_SIZES];
};
// Objects larger than LARGE_OBJECT_GRANULE_THRESHOLD.
struct gcobj_free_large {
struct gcobj_free_large *next;
size_t granules;
};
struct gcobj {
union {
uintptr_t tag;
struct gcobj_free free;
struct gcobj_free_large free_large;
uintptr_t words[0];
void *pointers[0];
};
};
struct mark_space {
pthread_mutex_t lock;
pthread_cond_t collector_cond;
pthread_cond_t mutator_cond;
int collecting;
int multithreaded;
size_t active_mutator_count;
size_t mutator_count;
struct gcobj_freelists small_objects;
// Unordered list of large objects.
struct gcobj_free_large *large_objects;
uintptr_t base;
uint8_t *mark_bytes;
uintptr_t heap_base;
size_t heap_size;
uintptr_t sweep;
struct handle *global_roots;
struct mutator_mark_buf *mutator_roots;
void *mem;
size_t mem_size;
long count;
struct marker marker;
};
struct heap {
struct mark_space mark_space;
};
struct mutator_mark_buf {
struct mutator_mark_buf *next;
size_t size;
size_t capacity;
struct gcobj **objects;
};
struct mutator {
// Segregated freelists of small objects.
struct gcobj_freelists small_objects;
struct heap *heap;
struct handle *roots;
struct mutator_mark_buf mark_buf;
};
static inline struct marker* mark_space_marker(struct mark_space *space) {
return &space->marker;
}
static inline struct mark_space* heap_mark_space(struct heap *heap) {
return &heap->mark_space;
}
static inline struct heap* mutator_heap(struct mutator *mutator) {
return mutator->heap;
}
static inline struct mark_space* mutator_mark_space(struct mutator *mutator) {
return heap_mark_space(mutator_heap(mutator));
}
static inline struct gcobj_free**
get_small_object_freelist(struct gcobj_freelists *freelists,
enum small_object_size kind) {
ASSERT(kind < SMALL_OBJECT_SIZES);
return &freelists->by_size[kind];
}
#define GC_HEADER uintptr_t _gc_header
static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static void collect(struct mark_space *space, struct mutator *mut) NEVER_INLINE;
static inline uint8_t* mark_byte(struct mark_space *space, struct gcobj *obj) {
ASSERT(space->heap_base <= (uintptr_t) obj);
ASSERT((uintptr_t) obj < space->heap_base + space->heap_size);
uintptr_t granule = (((uintptr_t) obj) - space->heap_base) / GRANULE_SIZE;
return &space->mark_bytes[granule];
}
static inline int mark_object(struct mark_space *space, struct gcobj *obj) {
uint8_t *byte = mark_byte(space, obj);
if (*byte)
return 0;
*byte = 1;
return 1;
}
static inline void trace_one(struct gcobj *obj, void *mark_data) {
switch (tag_live_alloc_kind(obj->tag)) {
#define SCAN_OBJECT(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
visit_##name##_fields((Name*)obj, marker_visit, mark_data); \
break;
FOR_EACH_HEAP_OBJECT_KIND(SCAN_OBJECT)
#undef SCAN_OBJECT
default:
abort ();
}
}
static void clear_small_freelists(struct gcobj_freelists *small) {
for (int i = 0; i < SMALL_OBJECT_SIZES; i++)
small->by_size[i] = NULL;
}
static void clear_mutator_freelists(struct mutator *mut) {
clear_small_freelists(&mut->small_objects);
}
static void clear_global_freelists(struct mark_space *space) {
clear_small_freelists(&space->small_objects);
space->large_objects = NULL;
}
static int space_has_multiple_mutators(struct mark_space *space) {
return atomic_load_explicit(&space->multithreaded, memory_order_relaxed);
}
static int mutators_are_stopping(struct mark_space *space) {
return atomic_load_explicit(&space->collecting, memory_order_relaxed);
}
static inline void mark_space_lock(struct mark_space *space) {
pthread_mutex_lock(&space->lock);
}
static inline void mark_space_unlock(struct mark_space *space) {
pthread_mutex_unlock(&space->lock);
}
static void add_mutator(struct heap *heap, struct mutator *mut) {
mut->heap = heap;
struct mark_space *space = heap_mark_space(heap);
mark_space_lock(space);
// We have no roots. If there is a GC currently in progress, we have
// nothing to add. Just wait until it's done.
