1
Fork 0
mirror of https://git.savannah.gnu.org/git/guile.git synced 2025-05-09 07:00:23 +02:00
guile/semi.c
Andy Wingo 1944b54a19 Whippet can trace conservative roots
Next up, enabling it via the makefiles.
2022-10-03 16:09:21 +02:00

368 lines
11 KiB
C

#include <malloc.h>
#include <stdint.h>
#include <stdio.h>
#include <string.h>
#include <sys/mman.h>
#include <unistd.h>
#define GC_API_
#include "gc-api.h"
#include "semi-attrs.h"
#include "large-object-space.h"
#if GC_PRECISE
#include "precise-roots-embedder.h"
#else
#error semi is a precise collector
#endif
struct semi_space {
uintptr_t hp;
uintptr_t limit;
uintptr_t from_space;
uintptr_t to_space;
size_t page_size;
size_t stolen_pages;
uintptr_t base;
size_t size;
long count;
};
struct gc_heap {
struct semi_space semi_space;
struct large_object_space large_object_space;
};
// One mutator per space, can just store the heap in the mutator.
struct gc_mutator {
struct gc_heap heap;
struct gc_mutator_roots *roots;
};
static inline void clear_memory(uintptr_t addr, size_t size) {
memset((char*)addr, 0, size);
}
static inline struct gc_heap* mutator_heap(struct gc_mutator *mut) {
return &mut->heap;
}
static inline struct semi_space* heap_semi_space(struct gc_heap *heap) {
return &heap->semi_space;
}
static inline struct large_object_space* heap_large_object_space(struct gc_heap *heap) {
return &heap->large_object_space;
}
static inline struct semi_space* mutator_semi_space(struct gc_mutator *mut) {
return heap_semi_space(mutator_heap(mut));
}
static uintptr_t align_up(uintptr_t addr, size_t align) {
return (addr + align - 1) & ~(align-1);
}
static void collect(struct gc_mutator *mut) GC_NEVER_INLINE;
static void collect_for_alloc(struct gc_mutator *mut, size_t bytes) GC_NEVER_INLINE;
static void visit(struct gc_edge edge, void *visit_data);
static int semi_space_steal_pages(struct semi_space *space, size_t npages) {
size_t stolen_pages = space->stolen_pages + npages;
size_t old_limit_size = space->limit - space->to_space;
size_t new_limit_size =
(space->size - align_up(stolen_pages, 2) * space->page_size) / 2;
if (space->to_space + new_limit_size < space->hp)
return 0;
space->limit = space->to_space + new_limit_size;
space->stolen_pages = stolen_pages;
madvise((void*)(space->to_space + new_limit_size),
old_limit_size - new_limit_size,
MADV_DONTNEED);
madvise((void*)(space->from_space + new_limit_size),
old_limit_size - new_limit_size,
MADV_DONTNEED);
return 1;
}
static void semi_space_set_stolen_pages(struct semi_space *space, size_t npages) {
space->stolen_pages = npages;
size_t limit_size =
(space->size - align_up(npages, 2) * space->page_size) / 2;
space->limit = space->to_space + limit_size;
}
static void flip(struct semi_space *space) {
space->hp = space->from_space;
space->from_space = space->to_space;
space->to_space = space->hp;
space->limit = space->hp + space->size / 2;
space->count++;
}
static struct gc_ref copy(struct semi_space *space, struct gc_ref ref) {
size_t size;
gc_trace_object(ref, NULL, NULL, &size);
struct gc_ref new_ref = gc_ref(space->hp);
memcpy(gc_ref_heap_object(new_ref), gc_ref_heap_object(ref), size);
gc_object_forward_nonatomic(ref, new_ref);
space->hp += align_up(size, GC_ALIGNMENT);
return new_ref;
}
static uintptr_t scan(struct gc_heap *heap, struct gc_ref grey) {
size_t size;
gc_trace_object(grey, visit, heap, &size);
return gc_ref_value(grey) + align_up(size, GC_ALIGNMENT);
}
