1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-02 04:40:29 +02:00
guile/libguile/whippet/benchmarks/README.md
2025-04-11 14:10:41 +02:00

35 lines
1.8 KiB
Markdown

# Benchmarks
- [`mt-gcbench.c`](./mt-gcbench.c): The multi-threaded [GCBench
benchmark](https://hboehm.info/gc/gc_bench.html). An old but
standard benchmark that allocates different sizes of binary trees.
As parameters it takes a heap multiplier and a number of mutator
threads. We analytically compute the peak amount of live data and
then size the GC heap as a multiplier of that size. It has a peak
heap consumption of 10 MB or so per mutator thread: not very large.
At a 2x heap multiplier, it causes about 30 collections for the `mmc`
collector, and runs somewhere around 200-400 milliseconds in
single-threaded mode, on the machines I have in 2022. For low thread
counts, the GCBench benchmark is small; but then again many Guile
processes also are quite short-lived, so perhaps it is useful to
ensure that small heaps remain lightweight.
To stress `mmc`'s handling of fragmentation, we modified this
benchmark to intersperse pseudorandomly-sized holes between tree
nodes.
- [`quads.c`](./quads.c): A synthetic benchmark that allocates quad
trees. The mutator begins by allocating one long-lived tree of depth
N, and then allocates 13% of the heap in depth-3 trees, 20 times,
simulating a fixed working set and otherwise an allocation-heavy
workload. By observing the times to allocate 13% of the heap in
garbage we can infer mutator overheads, and also note the variance
for the cycles in which GC hits.
## License
mt-gcbench.c was originally from https://hboehm.info/gc/gc_bench/, which
has a somewhat unclear license. I have modified GCBench significantly
so that I can slot in different GC implementations. Other files are
distributed under the Whippet license; see the top-level
[README.md](../README.md) for more.