while (mutators_are_stopping(space))
pthread_cond_wait(&space->mutator_cond, &space->lock);
if (space->mutator_count == 1)
space->multithreaded = 1;
space->active_mutator_count++;
space->mutator_count++;
mark_space_unlock(space);
}
static void remove_mutator(struct heap *heap, struct mutator *mut) {
mut->heap = NULL;
struct mark_space *space = heap_mark_space(heap);
mark_space_lock(space);
space->active_mutator_count--;
space->mutator_count--;
// We have no roots. If there is a GC stop currently in progress,
// maybe tell the controller it can continue.
if (mutators_are_stopping(space) && space->active_mutator_count == 0)
pthread_cond_signal(&space->collector_cond);
mark_space_unlock(space);
}
static void request_mutators_to_stop(struct mark_space *space) {
ASSERT(!mutators_are_stopping(space));
atomic_store_explicit(&space->collecting, 1, memory_order_relaxed);
}
static void allow_mutators_to_continue(struct mark_space *space) {
ASSERT(mutators_are_stopping(space));
ASSERT(space->active_mutator_count == 0);
space->active_mutator_count++;
atomic_store_explicit(&space->collecting, 0, memory_order_relaxed);
ASSERT(!mutators_are_stopping(space));
pthread_cond_broadcast(&space->mutator_cond);
}
static void mutator_mark_buf_grow(struct mutator_mark_buf *buf) {
size_t old_capacity = buf->capacity;
size_t old_bytes = old_capacity * sizeof(struct gcobj*);
size_t new_bytes = old_bytes ? old_bytes * 2 : getpagesize();
size_t new_capacity = new_bytes / sizeof(struct gcobj*);
void *mem = mmap(NULL, new_bytes, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("allocating mutator mark buffer failed");
abort();
}
if (old_bytes) {
memcpy(mem, buf->objects, old_bytes);
munmap(buf->objects, old_bytes);
}
buf->objects = mem;
buf->capacity = new_capacity;
}
static void mutator_mark_buf_push(struct mutator_mark_buf *buf,
struct gcobj *val) {
if (UNLIKELY(buf->size == buf->capacity))
mutator_mark_buf_grow(buf);
buf->objects[buf->size++] = val;
}
static void mutator_mark_buf_release(struct mutator_mark_buf *buf) {
size_t bytes = buf->size * sizeof(struct gcobj*);
if (bytes >= getpagesize())
madvise(buf->objects, align_up(bytes, getpagesize()), MADV_DONTNEED);
buf->size = 0;
}
static void mutator_mark_buf_destroy(struct mutator_mark_buf *buf) {
size_t bytes = buf->capacity * sizeof(struct gcobj*);
if (bytes)
munmap(buf->objects, bytes);
}
// Mark the roots of a mutator that is stopping for GC. We can't
// enqueue them directly, so we send them to the controller in a buffer.
static void mark_stopping_mutator_roots(struct mutator *mut) {
struct mark_space *space = mutator_mark_space(mut);
struct mutator_mark_buf *local_roots = &mut->mark_buf;
for (struct handle *h = mut->roots; h; h = h->next) {
struct gcobj *root = h->v;
if (root && mark_object(space, root))
mutator_mark_buf_push(local_roots, root);
}
// Post to global linked-list of thread roots.
struct mutator_mark_buf *next =
atomic_load_explicit(&space->mutator_roots, memory_order_acquire);
do {
local_roots->next = next;
} while (!atomic_compare_exchange_weak(&space->mutator_roots,
&next, local_roots));
}
// Mark the roots of the mutator that causes GC.