static struct gc_ref forward(struct semi_space *space, struct gc_ref obj) {
uintptr_t forwarded = gc_object_forwarded_nonatomic(obj);
return forwarded ? gc_ref(forwarded) : copy(space, obj);
}
static void visit_semi_space(struct gc_heap *heap, struct semi_space *space,
struct gc_edge edge, struct gc_ref ref) {
gc_edge_update(edge, forward(space, ref));
}
static void visit_large_object_space(struct gc_heap *heap,
struct large_object_space *space,
struct gc_ref ref) {
if (large_object_space_copy(space, ref))
gc_trace_object(ref, visit, heap, NULL);
}
static int semi_space_contains(struct semi_space *space, struct gc_ref ref) {
uintptr_t addr = gc_ref_value(ref);
return addr - space->base < space->size;
}
static void visit(struct gc_edge edge, void *visit_data) {
struct gc_heap *heap = visit_data;
struct gc_ref ref = gc_edge_ref(edge);
if (!gc_ref_is_heap_object(ref))
return;
if (semi_space_contains(heap_semi_space(heap), ref))
visit_semi_space(heap, heap_semi_space(heap), edge, ref);
else if (large_object_space_contains(heap_large_object_space(heap), ref))
visit_large_object_space(heap, heap_large_object_space(heap), ref);
else
GC_CRASH();
}
static void collect(struct gc_mutator *mut) {
struct gc_heap *heap = mutator_heap(mut);
struct semi_space *semi = heap_semi_space(heap);
struct large_object_space *large = heap_large_object_space(heap);
// fprintf(stderr, "start collect #%ld:\n", space->count);
large_object_space_start_gc(large, 0);
flip(semi);
uintptr_t grey = semi->hp;
if (mut->roots)
gc_trace_mutator_roots(mut->roots, visit, heap);
// fprintf(stderr, "pushed %zd bytes in roots\n", space->hp - grey);
while(grey < semi->hp)
grey = scan(heap, gc_ref(grey));
large_object_space_finish_gc(large, 0);
semi_space_set_stolen_pages(semi, large->live_pages_at_last_collection);
// fprintf(stderr, "%zd bytes copied\n", (space->size>>1)-(space->limit-space->hp));
}
static void collect_for_alloc(struct gc_mutator *mut, size_t bytes) {
collect(mut);
struct semi_space *space = mutator_semi_space(mut);
if (space->limit - space->hp < bytes) {
fprintf(stderr, "ran out of space, heap size %zu\n", space->size);
GC_CRASH();
}
}
void* gc_allocate_large(struct gc_mutator *mut, size_t size) {
struct gc_heap *heap = mutator_heap(mut);
struct large_object_space *space = heap_large_object_space(heap);
struct semi_space *semi_space = heap_semi_space(heap);
size_t npages = large_object_space_npages(space, size);
if (!semi_space_steal_pages(semi_space, npages)) {
collect(mut);
if (!semi_space_steal_pages(semi_space, npages)) {
fprintf(stderr, "ran out of space, heap size %zu\n", semi_space->size);
GC_CRASH();
}
}
void *ret = large_object_space_alloc(space, npages);
if (!ret)
ret = large_object_space_obtain_and_alloc(space, npages);
if (!ret) {
perror("weird: we have the space but mmap didn't work");
GC_CRASH();
}
return ret;
}
void* gc_allocate_small(struct gc_mutator *mut, size_t size) {
struct semi_space *space = mutator_semi_space(mut);
while (1) {
uintptr_t addr = space->hp;
uintptr_t new_hp = align_up (addr + size, GC_ALIGNMENT);
if (space->limit < new_hp) {
collect_for_alloc(mut, size);
continue;
}
space->hp = new_hp;
// FIXME: Allow allocator to avoid clearing memory?
clear_memory(addr, size);
return (void *)addr;
}
}
void* gc_allocate_pointerless(struct gc_mutator *mut, size_t size) {
return gc_allocate(mut, size);
}
static int initialize_semi_space(struct semi_space *space, size_t size) {
// Allocate even numbers of pages.
size_t page_size = getpagesize();
size = align_up(size, page_size * 2);
void *mem = mmap(NULL, size, PROT_READ|PROT_WRITE,
MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
if (mem == MAP_FAILED) {
perror("mmap failed");
return 0;
}
space->to_space = space->hp = space->base = (uintptr_t) mem;
space->from_space = space->base + size / 2;
space->page_size = page_size;
space->stolen_pages = 0;
space->size = size;
space->count = 0;
return 1;
}
#define FOR_EACH_GC_OPTION(M) \
M(GC_OPTION_FIXED_HEAP_SIZE, "fixed-heap-size") \
M(GC_OPTION_PARALLELISM, "parallelism")
static void dump_available_gc_options(void) {
fprintf(stderr, "available gc options:");
#define PRINT_OPTION(option, name) fprintf(stderr, " %s", name);
FOR_EACH_GC_OPTION(PRINT_OPTION)
#undef PRINT_OPTION
fprintf(stderr, "\n");
}
int gc_option_from_string(const char *str) {
#define PARSE_OPTION(option, name) if (strcmp(str, name) == 0) return option;
FOR_EACH_GC_OPTION(PARSE_OPTION)
#undef PARSE_OPTION
if (strcmp(str, "fixed-heap-size") == 0)
return GC_OPTION_FIXED_HEAP_SIZE;
if (strcmp(str, "parallelism") == 0)
return GC_OPTION_PARALLELISM;
fprintf(stderr, "bad gc option: '%s'\n", str);
dump_available_gc_options();
return -1;
}
struct options {
size_t fixed_heap_size;
size_t parallelism;
};
static size_t parse_size_t(double value) {
GC_ASSERT(value >= 0);
GC_ASSERT(value <= (size_t) -1);
return value;
}
static int parse_options(int argc, struct gc_option argv[],
struct options *options) {
options->parallelism = 1;
for (int i = 0; i < argc; i++) {
switch (argv[i].option) {
case GC_OPTION_FIXED_HEAP_SIZE:
options->fixed_heap_size = parse_size_t(argv[i].value);
break;
case GC_OPTION_PARALLELISM:
options->parallelism = parse_size_t(argv[i].value);
break;
default:
GC_CRASH();
}
}
if (!options->fixed_heap_size) {
fprintf(stderr, "fixed heap size is currently required\n");
return 0;
}
if (options->parallelism != 1) {
fprintf(stderr, "parallelism unimplemented in semispace copying collector\n");
return 0;
}
return 1;
}
int gc_init(int argc, struct gc_option argv[],
struct gc_stack_addr *stack_base, struct gc_heap **heap,
struct gc_mutator **mut) {
GC_ASSERT_EQ(gc_allocator_allocation_pointer_offset(),
offsetof(struct semi_space, hp));
GC_ASSERT_EQ(gc_allocator_allocation_limit_offset(),
offsetof(struct semi_space, limit));
struct options options = { 0, };
if (!parse_options(argc, argv, &options))
return 0;
*mut = calloc(1, sizeof(struct gc_mutator));
if (!*mut) GC_CRASH();
*heap = mutator_heap(*mut);
struct semi_space *space = mutator_semi_space(*mut);
if (!initialize_semi_space(space, options.fixed_heap_size))
return 0;
if (!large_object_space_init(heap_large_object_space(*heap), *heap))
return 0;
// Ignore stack base, as we are precise.
(*mut)->roots = NULL;
return 1;
}
void gc_mutator_set_roots(struct gc_mutator *mut,
struct gc_mutator_roots *roots) {
mut->roots = roots;
}
void gc_heap_set_roots(struct gc_heap *heap, struct gc_heap_roots *roots) {
GC_CRASH();
}
struct gc_mutator* gc_init_for_thread(struct gc_stack_addr *base,
struct gc_heap *heap) {
fprintf(stderr,
"Semispace copying collector not appropriate for multithreaded use.\n");
GC_CRASH();
}
void gc_finish_for_thread(struct gc_mutator *space) {
}
void* gc_call_without_gc(struct gc_mutator *mut, void* (*f)(void*),
void *data) {
// Can't be threads, then there won't be collection.
return f(data);
}
void gc_print_stats(struct gc_heap *heap) {
struct semi_space *space = heap_semi_space(heap);
printf("Completed %ld collections\n", space->count);
printf("Heap size is %zd\n", space->size);
}