static void mark_controlling_mutator_roots(struct mutator *mut) {
struct mark_space *space = mutator_mark_space(mut);
for (struct handle *h = mut->roots; h; h = h->next) {
struct gcobj *root = h->v;
if (root && mark_object(space, root))
marker_enqueue_root(&space->marker, root);
}
}
static void release_stopping_mutator_roots(struct mutator *mut) {
mutator_mark_buf_release(&mut->mark_buf);
}
static void wait_for_mutators_to_stop(struct mark_space *space) {
space->active_mutator_count--;
while (space->active_mutator_count)
pthread_cond_wait(&space->collector_cond, &space->lock);
}
static void mark_global_roots(struct mark_space *space) {
for (struct handle *h = space->global_roots; h; h = h->next) {
struct gcobj *obj = h->v;
if (obj && mark_object(space, obj))
marker_enqueue_root(&space->marker, obj);
}
struct mutator_mark_buf *roots = atomic_load(&space->mutator_roots);
for (; roots; roots = roots->next)
marker_enqueue_roots(&space->marker, roots->objects, roots->size);
atomic_store(&space->mutator_roots, NULL);
}
static void pause_mutator_for_collection(struct mutator *mut) NEVER_INLINE;
static void pause_mutator_for_collection(struct mutator *mut) {
struct mark_space *space = mutator_mark_space(mut);
ASSERT(mutators_are_stopping(space));
mark_stopping_mutator_roots(mut);
mark_space_lock(space);
ASSERT(space->active_mutator_count);
space->active_mutator_count--;
if (space->active_mutator_count == 0)
pthread_cond_signal(&space->collector_cond);
// Go to sleep and wake up when the collector is done. Note,
// however, that it may be that some other mutator manages to
// trigger collection before we wake up. In that case we need to
// mark roots, not just sleep again. To detect a wakeup on this
// collection vs a future collection, we use the global GC count.
// This is safe because the count is protected by the space lock,
// which we hold.
long epoch = space->count;
do
pthread_cond_wait(&space->mutator_cond, &space->lock);
while (mutators_are_stopping(space) && space->count == epoch);
space->active_mutator_count++;
mark_space_unlock(space);
release_stopping_mutator_roots(mut);
}
static inline void maybe_pause_mutator_for_collection(struct mutator *mut) {
while (mutators_are_stopping(mutator_mark_space(mut)))
pause_mutator_for_collection(mut);
}
static void reset_sweeper(struct mark_space *space) {
space->sweep = space->heap_base;
}
static void collect(struct mark_space *space, struct mutator *mut) {
DEBUG("start collect #%ld:\n", space->count);
marker_prepare(space);
request_mutators_to_stop(space);
mark_controlling_mutator_roots(mut);
wait_for_mutators_to_stop(space);
mark_global_roots(space);
marker_trace(space);
marker_release(space);
clear_global_freelists(space);
reset_sweeper(space);
space->count++;
allow_mutators_to_continue(space);
clear_mutator_freelists(mut);
DEBUG("collect done\n");
}
static void push_free(struct gcobj_free **loc, struct gcobj_free *obj) {
obj->next = *loc;
*loc = obj;
}
static void push_small(struct gcobj_freelists *small_objects, void *region,
enum small_object_size kind, size_t region_granules) {
uintptr_t addr = (uintptr_t) region;
while (region_granules) {
size_t granules = small_object_granule_sizes[kind];
struct gcobj_free **loc = get_small_object_freelist(small_objects, kind);
while (granules <= region_granules) {
push_free(loc, (struct gcobj_free*) addr);
region_granules -= granules;
addr += granules * GRANULE_SIZE;
}
// Fit any remaining granules into smaller freelists.
kind--;
}
}
static void push_large(struct mark_space *space, void *region, size_t granules) {
struct gcobj_free_large *large = region;
large->next = space->large_objects;
large->granules = granules;
space->large_objects = large;
}
static void reclaim(struct mark_space *space,
struct gcobj_freelists *small_objects,
void *obj, size_t granules) {
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
push_small(small_objects, obj, SMALL_OBJECT_SIZES - 1, granules);
else
push_large(space, obj, granules);
}
static void split_large_object(struct mark_space *space,
struct gcobj_freelists *small_objects,
struct gcobj_free_large *large,
size_t granules) {
size_t large_granules = large->granules;
ASSERT(large_granules >= granules);
ASSERT(granules >= LARGE_OBJECT_GRANULE_THRESHOLD);
// Invariant: all words in LARGE are 0 except the two header words.
// LARGE is off the freelist. We return a block of cleared memory, so
// clear those fields now.
large->next = NULL;
large->granules = 0;
if (large_granules == granules)
return;
char *tail = ((char*)large) + granules * GRANULE_SIZE;
reclaim(space, small_objects, tail, large_granules - granules);
}
static void unlink_large_object(struct gcobj_free_large **prev,
struct gcobj_free_large *large) {
*prev = large->next;
}
static size_t live_object_granules(struct gcobj *obj) {
size_t bytes;
switch (tag_live_alloc_kind (obj->tag)) {
#define COMPUTE_SIZE(name, Name, NAME) \
case ALLOC_KIND_##NAME: \
bytes = name##_size((Name*)obj); \
break;
FOR_EACH_HEAP_OBJECT_KIND(COMPUTE_SIZE)
#undef COMPUTE_SIZE
default:
abort ();
}
size_t granules = size_to_granules(bytes);
if (granules > LARGE_OBJECT_GRANULE_THRESHOLD)
return granules;
return small_object_granule_sizes[granules_to_small_object_size(granules)];
}
static size_t next_mark(const uint8_t *mark, size_t limit) {
size_t n = 0;
for (; (((uintptr_t)mark) & 7) && n < limit; n++)
if (mark[n])
return n;
uintptr_t *word_mark = (uintptr_t *)(mark + n);
for (;
n + sizeof(uintptr_t) * 4 <= limit;
n += sizeof(uintptr_t) * 4, word_mark += 4)
if (word_mark[0] | word_mark[1] | word_mark[2] | word_mark[3])
break;
for (;
n + sizeof(uintptr_t) <= limit;
n += sizeof(uintptr_t), word_mark += 1)
if (word_mark[0])
break;
for (; n < limit; n++)
if (mark[n])
return n;
return limit;
}
// Sweep some heap to reclaim free space. Return 1 if there is more
// heap to sweep, or 0 if we reached the end.
static int sweep(struct mark_space *space,
struct gcobj_freelists *small_objects, size_t for_granules) {
// Sweep until we have reclaimed 128 granules (1024 kB), or we reach
// the end of the heap.
ssize_t to_reclaim = 128;
uintptr_t sweep = space->sweep;
uintptr_t limit = space->heap_base + space->heap_size;
if (sweep == limit)
return 0;
while (to_reclaim > 0 && sweep < limit) {
uint8_t* mark = mark_byte(space, (struct gcobj*)sweep);
size_t limit_granules = (limit - sweep) >> GRANULE_SIZE_LOG_2;
if (limit_granules > for_granules)
limit_granules = for_granules;
size_t free_granules = next_mark(mark, limit_granules);
if (free_granules) {
size_t free_bytes = free_granules * GRANULE_SIZE;
clear_memory(sweep + GRANULE_SIZE, free_bytes - GRANULE_SIZE);
reclaim(space, small_objects, (void*)sweep, free_granules);
sweep += free_bytes;
to_reclaim -= free_granules;
mark += free_granules;
if (free_granules == limit_granules)
break;
}
// Object survived collection; clear mark and continue sweeping.
ASSERT(*mark == 1);
*mark = 0;
sweep += live_object_granules((struct gcobj *)sweep) * GRANULE_SIZE;
}
space->sweep = sweep;
return 1;
}
static void* allocate_large(struct mutator *mut, enum alloc_kind kind,
size_t granules) {
struct mark_space *space = mutator_mark_space(mut);
struct gcobj_freelists *small_objects = space_has_multiple_mutators(space) ?
&space->small_objects : &mut->small_objects;
maybe_pause_mutator_for_collection(mut);
mark_space_lock(space);
int swept_from_beginning = 0;
while (1) {
struct gcobj_free_large *already_scanned = NULL;
do {
struct gcobj_free_large **prev = &space->large_objects;
for (struct gcobj_free_large *large = space->large_objects;
large != already_scanned;
prev = &large->next, large = large->next) {
if (large->granules >= granules) {
unlink_large_object(prev, large);
split_large_object(space, small_objects, large, granules);
mark_space_unlock(space);
struct gcobj *obj = (struct gcobj *)large;
obj->tag = tag_live(kind);
return large;
}
}
already_scanned = space->large_objects;
} while (sweep(space, small_objects, granules));
// No large object, and we swept across the whole heap. Collect.
if (swept_from_beginning) {
fprintf(stderr, "ran out of space, heap size %zu\n", space->heap_size);
abort();
} else {
if (mutators_are_stopping(space)) {
mark_space_unlock(space);
pause_mutator_for_collection(mut);
mark_space_lock(space);
} else {
collect(space, mut);
}
swept_from_beginning = 1;
}
}
}
static int fill_small_from_local(struct gcobj_freelists *small_objects,
enum small_object_size kind) {
// Precondition: the freelist for KIND is already empty.
ASSERT(!*get_small_object_freelist(small_objects, kind));
// See if there are small objects already on the freelists
// that can be split.
for (enum small_object_size next_kind = kind + 1;
next_kind < SMALL_OBJECT_SIZES;
next_kind++) {
struct gcobj_free **loc = get_small_object_freelist(small_objects,
next_kind);
if (*loc) {
struct gcobj_free *ret = *loc;
*loc = ret->next;
push_small(small_objects, ret, kind,
small_object_granule_sizes[next_kind]);
return 1;
}
}
return 0;
}
// with space lock
static int fill_small_from_large(struct mark_space *space,
struct gcobj_freelists *small_objects,
enum small_object_size kind) {
// If there is a large object, take and split it.
struct gcobj_free_large *large = space->large_objects;
if (!large)
return 0;
unlink_large_object(&space->large_objects, large);
ASSERT(large->granules >= LARGE_OBJECT_GRANULE_THRESHOLD);
split_large_object(space, small_objects, large,
LARGE_OBJECT_GRANULE_THRESHOLD);
push_small(small_objects, large, kind, LARGE_OBJECT_GRANULE_THRESHOLD);
return 1;
}
static int fill_small_from_global_small(struct mark_space *space,
struct gcobj_freelists *small_objects,
enum small_object_size kind) {
if (!space_has_multiple_mutators(space))
return 0;
struct gcobj_freelists *global_small = &space->small_objects;
if (*get_small_object_freelist(global_small, kind)
|| fill_small_from_local(global_small, kind)) {
struct gcobj_free **src = get_small_object_freelist(global_small, kind);
ASSERT(*src);
struct gcobj_free **dst = get_small_object_freelist(small_objects, kind);
ASSERT(!*dst);
// FIXME: just take a few?
*dst = *src;
*src = NULL;
return 1;
}
return 0;
}
static void fill_small_from_global(struct mutator *mut,
enum small_object_size kind) NEVER_INLINE;
static void fill_small_from_global(struct mutator *mut,
enum small_object_size kind) {
struct gcobj_freelists *small_objects = &mut->small_objects;
struct mark_space *space = mutator_mark_space(mut);
maybe_pause_mutator_for_collection(mut);
mark_space_lock(space);
int swept_from_beginning = 0;
while (1) {
if (fill_small_from_global_small(space, small_objects, kind))
break;
if (fill_small_from_large(space, small_objects, kind))
break;
if (!sweep(space, small_objects, LARGE_OBJECT_GRANULE_THRESHOLD)) {
if (swept_from_beginning) {
fprintf(stderr, "ran out of space, heap size %zu\n", space->heap_size);
abort();
} else {
if (mutators_are_stopping(space)) {
mark_space_unlock(space);
pause_mutator_for_collection(mut);
mark_space_lock(space);
} else {
collect(space, mut);
}
swept_from_beginning = 1;
}
}
if (*get_small_object_freelist(small_objects, kind))
break;
if (fill_small_from_local(small_objects, kind))
break;
}
mark_space_unlock(space);
}
static void fill_small(struct mutator *mut, enum small_object_size kind) {
// See if there are small objects already on the local freelists that
// can be split.
if (fill_small_from_local(&mut->small_objects, kind))
return;
fill_small_from_global(mut, kind);
}
static inline void* allocate_small(struct mutator *mut,
enum alloc_kind alloc_kind,
enum small_object_size small_kind) {
struct gcobj_free **loc =
get_small_object_freelist(&mut->small_objects, small_kind);
if (!*loc)
fill_small(mut, small_kind);
struct gcobj_free *ret = *loc;
*loc = ret->next;
struct gcobj *obj = (struct gcobj *)ret;
obj->tag = tag_live(alloc_kind);
return obj;
}
static inline void* allocate(struct mutator *mut, enum alloc_kind kind,
size_t size) {
size_t granules = size_to_granules(size);
if (granules <= LARGE_OBJECT_GRANULE_THRESHOLD)
return allocate_small(mut, kind, granules_to_small_object_size(granules));
return allocate_large(mut, kind, granules);
}
static inline void* allocate_pointerless(struct mutator *mut,
enum alloc_kind kind,
size_t size) {
return allocate(mut, kind, size);
}
static inline void init_field(void **addr, void *val) {
*addr = val;
}
static inline void set_field(void **addr, void *val) {
*addr = val;
}
static inline void* get_field(void **addr) {
return *addr;
}
static int initialize_gc(size_t size, struct heap **heap,
struct mutator **mut) {
#define SMALL_OBJECT_GRANULE_SIZE(i) \
ASSERT_EQ(SMALL_OBJECT_##i, small_object_sizes_for_granules[i]); \
ASSERT_EQ(SMALL_OBJECT_##i + 1, small_object_sizes_for_granules[i+1]);
FOR_EACH_SMALL_OBJECT_GRANULES(SMALL_OBJECT_GRANULE_SIZE);
#undef SMALL_OBJECT_GRANULE_SIZE
ASSERT_EQ(SMALL_OBJECT_SIZES - 1,
small_object_sizes_for_granules[LARGE_OBJECT_GRANULE_THRESHOLD]);
size = align_up(size, getpagesize());
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
return 0;
}
*heap = calloc(1, sizeof(struct heap));
if (!*heap) abort();
struct mark_space *space = heap_mark_space(*heap);
space->mem = mem;
space->mem_size = size;
// If there is 1 mark byte per granule, and SIZE bytes available for
// HEAP_SIZE + MARK_BYTES, then:
//
// size = (granule_size + 1) / granule_size * heap_size
// mark_bytes = 1/granule_size * heap_size
// mark_bytes = ceil(heap_size / (granule_size + 1))
space->mark_bytes = (uint8_t *) mem;
size_t mark_bytes_size = (size + GRANULE_SIZE) / (GRANULE_SIZE + 1);
size_t overhead = align_up(mark_bytes_size, GRANULE_SIZE);
pthread_mutex_init(&space->lock, NULL);
pthread_cond_init(&space->mutator_cond, NULL);
pthread_cond_init(&space->collector_cond, NULL);
space->heap_base = ((uintptr_t) mem) + overhead;
space->heap_size = size - overhead;
space->sweep = space->heap_base + space->heap_size;
if (!marker_init(space))
abort();
reclaim(space, NULL, (void*)space->heap_base,
size_to_granules(space->heap_size));
*mut = calloc(1, sizeof(struct mutator));
if (!*mut) abort();
add_mutator(*heap, *mut);
return 1;
}
static struct mutator* initialize_gc_for_thread(uintptr_t *stack_base,
struct heap *heap) {
struct mutator *ret = calloc(1, sizeof(struct mutator));
if (!ret)
abort();
add_mutator(heap, ret);
return ret;
}
static void finish_gc_for_thread(struct mutator *mut) {
remove_mutator(mutator_heap(mut), mut);
mutator_mark_buf_destroy(&mut->mark_buf);
free(mut);
}
static inline void print_start_gc_stats(struct heap *heap) {
}
static inline void print_end_gc_stats(struct heap *heap) {
printf("Completed %ld collections\n", heap_mark_space(heap)->count);
printf("Heap size with overhead is %zd\n", heap_mark_space(heap)->mem_size);
}